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Abstract

Recent research indicates that affective responses during exercise are an important deter-

minant of future exercise and physical activity. Thus far these responses have been mea-

sured with standardized self-report scales, but this study used biometric software for

automated facial action analysis to analyze the changes that occur during physical exercise.

A sample of 132 young, healthy individuals performed an incremental test on a cycle ergom-

eter. During that test the participants’ faces were video-recorded and the changes were

algorithmically analyzed at frame rate (30 fps). Perceived exertion and affective valence

were measured every two minutes with established psychometric scales. Taking into

account anticipated inter-individual variability, multilevel regression analysis was used to

model how affective valence and ratings of perceived exertion (RPE) covaried with move-

ment in 20 facial action areas. We found the expected quadratic decline in self-reported

affective valence (more negative) as exercise intensity increased. Repeated measures cor-

relation showed that the facial action mouth open was linked to changes in (highly intercorre-

lated) affective valence and RPE. Multilevel trend analyses were calculated to investigate

whether facial actions were typically linked to either affective valence or RPE. These analy-

ses showed that mouth open and jaw drop predicted RPE, whereas (additional) nose wrin-

kle was indicative for the decline in affective valence. Our results contribute to the view that

negative affect, escalating with increasing exercise intensity, may be the body’s essential

warning signal that physiological overload is imminent. We conclude that automated facial

action analysis provides new options for researchers investigating feelings during exercise.

In addition, our findings offer physical educators and coaches a new way of monitoring the

affective state of exercisers, without interrupting and asking them.

1. Introduction

Exercise plays a significant role in reducing the risk of developing diseases and in improving

health and wellbeing [1], yet despite knowing that exercise is good for them most adults in

Western countries are insufficiently active [2].
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Exercise psychologists have spent the last 50 years developing and testing theories about

why some people are more successful than others in changing their behavior to promote their

own health and exercise more regularly. After decades of focusing on social-cognitive factors

and the role of deliberate reasoning in motivation (e.g. goal-setting and self-efficacy) research-

ers began to focus on the role of more automatic and affective processes in promoting change

in health-related behaviors [3, 4, 5].

Affect has been defined as a pleasant or unpleasant non-reflective feeling that is always

accessible and is an inherent aspect of moods and emotional episodes, but can be experienced

independently of these states as well [6]. Affect can be described in the two orthogonal dimen-

sions: ‘affective valence’ (how good or bad one feels) and ‘arousal’ (high vs. low) [7]. There is

conclusive evidence that those who experience a more pleasant affective state during exercise

are more likely to exercise again [8].

Dual-mode theory [9] explains how feelings during exercise are moderated by exercise

intensity. According to the theory and supported by evidence [10], the affective response to

moderate intensity exercise (below ventilatory threshold; VT) is mostly positive, but affective

responses to heavy intensity exercise (approaching the VT) are more variable. Some individu-

als continue to report positive affect as exercise intensity increases, but others report more and

more negative affect. When the intensity of exercise increases to the severe domain (when the

respiratory compensation threshold, RCT, is exceeded), almost all individuals report a decline

in pleasure [9, 10].

Ratings of affective valence above the VT are closely connected to the concept of perceived

exertion. Borg [11, p. 8] defined perceived exertion as “. . . the feeling of how heavy and strenu-

ous a physical task is”. A recent article in Experimental Biology proposed that at high exercise

intensities feelings of negative affect and perceived exertion may even convert into one, sug-

gesting that the sensation of severe exertion enters consciousness via a decline in pleasure [12].

We believe that gaining a deeper understanding of the relationship between the affective

response to exercise and perceived exertion is important not just from a research perspective,

but also from a practical perspective. Practitioners (e.g. teachers and coaches) would greatly

and immediately benefit from being able to assess an exerciser’s perceived exertion and his or

her momentary affective state to increase the odds of further effective and pleasurable physical

exercise.

1.1 Measurement of exercise-induced feelings during exercise

Thus far exercise-induced feelings have been mostly measured with exercisers’ self-reports [3].

The most commonly used psychometric measures of affective valence is the Feeling Scale (FS)

[13], a single-item measure consisting of the question “How do you feel right now?” to which

responses are given using an 11-point bipolar rating scale. Various studies have shown that

displeasure increases with a quadratic trend under increasing exercise intensity, although with

considerable inter-individual variability [10].

Perceived exertion, on the other hand, has often been measured with Borg’s rating of per-

ceived exertion (RPE) scale [11]. In this test participants are asked to indicate their actual state

during exercise on a 15-point scale ranging from 6 no exertion to 20 maximal exertion. The

scale is designed to reflect the heart rate of the individual before, during and after physical

exercise. It would be assumed that an RPE of 13 corresponds approximately to a heart rate of

130 [14].

Focusing on two tasks simultaneously (exercising and rating one’s own feelings at the same

time) can bias the validity of the answer as well as the feeling states itself. It is known that the

act of labeling affect can influence the individual’s affective response [15]. Another limitation
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is that affective valence changes during exercise [10] and repeatedly asking people how they

feel inevitably carries the risk that it will interrupt their experience and introduce additional

bias to their answers. Monitoring changes in biometric data avoids these interruptions and can

thereby provide an alternative way to learn about the feelings that occur during exercise.

