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Abstract

Chlamydia trachomatis replicates primarily in the epithelial cells lining the genital tract and
induces the innate immune response by triggering cellular pathogen recognition receptors (PRRS).
Our previous studies showed that Toll-like receptor 3 (TLR3) is expressed in murine oviduct
epithelial (OE) cells, is the primary PRR triggered by C. muridarum (Crm) early during infection to
induce IFN-B synthesis, and that TLR3 signaling regulates the chlamydial induced synthesis of a
plethora of other innate inflammatory modulators including IL-6, CXCL10, CXCL16 and CCL5.
We also showed that the expression of these cytokines induced by Chlamydia was severely
diminished during TLR3 deficiency; however, the replication of Chlamyadiain TLR3 deficient OE
cells was more robust than in WT cells. These data suggested that TLR3 had a biological impact
on the inflammatory response to Chlamydia infection; however, the global effects of TLR3
signaling in the cellular response to Chlamydiainfection in murine OE cells has not yet been
investigated. To determine the impact of TLR3 signaling on Chlamyadia infection in OE cell at the
transcriptome level, we infected wild-type (OE-WT) and TLR3-deficient (OE-TLR3KO) cells
with Cm, and performed transcriptome analyses using microarray. Genome-wide expression and
ingenuity pathway analysis (IPA) identified enhanced expression of host genes encoding for
components found in multiple cellular processes encompassing: (1) pro-inflammatory, (2) cell
adhesion, (3) chemoattraction, (4) cellular matrix and small molecule transport, (5) apoptosis, and
(6) antigen-processing and presentation. These results support a role for TLR3 in modulating the
host cellular responses to Crm infection that extend beyond inflammation and fibrosis, and shows
that TLR3 could serve a potential therapeutic target for drug and/or vaccine development.
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Introduction

Chlamydia trachomatis is a gram-negative, obligate intracellular bacterial pathogen causing
the most common sexually transmitted infections (ST1) worldwide, particularly among
young women [1]. In women, chronic infection with the urogenital serovars (D-K) can cause
pelvic inflammatory diseases (PID) and chronic pelvic pain, which can culminate into
scarring and fibrosis of the Fallopian tubes leading to infertility or ectopic pregnancy [2-4].
According to the Centers for Disease Control and Prevention’s (CDC’s) report in 2016, a
total of 1,598,354 Chlamydia infections were reported in USA alone, which was 4.7%
higher than the reported number of cases in 2015 [5]. As per CDC’s estimate, nearly 20
million healthy individuals are infected every year, accounting for almost $16 billion in
health care costs annually (CDC 2016) [5].The asymptomatic nature of C. trachomatis
infection means that the pathogen persists for a long time in some individuals, which
suggests the effective evasion of host immune systems [6,7].

The innate immune system is known for recognizing a vast variety of pathogens, including
viruses, bacteria and fungi via sensing the specific pathogen associated molecular patterns
(PAMPs). The innate immune response induced by PAMPs includes the cellular production
of a wide range of antimicrobial and inflammatory mediators. The recognition of PAMPSs by
pattern recognition receptors (PRRs) expressed by innate immune cells is crucial for
maintenance of homeostatic immunity as well as an effective induction of an adaptive
immune response [8-10]. However, an overly activated innate immune response can cause
the overabundant production of inflammatory mediators which can result in tissue damage
[11,12]. Among the PRRs, Toll-like receptors (TLRs) play a major role in innate immunity
by recognizing structurally conserved microbial components [13]. TLRs are membrane
bound PRRs that have been shown to be triggered by PAMPs from various bacterial, viral
and fungal pathogens [14]. Engagement of the TLRs by the PAMPs can lead to the
activation of phagocytosis and the production of inflammatory cytokines including TNF-a,
IL-6, and GMCSF, as an important step prior to the switch from an innate immunity and the
onset of an adaptive immune response [15-18].