1.2 Facial action (facial expression) analysis

Spectators and commentators on sport readily infer how athletes might feel from their facial

movements during exercise. Some of these “expressions” might reveal information about an

athletes’ inner state. However, it cannot universally be assumed that observed facial move-

ments always reflect (i.e., are expressive of) an inner state [16]. Facial actions can also be

related to perceptual, social, attentional, or cognitive processes [17, 18]. Therefore, we refer to

facial expressions as facial actions in order to discourage the misunderstanding that subjective

inner states are unambiguously expressed in the face.

The majority of studies conducted so far has quantified facial action by using either facial

electromyographic activity (fEMG) or specific coding systems, of which the Facial Action Cod-

ing System (FACS) is probably the most widely known [19, 20].

fEMG involves measuring electrical potentials from facial muscles in order to infer muscular

contractions. It requires the placement of electrodes on the face and thus can only measure the

activity of a pre-selected set of facial muscles. Another limitation of using fEMG is that it is affected

by crosstalk, meaning that surrounding muscles interfere with the signals from the muscles of

interest, making fEMG signals noisy and ambiguous [21, 22]. A few fEMG studies have demon-

strated that contraction of specific facial muscles (corrugator supercilii, zygomaticus and masseter

muscle) is correlated with RPE during resistance training [21, 23] and bouts of cycling [20, 24].

Furthermore there are coding systems. Many of them are rooted in the FACS, which is an

anatomy based, descriptive systems for manually coding all visually observable facial move-

ments [19]. Trained coders view video-recordings of facial movements frame-by-frame in

order to code facial movements into action units (AUs). FACS is time-consuming to learn and

use (approximately 100 hours to learn FACS and one to two hours to analyze just one minute

of video content) [20].

Recent progress has been made in building computer systems to identify facial actions and

analyze them as a source of information about for example affective states [25]. Computer sci-

entists have developed computer vision and machine learning models, which automatically

decode the content of facial movements to facilitate faster, more replicable coding. The com-

puter systems display high concurrent validity with manual coding [26].

We are aware of only one study so far that has used automated facial feature tracking to

describe how facial activity changed with exercise intensity [27]. The authors analyzed video-

recordings of overall head movement and 49 facial points with the IntraFace software to clas-

sify movement in the upper and lower face. The study showed that facial activity in all areas

differed between intensity domains. The movement increased from lactate threshold until

attainment of maximal aerobic power with greater movement in the upper face than in the

lower face at all exercise intensities.

1.3 This study

The aim of this study was to examine changes in a variety of discrete facial actions during an

incremental exercise test, and relate them to changes in self-reported RPE and affective

valence, i.e. feelings that typically occur during exercise. To the best of our knowledge it is the

first study to involve the use of automated facial action analysis as a method of investigating

the covariation of these variables.
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We have used an automated facial action coding system with the Affectiva Affdex algorithm

at its core [28]. It includes the Viola Jones Cascaded Classifier algorithm [29] to detect faces in

digital videos, and then digitally tags and tracks the configuration of 34 facial landmarks (e.g.,

nose tip, chin tip, eye corners). Data is fed into a classification algorithm which translates the

relative positions and movements of the landmarks into 20 facial actions (e.g., mouth open).

Classification by Affectiva Affdex relies on a normative data set based on manual initial cod-

ings of human FACS coders, and subsequent machine learning data enrichment with more

than 6.5 million faces analyzed [30]. Facial actions as detected by Affectiva Affdex are similar

[31] but not identical to the AUs from the FACS. Facial actions consist of single facial move-

ments or combinations of several movements (e.g., facial action mouth open: lower lip drops

downwards as indicated by AU 25 lips part; facial action smile as indicated by AU 6 cheak
raiser together with AU 12 lip corner puller).

Connecting with dual mode theory [9] and research pointing out the importance of positive

affect during exercise for further exercising [8], facial action metrics might provide useful bio-

metric indicators for evaluating feeling states during exercise at different intensities. We took a

descriptive approach to analyze which facial actions co-occur with affective valence and per-

ceived exertion during exercise. This approach enables us to contribute conceptually to the

examination of the relationship between the constructs of perceived exertion and affective

valence (e.g. to determine if they are one or two distinct constructs and whether this depends

on physical load) [12], whilst avoiding bias caused by repeatedly interrupting subjects’ experi-

ence of exercise to obtain self-reports.

In order to account for expectable high inter- and intra-individual variability in both the

affective response to exercise [3] and in facial actions [16], we used multilevel regression

modeling to analyze our data; as far as we know, we are the first in this research area to use this

method of data analysis.

2. Method and materials

The Research Ethics Committee of the University of Potsdam approved the study and all pro-

cedures complied with the Helsinki declaration. All participants gave their signed consent

prior to partaking in the experiment. The individual in this manuscript has given written

informed consent (as outlined in PLOS consent form) to publish these case details.

2.1 General setup

Study participants completed an exercise protocol involving exercising at increasing intensity

on a cycle ergometer until they reached voluntary exhaustion. Whilst they were exercising

their face was recorded continuously on video. Both affective valence and perceived exertion

were measured repeatedly every two minutes. Changes in facial action were then evaluated

with the help of software for automated facial action analysis and related to the self-report

data. Advanced statistical methods were used for data analysis, accounting for the generally

nested data structure (repeated measurements are nested within individuals).

2.2 Participants

We tested a group of 132 healthy individuals, aged between 18 and 36 years (Mage = 21.58,

SDage = 2.93; 53 women). All of them were enrolled in a bachelor’s degree course in sport and

exercise science. The group average of (self-reported) at least moderate physical activity was

337 minutes per week. Students with a beard or dependent on spectacles were not eligible to

participate. Data from 19 participants were unusable due to recording malfunction (n = 6),

poor video quality (n = 6; more than 10% missing values because the software did not detect
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PLOS ONE | https://doi.org/10.1371/journal.pone.0228739 February 11, 2020 4 / 17

https://doi.org/10.1371/journal.pone.0228739


the face) or due to disturbing external circumstances (n = 7; people entering the room unex-

pectedly; loud music played in the nearby gym). This resulted in a final sample of 113 study

participants.

2.3 Treatment and measures

2.3.1 Exercise protocol. The participants performed an incremental exercise test on an

indoor bike ergometer. Required power output was increased by 25 watt increments every two

minutes, starting from 25 watts until the participants indicated that they had reached voluntary

exhaustion [32]. The protocol was stopped when the participant was unable to produce the

required wattage any more. If a participant reached 300 watts, the final phase involved pedal-

ing at this level for two minutes. Thus the maximum duration of the exercise was 26 minutes.

All participants performed a five-minute cool-down consisting of easy cycling.

For a plausibility check whether self-declared physical exhaustion would be at least close to

the participants’ physiological state heart rate during exercise was monitored in about half of

the participants (n = 54). A Shimmer3 ECG device with a sampling rate of 512 Hz was used for

that. These participants started with a one-minute heart rate baseline measurement before the

exercise.

2.3.2 Affective valence and perceived exertion. The FS (a single item scale: response

options range from -5 very bad to +5 very good) [13] was used to measure affective valence,

and participants rated their level of exertion using Borg’s Rating of Perceived Exertion (RPE; a

single-item scale; response options range from 6 no exertion to 20 maximal exertion) [11]. FS

and RPE were assessed every two minutes during the exercise task, at the end of each watt

level. For this purpose the two questionnaires (FS first and RPE second) were displayed on the

monitor in front of the participants (see below) and they were asked to give their rating ver-

bally to the experimenter.

2.3.3 Automated facial expression analysis. The participants’ facial actions during the

exercise task were analyzed using the software Affectiva Affdex [28] as implemented in the

iMotionsTM platform for biometric research (Version 7.2). Faces were continuously recorded

with a Logitech HD Pro C920 webcam at a sampling rate of 30 fps during performance of the

exercise task. The camera was mounted on top of the ergometer screen (0.4 m in front of the

face with an angle of 20 degrees from below) and connected to the investigator’s laptop.

Affectiva Affdex continuously analyzed the configuration of the 34 facial landmarks [31]

during performance of the exercise task (Fig 1). It provided scores for 20 discrete facial actions

(e.g., nose wrinkle, lip press) from all over the face (all facial actions detected by Affectiva Aff-

dex are listed in Table 1, in the results section) [31]. The algorithm performs analysis and clas-

sification at frame rate. This means that at a time resolution of 30 picture frames per video

Fig 1. Examples of facial actions during exercise. Mouth open and nose wrinkle (left picture), jaw drop (right

picture).The position of the 34 analyzed facial landmarks are marked with yellow dots.

https://doi.org/10.1371/journal.pone.0228739.g001
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second (30 fps), our analyses were based on 1.800 data points per facial action per 1 minute.

Recent research has shown that Affectiva Affdex facial action scores are highly correlated with

fEMG-derived scores, and that Affectiva Affdex outperforms fEMG in recognizing affectively

neutral faces [33].

Each data point that Affectiva Affdex provides for a facial action is the probability of pres-

ence (0–100%) of that facial action. We aggregated these raw data, for each facial action sepa-

rately, to facial actions scores (time percent scores) indicating how long during a watt level on

the ergometer (i.e., within 2 minutes) a facial action was detected with the value 10 or higher.

For example, a facial action score of 0 indicates that the facial action was not present during

the watt level, whereas a score of 100 indicates that it was present all the time during that watt

level.

Fig 1 illustrates examples of facial actions and the analyzed facial landmarks.

2.4 Procedure

After the participants arrived at the laboratory they were informed about the exercise task and

told that their face would be filmed during the task. They were also given a detailed description

of the two scales (FS and RPE), what they are supposed to measure and how they would be

used in the study.