Epithelial cells lining the mucosal surfaces of the female genital tract serve as the sentinels
to the invading C. trachomatis by expressing TLRs that trigger the innate immune response
by inducing a multitude of pro-inflammatory cytokines and chemokines during infection
[19]. These cytokines and chemokines mediate resolution of Ch/lamydia infection and are
responsible for polarizing the innate and adaptive immune responses [18-23]. We previously
showed that Chlamydia muridarum (Cmy), an orthologue of human C. trachomatis, induces
TLR2 dependent secretion of acute-phase inflammatory cytokines including IL-6, GM-CSF,
and TNF-a in murine oviduct epithelial (OE) cells [8]. Further, we showed that Chlamydia
infection mediates IFN-p secretion in a mostly TLR3-dependent manner, and demonstrated
a role for TLR3 in regulating the expression of a plethora of other innate-inflammatory
modulators including IL-6, CXCL10, CXCL16 and CCL5 [24-26]. The Chlamydia-induced
expression of these cytokines was severely diminished in TLR3 deficient OE cells whereas;
replication of Crmin TLR3 deficient OE cells was more robust than in WT OE cells. These
findings suggest that triggering the TLR3 pathway in OE cells during Cm infection invokes
cellular mechanisms that inhibit the chlamydial developmental cycle, and thereby implicate
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TLR3 in regulating cellular processes that extend beyond the syntheses of chemo tactic and
inflammatory mediators.

In order to help identify other cellular pathways that are regulated by TLR3 signaling during
Chlamydia infection, we conducted transcriptome analyses and comparative gene expression
profiling on WT and TLR3-deficient murine OE cells that were infected with Cm. In the
present study, we aim to identify target genes that are affected by Chlamyadia infection of OE
cells and to ascertain a role for TLR3 in regulating those pathways by using genome-wide
microarray analysis followed by ingenuity pathway analysis (IPA). Our results indicate that
TLR3 plays a significant role in modulating the host cellular responses that encompass a
diverse subset of biological functions during Crm infection.

Materials and Methods

Oviduct epithelial cells and culture conditions

The murine oviduct epithelial cell lines OE-129TLR3™/~ (C19) and OE-129WT [25] were
grown at 37°C in a 5% CO», humidified incubator in epithelial-cell media {Dulbecco’s
modified Eagle medium and F12K (Sigma-Aldrich) in 1:1 ratio}, supplemented with 10%
fetal bovine serum (HyClone), 2mM L-alanyl-L-glutamine (Glutamax I; Gibco/ Invitrogen,
Carlshad, CA), 5ug bovine insulin/ml, and 12.5 ng/ml recombinant human KGF
(keratinocyte growth factor; Sigma-Aldrich) as previously described [18,24].

Chlamydia stocks

Mycoplasma-free C. muridarum Nigg, previously known as C. trachomatis strain (MoPn),
was grown and titrated in McCoy cells (ATCC) as described [18, 27, 28]. The elementary
bodies were harvested from infected McCoy cells, were re-suspended in SPG buffer
(250mM sucrose, 10 mM sodium phosphate, and 5mM L-glutamic acid, pH 7.2), and
quantified on McCoy cells using methodology described previously [18,26,29].

In vitro infection of oviduct epithelial cells

OE-129WT and OE-129TLR3~/~ (C19) cells were seeded in 6-well tissue culture plates and
grown until confluence. The cells were infected with 5 inclusion forming-units (IFU) of C.
muridarumicell in 900ul of culture medium as described previously [24, 25]. Mock-treated
controls were incubated with an inoculum containing equivalent volume of SPG buffer, but
were not infected with Chlamyadia. Each cell type was seeded in duplicate wells of the 6-
well plate and were infected when confluent. The experiments were repeated 3 times on
different days to provide the appropriate number of biological replicates for proper statistical
analyses.