Participation was voluntary and all participants completed data protection forms and were

checked for current health problems. Participants performed the exercise task on a stationary

cycle ergometer in an evenly and clearly lit laboratory in single sessions. An external 22” moni-

tor was positioned 1.5 m in front of the participant; this was used to display instructions during

Table 1. Repeated measures correlation of all facial actions with FS and RPE.

Facial Action FS RPE

mouth open -0.55� 0.70�

jaw drop -0.40� 0.51�

nose wrinkle -0.34� 0.29�

lip pucker -0.32� 0.32�

upper lip raise -0.31� 0.27�

lid tighten -0.30� 0.26�

eye closure -0.29� 0.30�

smile -0.26� 0.25�

lip stretch -0.21� 0.18�

cheek raise -0.19� 0.21�

lip press -0.19� 0.15�

dimpler -0.17� 0.13�

brow furrow -0.14� 0.17�

eye widen 0.14� -0.27�

lip corner depressor -0.13� 0.13�

lip suck -0.10� 0.01

inner brow raise -0.10� 0.07

brow raise -0.07 0.16�

chin raise -0.07 0.03

smirk -0.07 -0.06

FS, Feeling Scale; RPE, Rating of perceived exertion

�p < .001

https://doi.org/10.1371/journal.pone.0228739.t001
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the exercise session (instruction on watt level for 100 s always at the beginning of each watt

level; the two scales, FS and RPE, always for 10 s at the end of each level). Throughout the trial,

no verbal encouragement or performance feedback was provided and the researcher followed

a standard script of verbal interaction. During the exercise session the researcher remained out

of the participants’ sight and noted the participant’s verbal responses when FS and RPE

responses were solicited. The periods during which participants were reporting their ratings

were cut from the video for the facial action analysis.

2.5 Statistical approach, modeling and data analysis

Multilevel models were used to assess the anticipated increase in negative affect during exercise

and to examine the relationships between facial action, affective valence and perceived exer-

tion. We had multiple observations for each participant (20 facial action scores, FS, RPE), so

that these repeated measurements (level 1) were nested within individuals (level 2). The main

advantages of multilevel models are that they separate between-person variance from within-

subject variance, so that estimates can be made at individual level as well as at sample level

[34]. Because they use heterogeneous regression slopes (one regression model for each partici-

pant) multilevel statistics enable analysis of dependent data and a potentially unbalanced

design (series of measurements with different lengths); two conditions that would violate test

assumptions of traditional regression and variance analysis.

Our first model tested whether affective valence (FS) showed the expected quadratic trend

[10] with increasing perceived exertion (RPE; time-varying predictor). In this model, RPE and

derived polynomials were centered at zero and used as a continuous covariate for prediction of

change in affective valence (FS).

To investigate which facial actions were associated with affective valence (FS) and with per-

ceived exertion (RPE) we carried out separate analyses of the degree of covariation of FS and

RPE with each facial action. First we looked at repeated measure correlations, which take the

dependency of the data into account by analyzing common intra-individual associations whilst

controlling for inter-individual variability [35]. Then we predicted affective valence (FS) from

facial action whilst controlling for the influence of RPE, considering each facial action in a sep-

arate model. In parallel analyses we predicted RPE from facial action whilst controlling for the

influence of FS. The significance of the fixed effects of facial actions were tested using chi-

square tests for differences in -2 log likelihood values. A model with facial action as a predictor

was compared with a reduced model without facial action. We compared all models in which

FS or RPE was predicted by facial action, using the Akaike Information Criterion Corrected

(AICC) and Weight of Evidence (W) [36]. Pseudo Rx
2 (within-subject level) was calculated to

estimate the proportion of variance explained by the predictor [36].

Finally, to test whether FS and RPE made unique contributions in explaining variance in

facial action, we calculated separate multilevel models in which specific facial actions were pre-

dicted by FS and RPE. This allowed us to partial out the separate amounts of explained vari-

ance of FS and RPE in the respective facial action.

We used the lme script from the nlme package (version 3.1–139) [37] to estimate fixed and

random coefficients. This package is supplied in the R system for statistical computing (version

3.6.0) [38].

3 Results

3.1 Manipulation checks

As expected, participants reached different maximum watt levels in the exercise session and so

the number of observations varied between participants. In summary, we recorded 1102 data

Facial action analysis during exercise
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point observations for the 113 participants, derived from between 5 and 13 power levels per

participant.

Mean maximum RPE in our sample was 19.29 (SD = 1.01) and the mean heart rate in the

final stage before exhaustion was 174.61 bpm (SD = 16.08). This is similar to previously

reported reached maximal heart rate in incremental cycling tasks (e.g. HRmax: 179.5 ± 20.2

bpm, in [39]). The correlation between heart rate and RPE was very high, r = .82, p< .001. We

believe it is valid to assume that most of the participants were working at close to maximum

capacity at the end of the incremental exercise session in our study.