Total RNA purification and Microarray analysis

Total RNA was purified from OE-129WT and OE-129TLR3~/~ (C19) cells infected with C.
muridarum(5 1FU/cell) at 24h postinfection using the Norgen Total RNA Purification
Kit(Norgen Biotek; Thorold, Ontario). During purification, all RNA samples were treated
with RNase-free DNase | (Qiagen) to remove all traces of genomic-DNA contamination.
The RNA quantity and quality were measured using the Nano Drop 2000c
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spectrophotometer (Thermo Scientific; Pittsburgh, PA). The RNA purified from mock-
infected cells was used as control sample. Purified total RNA was submitted to the gene-
expression profiling services of Phalanx Biotech Group, Inc. (Belmont, CA) for microarray
analysis. Genes that were up or down regulated = 2.5-fold with p-values <0.05 were
considered in the final analysis (Tables 1 and 2; and Supplementary Tables 1 and 2).

Functional and canonical pathway analyses

Results

Identificatio

The microarray gene expression data were analyzed by Qiagen’s ingenuity pathway analysis
(IPA; Ingenuity Systems, https://www.giagenbioinformatics.com/products/ingenuity-
pathway-analysis; Qiagen Inc.) to determine whether genes are associated with particular
diseases, exhibit prominent biological function, or if canonical signaling pathways were
preferentially up- or down-regulated in murine OE cells [30]. Genes were selected for
analyses if they had a p-value <0.05 and absolute fold change =2.5. The data are presented
as the comparison of: (1) C. muridarum-infected wild-type (OE-WT-Cm)s Mock-infected
wild-type (OE-WT-Mock) and (2) C. muridarum-infected wild-type (OE-WT-Cms C.
muridarum-infected TLR3-deficient OE cells (OE-TLR3KO-Cm) (Table 3, Supplementary
Table 3, and Table 4).

n of differentially-regulated genes in murine oviduct epithelial cells

Our previous studies showed that TLR3 is the primary PRR in OE cells triggered by Cm
infection in the early synthesis of IFN-B, and in the syntheses of a multitude of other innate
inflammatory modulators such as IL-6, CXCL10, CXCL16 and CCL5. Our data show that
TLR3 has a biological impact on the innate immune response to Chlamyadia infection;
however, the comprehensive impact of TLR3 deficiency during Chlamydia infection of
murine OE cells remains unclear. To determine the global significance of TLR3 signaling on
Cminfection in OE cell lines, we infected wild-type and TLR3-deficient OE cells (here
forth referred to as OE-WT and OE-TLR3KO cells, respectively) with 5 IFU/cell Crm for
24h post-infection (P1) and performed transcriptome analysis using microarray. We used a
minimum significance criterium of p<0.05and an absolute fold change =2.5 for comparative
gene analyses (See Materials and Methods). Out of the several hundred genes that were
differentially affected by Cm infection, candidate gene selection based on this criterion
yielded 152 genes up-regulated and 56 genes down-regulated when comparing OE-WT-Cm
vs the OE-WT -Mock control (Supplementary Tables 1 and 2). Interestingly, there were 600
genes up-regulated and 616 genes down-regulated when comparing OE-TLR3KO-Cm vs
OE-WT-Cm cells, which shows that TLR3 deficiency results in the differential regulation of
a multitude of cellular processes during Chlamydia infection of the OE cells.

We selected genes that were up-/or down-regulated > 2.5-fold in both comparative groups:
[OE-WT-Cmvs OE-WT-Mock] and [OE-TLR3KO-Cm vs OE-WT-Cmi for our analyses
(Tables 1 and 2).The most prominent genes up-regulated in OE-WT-Cm vs OE-WT-Mock
are listed in Table 1. As indicated, many of the most highly up-regulated genes in the OE-
WT-Cm cells such as Cc/5(80.050-fold), Lamc2 (71.848-fold), Cxc/2 (70.603-flod), Lcn2
(67.864-fold), Crmpk2 (31.845 fold) and Cs73(27.161-fold) were substantially and
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significantly down regulated in OE-TLR3KO-Cm cells. Not surprisingly, pro-inflammatory
cytokines and chemokines showed the highest level of up regulation during Crm infection in
the OE-WT cells. Amongst the most highly up-regulated pro-inflammatory mediators were
Ccl5(RANTES), Ccl4 (MIP-1b), and the monocyte chemo attractant proteins Cc/2 and Ccl7
(or MCP 1 and 3, respectively) belonging to C-C chemokine family. The C-X-C motif
chemokines Cxc/2 (also called macrophage inflammatory protein2-alpha) and Cxc/5 (or
epithelial neutrophil activating protein-78), and the acute inflammatory cytokines Csf3and
/16 were also included in the most highly upregulated inflammatory mediators. These highly
up-regulated cytokine and chemokines were severely down-regulated in the OE-TLR3KO-
Cm cells relative to OE-WT-Cm cells (Table 1).