3.2 Multilevel trend analysis of FS with RPE

An unconditional null model was estimated to calculate the intraclass correlation for affective

valence (FS) (ρI = .33), supporting the rationale of conducting multilevel analysis [34]. Next we

introduced centered RPE (RPE_0) as a time-varying covariate to test the trend of FS with

increasing RPE_0.

The model with a quadratic trend (b1 = -0.01, p = .65; b2 = -0.02, p< .001) provided a signif-

icantly better fit to the data compared to the linear model, χ2 (1) = 93.39, p< .001. The inclu-

sion of random slopes (χ2 (2) = 141.46, p< .001) and random curvatures further improved the

model fit significantly, χ2 (3) = 28.39, p< .001. The full model, with RPE_0 and (RPE_0)2 as

fixed effects and random intercepts and slopes, explained 67.12% of the variance in FS.

Thus our results confirm previous results, indicating that FS showed the expected negative

quadratic trend [11] with increasing intensity (RPE). Fig 2 illustrates the finding, which can be

made particularly obvious by means of multilevel regression analysis: The high interindividual

variability in the decrease of affective valence (more negative) under increasing perceived

exhaustion is striking.

3.3 Repeated measures correlations

3.3.1 Covariation of FS and RPE with facial action as intensity increases. First correla-

tions between each facial action and FS and RPE were calculated (Table 1). Repeated measures

correlations revealed that mouth open (r = -.55, p< .001), jaw drop (r = -.40, p< .001) and

nose wrinkle (r = -.34, p< .001) showed the highest correlations with affective valence (FS).

Mouth open (r = .70, p< .001) and jaw drop (r = .51, p< .001) also showed the highest correla-

tion with perceived exertion (RPE), followed by lip pucker (r = .32, p< .001). FS and RPE were

highly correlated (r = -.74, p< .001). These results indicate that both FS and RPE were associ-

ated with mouth open and jaw drop.

3.4 Multilevel analyses

3.4.1 Predicting FS from facial action whilst controlling for RPE. To identify which

facial action best explains variation in FS during an incremental exercise session we calculated

separate multilevel models, one for each facial action (left column of Table 2). RPE was

included in these models as a control variable with random intercepts and slopes. The model

with nose wrinkle as the predictor showed the best fit (AICC = 2770.08, W = 1). Parameter esti-

mates (b = -0.09, p< .001) indicate a linear decrease in FS with increasing nose wrinkle. Add-

ing nose wrinkle as a fixed effect significantly improved the model fit (χ2(1) = 12.37, p< .001)

compared to the reduced model (RPE predicting FS). Adding nose wrinkle to this model as a

random effect further improved model fit significantly, χ2(3) = 32.89, p< .001. Nose wrinkle
explained 15.51% of the within-subject variation in FS. Smile showed the next best fit

(AICC = 2780.83, W = 0), with parameter estimates (b = -0.03, p< .001) indicating a linear
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decrease in FS as smile increased, explaining 3.47% of the within-subject variation in FS. All

other facial actions showed an even worse model fit (left column of Table 2).

All in all, these results indicate that when controlling for the effects of RPE, nose wrinkle
explains a significant proportion of the variation in affective valence and more than any other

of the facial actions.

3.4.2 Predicting RPE from facial action whilst controlling for FS. To determine which

facial action explains the most variation in RPE during the incremental exercise session we cal-

culated a series of analyses in which RPE was predicted by all different facial actions in separate

Fig 2. Quadratic relationship between FS and RPE at individual level. Data from a random selection of half of the participants (n = 56) are presented to illustrate the

intra- and inter-individual variability in affective response to increasing exercise intensity. Intraclass correlation shows that 33% of the variance in affective valence (FS)

is due to inter-individual variability.

https://doi.org/10.1371/journal.pone.0228739.g002
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multilevel models (right column of Table 2). FS was included in each model as a control vari-

able with random intercepts and slopes.

Here mouth open showed the best model fit (AICC = 4135.06, W = 1), followed by jaw drop
(AICC = 4184.02, W = 0). Parameter estimates for both mouth open (b = 0.03, p< .001) and

jaw drop (b = 0.02, p< .001) indicate a linear increase in RPE with increasing facial action.

Adding mouth open as a fixed effect to the reduced model (FS predicting RPE) significantly

improved model fit (χ2 (1) = 65.85, p< .001) and this model explained 16.28% of within-sub-

ject variance in RPE. Adding mouth open as a random effect did not further improve model fit,

χ2 (3) = 0.15, p = .99.

Adding jaw drop as a fixed effect to the reduced model (FS predicting RPE) significantly

improved the model fit (χ2 (1) = 16.84, p< .001) and this model explained 5.37% of within-

subject variance in RPE; adding jaw drop as a random effect did not further improve the

model fit, χ2 (3) = 0.20, p = .98.

All other facial actions showed a worse model fit (right column of Table 2), none explained

more than 2.68% (eye widen) of the within-subject variation in FS.

Taken together these results indicate that mouth open and jaw drop explained significant

variation in perceived exertion, and more than all other facial actions. Both facial actions

involve movements in the mouth region; jaw drop is the bigger movement, as the whole jaw

drops downwards, whereas mouth open only involves a drop of the lower lip [31].

Table 2. Comparison of multilevel models in which one facial action predicts FS (left column) or RPE (right column).

FS RPE

model K AICC Delta AICC W K AICC Delta AICC W

reduceda 7 2807.19 37.11 0 7 4192.92 57.86 0

mouth open 11 2796.18 26.10 0 11 4135.06 0 0

jaw drop 11 2810.51 40.43 0 11 4184.02 48.96 0

nose wrinkle 11 2770.08 0 1 11 4197.21 62.14 0

lip pucker 11 2805.21 35.13 0 11 4197.64 62.58 0

upper lip raise 8b 2796.12 26.04 0 11 4199.05 63.99 0

lid tighten 11 2788.75 18.67 0 11 4200.74 65.68 0

eye closure 11 2810.74 40.66 0 11 4198.96 63.90 0

smile 11 2780.83 10.75 0 11 4200.38 65.32 0

lip stretch 11 2811.84 41.76 0 11 4197.89 62.82 0

cheek raise 11 2796.27 26.19 0 11 4199.80 64.74 0

lip press 11 2808.03 37.95 0 11 4198.29 63.23 0

dimpler 11 2813.96 43.88 0 11 4197.60 62.53 0

brow furrow 11 2803.04 32.96 0 11 4200.38 65.32 0

eye widen 11 2811.23 41.15 0 11 4188.29 53.23 0

lip corner depressor 8b 2807.60 37.52 0 11 4200.32 65.25 0

lip suck 11 2814.52 44.44 0 11 4201.08 66.02 0

inner brow raise 11 2809.52 39.44 0 11 4200.38 65.32 0

brow raise 11 2813.85 43.77 0 11 4200.81 65.75 0

chin raise 11 2813.14 43.06 0 11 4200.92 65.86 0

smirk 11 2804.41 34.33 0 11 4197.28 62.22 0

FS, Feeling Scale; RPE, Rating of perceived exertion; K, number of parameters; AICC, Akaike information criterion corrected; W, weight of evidence. Models predicted

FS (left column) resp. RPE (right column) with each facial action as a fixed and random factor while controlling for the influence of RPE resp. FS.
aThe reduced model describes the respective outcome variable predicted by the respective covariate (left column: RPE predicting FS, right column: FS predicting RPE).
bThe models with upper lip raise and lip corner depressor as a predictor of FS failed to converge. Therefore, a more parsimonious model without the facial action as a

random factor was calculated, resulting in a smaller number of parameters (K).

https://doi.org/10.1371/journal.pone.0228739.t002
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3.4.3 Predicting facial action from FS and RPE. In order to separate the proportion of

variance in the above identified facial actions (i.e. mouth open and jaw drop; nose wrinkle)

explained by RPE and FS we calculated three separate multilevel models with each of these

facial actions as the dependent variable and RPE and FS as time-varying predictors.

Mouth open was significantly predicted by both, RPE (b = 2.53, p =< .001) and FS (b =

-1.34, p = .003). Introducing random slopes for RPE significantly improved model fit, χ2 (2) =

7.12, p = .03. RPE accounted for 41.21% of the within-subject variance in mouth open and sig-

nificantly improved the model compared to a reduced model without RPE as a predictor, χ2

(3) = 99.32, p< .001. FS accounted for 11.42% of the within-subject variance in mouth open
and significantly improved model fit compared with the reduced model without FS as a pre-

dictor, χ2 (1) = 10.50, p = .001.

Nose wrinkle was significantly predicted by FS (b = -0.32, p = .003), but not by RPE

(b = 0.06, p = .13). Introducing random slopes for FS and then RPE in separate steps signifi-

cantly improved model fit; FS: χ2 (2) = 152.07, p< .001, and RPE: χ2 (3) = 21.78, p< .001. FS

explained 21.10% of the within-subject variance in nose wrinkle and significantly improved

model fit compared to the reduced model without FS as a predictor, χ2 (4) = 122.11, p< .001.

Jaw drop was significantly predicted by RPE (b = 1.06, p< .001), but not by FS (b = -0.49,

p = .12). Introducing random slopes for RPE significantly improved model fit, χ2 (2) = 14.54,

p< .001. RPE explained 35.83% of the within-subject variance in jaw drop and significantly

improved model fit compared to a reduced model without RPE as a predictor, χ2 (3) = 59.02,

p< .001.

4 Discussion

The aim of this study was to examine whether and how single facial actions change with exer-

cise intensity and how they were related to affective valence and perceived exertion. The study

is innovative with regard to at least two aspects. First, we used automated facial action analysis

technology to observe change in 20 discrete facial areas covering the whole face in a large sam-

ple of study participants. Second, the use of multilevel models allowed us to account for differ-

ences in change across individuals (nested data structure). We found that both affective

valence and perceived exertion were significantly associated with mouth open. After control-

ling for the influence of RPE, mouth open was no longer significantly associated with affective

valence, but the relationship between mouth open and RPE remained significant after control-

ling for the effect of affective valence. All in all, during exercise nose wrinkle was specifically

characteristic of negative affect (i.e., less pleasurable feelings with increasing perceived exer-

tion) and jaw drop of higher RPE. Fig 1 illustrates examples of these relevant facial actions.