The extracellular matrix (ECM) proteins play a critical role in the cell invasion, adhesion,
cell patterning and architectural changes, and “outside-in” signal transduction [31]. Our
microarray data showed that many host ECM moieties were differentially expressed,
suggesting a rapid and dramatic remodeling of the extracellular milieu in response to
Chlamyadia infection (Tables 1 and 2; Supplementary Tables 1 and 2). The genes involved in
remodeling included glycol proteins, metalloproteinases, numerous collagens, and several
fibrosis-associated moieties that were highly up-regulated in our data set (Table 1). The Cm
induced ECM genes included Lamc2 (LAMC?2), Fst (Follistatin), Mmp10 (metalloproteinase
MMP10), Ereg (epiregulin EREG), Enpp2 (ATX or autotaxin, ENPP2), Fgr23 (fibroblast
growth factor FGF23), Steap4 (metalloreductase STEAP4), Madcam-I(mucosal vascular
address in cell adhesion molecule-1, MAdCam-1) and /cam-1 (intracellular adhesion
molecule-1, ICAM-1). However, as we have seen with many of the highly up regulated pro-
inflammatory mediators, transcription of these ECM genes in the Cr+infected OE-TLR3KO
cells resulted in a substantial down regulation or inhibition when compared to the Crn+
infected OE-WT cells.

Other genes that were highly up regulated in response to Crm infection in WT-OE cells but
attenuated during TLR3 deficiency included components of various cellular metabolic
pathways (LCN2, CMPK2, ARG2, SOD2, ERO1-a [or endoplasmic reticulum
oxidoreductasel-a], CH25H, FABP4, and AK4), and proteins involved in membrane
tracking and protein processing (ARL4D, NEURL3, PTX3, SERPINB2 [or PAI-2], and
SERPINEL1 [or PAI-1]). Interferon-sensitive genes (ISGs) are known for their role in cell-
intrinsic immunity against diverse pathogens, such as viruses and intracellular bacterial
species including Chlamydia, Mycobacteria, Listeria, Salmonella, and Toxoplasma [32]. We
found several ISG sincluding Ghp5 (a member of IFN-inducible subfamily of GTPases) [33]
and Parp12[34-37] that were highly induced in the Cm infected OE-WT cells, but
differentially regulated during TLR3 deficiency.

Some of the more moderately up-regulated genes encoding the pro-apoptotic proteins (FAS
and XAF1), proteins related to MHC Class 1 antigen presentation (PSMB-8, PSMB-9 and
TAP1), solute carrier (SLC) transporters (SLC7A2 and SLC15A3), and the JAK2 protein
[38]. Other genes moderately up regulated included those encoding the TNF-a mediated
pro-inflammatory proteins KRT16 (keratin), activator protein-1 (AP-1), family members of
MAFF (MafbZIP transcription factor F) and FOSL1 (Fos-like 1or FRAL) [39], TRAF1, NF-
xBia (inhibitor of nuclear factor xappa-B or IxB-a), NF-xB/RELB, MKK®6 (Mitogen-

Int J Microbiol Curr Res. Author manuscript; available in PMC 2019 December 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kumar and Derbigny