4.1 Affective responses at different levels of perceived exertion

Several studies have investigated the change of affective responses during exercise with

repeated measurement designs [10]. We think that this makes the separation of the intra- and

inter-individual variability in data analysis inevitable. However, to the best of our knowledge

there is currently no published study in which trajectories have been analyzed using the

according multilevel regression approach. On the basis of dual-mode theory [9] and previous

findings we hypothesized that there would be a negative quadratic trend [10, 40] of the affec-

tive response with increasing exercise intensity. Multilevel analysis confirmed this hypothesis

and also demonstrated that there was high inter-individual variability in reported affective

valence during exercise (Fig 2). This demonstrates the, in our view, necessity of using multi-

level analysis when examining the decline in affect (more negative) during exercising with

increasing intensity.
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Previous studies were able to demonstrate the existence of inter-individual variability in

affective valence by describing that e.g. 7% of participants reported an increase in affect ratings,

50% no change and 43% a decrease during exercise below the VT [41]. The statistical approach

presented here extends this approach and allows to perform research that quantifies the influ-

ence of moderators of the exercise intensity-affect relationship to explain inter-individual dif-

ferences in affective responses to exercise at given intensity level.

4.2 Affective responses and facial action

In our study affective valence was most highly correlated with the facial action mouth open
when using simple repeated measures correlations (Table 1). However, affective valence was

highly correlated with RPE, which was in turn highly correlated with mouth open. In order to

determine what facial actions account for components of variance in specific constructs it is

necessary to take into account the multicollinearity of the constructs. We did this by control-

ling statistically for variance in one construct (e.g. RPE) when analyzing the effect of the other

(e.g. affective valence). When the influence of perceived exertion was taken into account, affec-

tive valence was most strongly associated with the facial action nose wrinkle (Table 2). This is

consistent with previous research showing that nose wrinkling may indicate negative affect.

For example, newborns [42] and students [43] respond to aversive stimuli (e.g., a sour liquid

[42] or offensive smells [43]) by wrinkling their nose. Perhaps pain is the context most relat-

able to high-intensity exercise. Studies of pain have identified nose wrinkling as an indicator of

the affective dimension of pain [44], which is highly correlated with, but independent from,

the sensory dimension [45].

Nose wrinkle has also been specifically associated with the emotion disgust [15]. However,

the same facial action has been observed in various other situations (e.g. while learning) [46]

and emotional states (e.g., anger) [47] and is not always observed concomitantly with reports

of disgust [48]. Nose wrinkle may be indicative of negative affect more generally, rather than of

a specific emotional state therefore.

Nose wrinkle explained more variance in affective valence than any other facial action, but

given that this is the first study to have examined changes in facial action and affect during the

course of an incremental exercise test and was performed with a sample of healthy adults, we

suggest limiting the conclusion to the following: nose wrinkle is a facial action indicating nega-

tive affect in healthy adults during incremental exercise. To draw more general conclusions,

for example, that nose wrinkle is the characteristic expression of negative affect during exercise,

further research is needed. It should be demonstrated, for example, that this facial action reli-

ably co-occurs with negative affect and that this co-occurrence prevails across several exercise

modalities (e.g., running, resistance training).

4.3 Perceived exertion and facial action

The facial actions that were most highly correlated with perceived exertion, when controlling

for the effect of affective valence were mouth open and jaw drop (Table 2). On one hand, this is

in line with research showing that activity in the jaw region is correlated with RPE [24]. At

first sight, this may not go well with the findings from the fEMG study [22] that suggested that

perceived exertion during physical tasks is mainly linked with corrugator muscle activity. It is

important to note, however, that fEMG only measures activity in the muscles to which elec-

trodes were attached (apart from noisy crosstalk), and that it cannot capture the dynamics of

the whole face [49].

On the other hand, it is worth pointing out that we observed a correlation between RPE

and brow furrow (which partly reflects corrugator activity). This correlation was smaller than
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the two correlations between RPE and jaw drop and mouth open however (Table 1). First and

foremost, it must be noted that as physical exertion increases, the exerciser is likely to breath

heavier. The change from nose to mouth breathing is certainly to be interpreted against the

background that more air can flow faster through the mouth. The observed change in facial

action (i.e. increased mouth open and jaw drop) therefore most likely correlated with the physi-

ological need for optimized gas exchange in the working organism. It is therefore particularly

important to exploit the advantages of automated facial action analyses of the whole face and

discrete facial actions to investigate the covariation of the various facial actions more closely.