Page 6

activated protein kinase 6), and GRP (Gastrin releasing peptide). Finally, our data also
showed some moderate but significantly up-regulated expression of genes encoding various
receptors and signaling molecules including KISS1R, IL15R-a, IL1RL, CD14, PIK3R5
(phosphatidylinositol 3-kinase, regulatory subunit 5), and the RCL1(RNA terminal
phosphate cyclase like-1)protein that is involved in eukaryotic 18S RNA biogenesis [40].
However, much like the highly up regulated genes, these moderately induced genes in Cm-
infected OE-WT cells were differentially regulated during TLR3-deficiency. Interestingly,
not all genes induced during Cm infection of WT-OE cells were attenuated or down
regulated during TLR3 deficiency. Results depicted in Table 1 show that transcription levels
for /sg15, Mx1, Gm4951, Oaslb, Mpegl, Zfp296, Zbpl, and KIh/Zwere not reduced in the
Cm-infected OE-TLR3KO cells relative to Cr-infected OE-WT cells; instead, their
expression levels were significantly increased during TLR3-deficiency. /sg15, Mx1, Oas1b
and Mpeg1 are type | and Il interferon responsive genes and have been implicated in the host
protection against various pathogenic organisms [32, 41-45].

Table 2 shows 11 genes that were down-regulated more than 2.5-fold during Cm infection of
the OE-WT cells. Aldhlal, Ankrad35, Chchdl0, Daam2, Fbin5, Fbxo31, Gentl, Lum,
Ppmle, Ptprvand Txnipwere all down regulated during Crm infection in wild-type OE cells;
however, their expression levels in OE-TLR3KO cells was several-fold higher. Interestingly,
8 of the 11 genes (Aldhlal, Ankrd35, Chchdl10, Daam?2, Fbin5, Fbxo31, Gentl, and Ppmle)
have been reported to be prognostic markers in a variety of metastatic malignancies and
other cancer-related diseases [46-54]. Ptprvand Txnip exhibit tumor-suppressor function
and has involvement in cell proliferation and apoptosis [55, 56]. The Lum gene encodes the
extracellular matrix protein lumican (LUM) that has a role in the bacterial clearance [57,
58], and its expression was up-regulated 5.108-fold in Crm-infectedOE-TLR3KO cells when
compared to Crminfected OE-WT cells.

Functional and canonical pathway analyses

Based on the gene expression data, a set of cellular pathways predicted to be either activated
or inhibited during Crm infection was identified by IPA software. Table 3 lists what are
predicted to be the most significantly changed pathways based on the expression levels of
the input genes. As indicated, most of the Crm infection-induced pathways in the OE-WT
cells were found to be significantly inhibited in the Cn*infected OE-TLR3KO cells.
Pathways regulating the role of PRRs in recognition of bacteria and viruses, LPS/IL-1
mediated inhibition of RXR function, and NF-xB signaling were not inhibited in the Cm-
infected OE-TLR3KO cells when compared to Crr-infected WT-OE cells like the other
pathways listed in Table 3; however, activation of these pathways was significantly lower in
the OE-TLR3KO cells. The lower portion of Table 3 shows the canonical pathways that
were predicted to be inactivated in Crm-infected OE-WT cells e.g., LXR/RXR activation,
PPAR signaling, and PPARa/RXRa activation pathways. In contrast, LXR/RXR activation
and PPAR signaling pathways are predicted to be activated in the Crm-infected OE-TLR3KO
cells when compared to the Crinfected OE-WT cells.
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Upstream regulator analysis