4.4 Affective responses, perceived exertion and facial action

Both affective valence and perceived exertion were significantly associated with the facial

action mouth open (Table 2). While nose wrinkle was specific in explaining significant amounts

of variance in affective valence and jaw drop in perceived exertion, mouth open explained sig-

nificant amounts of variance in both affective valence and physical exertion (the facial action

mouth open is described as “lower lip dropped downwards” in the Affectiva developer portal;

jaw drop is “the jaw pulled downwards” with an even wider and further opening of the mouth

[31]). This pattern of results might be interesting for the conceptual differentiation of affective

valence and perceived physical exertion.

The two concepts, affective valence and physical exertion, are certainly closely linked [12].

This is reflected in our finding that the two are significantly correlated with the same facial

action–mouth open. However, when the relationship of affective valence with the facial actions

was controlled for the influence of RPE, mouth open explained only 1.19% of the within-sub-

ject variance in affective valence; nose wrinkle explained 15.51% on the other hand. These

results suggest that mouth opening can be seen as a sign for the physical exertion portion in

the experienced affect, whereas nose wrinkle indicates negative affect specifically.

Jaw drop (as the more extreme mouth opening), on the other hand, appeared not to be

related to affective valence. Jaw drop could thus be assumed to be the more specific sign for

(excessive) perceived exertion. Both the metabolic thresholds, VT and RCP, are related to per-

ceived exertion. They are objective, individualized metabolic indicators of intensity, and are

already associated with psychological transitions in dual mode theory [9]. Linking them to tran-

sitions in facial actions could be a future prospect and be something like this: While exercising

at the VT might mark the transition between nose to (predominantly) mouth breathing and

thus also the transition to more mouth open, exercising above the VT might mark a transition

to more jaw drop. This kind of intensified breathing might covary with escalating negative affec-

tive valence–that is the evolutionary built-in warning signal that homeostatic perturbation is

precarious and behavioral adaptation (reduction of physical strain) is necessary [12]. We have

not analyzed the dynamics of the different facial actions in our study under this aspect, as this

would not have been appropriate because we did not measure physiological markers for exercise

intensity. But we suggest that future research should focus on exactly that.

4.5 Context- and individual-specific facial actions

This study can also be seen as a contribution to the current debate on what the face reveals

about underlying affective states and whether universal, prototypical emotional facial expres-

sions exist [16]. Our results support the notion that specific facial actions must be associated

with affective states in a context- or individual-dependent manner in the first place. For exam-

ple, smile (AU 6 + AU 12) is typically associated with the emotion “happiness” [50] and with

positive affective valence [51]. This does not match our finding, and that of another study in

the context of exercise [21], that smile can also be correlated with negative affective valence.
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The use of biometric indices of facial action to measure psychological states requires that

one takes into consideration that facial action is subject to high intra- and inter-individual var-

iability [16]. Using multilevel analyses allowed us to take this into account. Due to the fact that

some people show little or no movement in their faces, aggregational grand mean analyses

such as a repeated measures ANOVA (which does not first model individual change) would be

biased by this variation. Such analyses treat individual deviation from the grand mean as resid-

ual error, leading to the loss of important information about inter-individual differences. By

taking individual trajectories into account, multilevel analyses allowed us to separate within-

subject variance from between-subject variance and hence to adjust for obvious individual dif-

ferences in facial action.

4.6 Limitations and recommendations for further research

Among the limitations of our study are the following: Basically we argued that automated facial

action analysis could be an alternative for a more unobtrusive measurement of feelings during

exercise. It is important not to lose sight of the fact, however, that simply knowing that you are

being filmed can of course also change your behavior [52]. Another point is that although this

study primarily focused on the correlations between facial actions and ratings of affective

valence and perceived exertion, it would be advantageous to determine exercise intensity

physiologically at the level of the individual participants in future studies (e.g., by the use of

respiratory gas analysis in a pretest). This would have given us more confidence as to whether

the majority of our participants have actually reached a state close to physical exhaustion at the

end of the exercise protocol. Considering the participants’ average RPE in their maximum

watt levels and the comparison of the achieved heart rates with other studies on bicycle ergom-

eters we think this is likely, but we cannot be sure of course. We further suggest that future

studies should use more heterogeneous participant samples and a greater variety of sports and

exercises to assure higher generalizability of the findings. Different modalities and different

exercise intensities might produce specific facial actions. More heterogeneous samples are

likely to produce more variance in affective responses, which may lead to further insight into

the variation in facial reactions to exercise.

5 Conclusion

We conclude that both affective valence and perceived exertion can be captured using auto-

mated facial action analysis. Escalating negative affect during physical exercise may be charac-

terized by nose wrinkling, representing the ‘face of affect’ in this context. The ‘face of exertion’,

on the other hand, may be characterized by jaw dropping.

From a practical perspective, these results suggest that observing the face of an exerciser can

give instructors important insights into the exerciser’s momentary feelings. Facial actions can

tell a lot about how the individual feels during exercise, and instructors could use individual

facial cues to monitor instructed exercise intensity; to enhance exercisers’ affective experience

during exercise, which, at least for those who are not keen on exercise, is an important variable

for maintaining the disliked behavior.
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