IPA predicts upstream transcriptional regulators based on experimentally observed
relationships between regulators and genes in the dataset. The calculated z-score predicts
either activation or inhibition of regulators on the basis of the relationship with dataset genes
and direction of expression change of input genes. There are 7 categories: immunological
(cytokines and chemokines), chemical, kinase, transcription factor, trans membrane receptor,
translation regulator, and transporter, where several Cm activated and inhibited upstream
regulators are grouped together and listed in Supplementary Table 3 (Excel file). Among the
7 regulator categories, cytokine is the top-most significantly activated upstream regulator
during Cm infection of OE cells, and the group includes IFN-y, TNF, IL-1f, OSM, IL-1a,
IL-17A, TNFSF-11, IL-1, IL-6, CD40LG, TNFSF-12, CSF-2, IL-18, IL-2, EDN1, CCLS5,
IL-15, MIF, IL-17F, CXCL2, IL-5, CXCL3, C5, CCL2, CXCL12, IL-7, IL-33, CXCL-8,
TNFSF-14, TNFSF-13B, and IL-36A. Our data showed that these 31 cytokines were
activated = 2.5-fold in Cm-infected OE-WT cells when compared to the Mock-infected
controls. In corroboration with our previously published results [25, 26, 59], many of these
cytokines were predicted to be either severely reduced or inhibited in Cm-infected OE-
TLR3KO cells relative to Crm-infected OE-WT cells in IPA. It is noteworthy that one
particular cytokine (IL-10) was different from the other cytokines listed in Supplementary
Table 3 in that it was predicted to be down regulated in the Crinfected OE-WT cells
relative to its expression in the Mock control OE-WT cells, but predicted to be activated in
Cm-OE-TLR3KO cells relative to Cnrinfected OE-WT cells. We previously reported
significant increases in the genital tract secretion of 1L-10 of TLR3-deficient mice when
compared to wild-type control mice [59]; thus, our findings in the IPA support our /in vivo
data regarding this pleiotropic regulatory cytokine [60]. We hypothesized that IL-10 plays a
role in attenuating the /n vivo synthesis of IFN-B during in TLR3deficient mice and likely
promotes the increased Cm replication that we have observed in the TLR3-deficient mice.

Upstream regulator analyses showed 61 chemical regulators that were either activated or
inhibited in Cm-infected OE-WT cells when compared to Mock-infected OE-WT cells, but
were differentially regulated in the Crm-infected OE-TLR3KO cells. The chemical categories
encompass endogenous non-mammal, endogenous mammal, other, drug, reagent, toxicant,
and kinase inhibitors. Further analyses showed that 17 kinase regulators were activated i.e.;
CHUK, IKBKB, IKBKG, MAP3K7, RIPK2, MAPKAPK?2, JAK2, JAK1, MAP3K14,
MAPKS, PRKCD, MAP2K1, PRKCA, SRC, RET, GSK3B, SPHK1, whereas; one kinase
(MAPK1) was found to be down-regulated in Crm-infected OE-WT cells. Among
transcription factors (TFs), 16 TFs: NF-xB [complex], REL-A, JUN, STAT4, FOXL2,
CEBPB, EGR1, TP63, ECSIT, HMGB1, IRF6, FOX01, CEBPA, HIF1A, CEBPE, and
JUNB) were activated and one TF (ZFP36) was inhibited. Other upstream regulators
activated during Cm infection of OE-WT cells included 10 transmembrane receptors (TLR4,
TLR3, TLR2, TLR5, CD40, CD14, TNFRSF1A, ICAM1, IL17RA, and TNFRSF1B), one
translation regulator (EIF4E), and two transporters (LCN2 and TNNI3).The remaining
upstream regulators spanning the 7 categories shown in Supplementary Table 3 were all
inhibited in Crrinfected OE-WT cells when compared to Mock-infected OE-WT cells.
However, they were also differentially regulated when compared to Cr-infected OE-
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TLR3KO cells in that they were either inhibited to a lesser degree, or the pathways were
activated instead.

Disease pathogenesis and cellular function

Based on the gene expression input data, IPA predicted the pathways associated with disease
pathogenesis and cellular function that are most affected in the cell during Cm infection of
OE cells (Table 4). The inflammatory response and growth of epithelial tissue were not
surprisingly the most affected pathways that are predicted to be affected when Chlamydia
invades epithelial cells lining the female genital tract. As shown in Table 4, these pathways
are the most highly up regulated in the Crm-infected OE-WT cells when compared to the
Mock-infected OE-WT controls. As indicated, these two pathways are predicted to be
significantly diminished or inhibited in the Crrinfected OE-TLR3KO cells when compared
to the Crm-infected OE-WT cells. In support of our previously published reports showing
that TLR3-deficiency leads to increased genital tract pathology in mice during Crm-infection
[59], IPA showed that the pathways associated with organ inflammation and tissue necrosis
were predicted to be significantly increased in the Crm-infected OE-TLR3KO cells when
compared to Crm-infected OE-WT cells. Collectively, transcriptome and IPA results show
role for TLR3 in modulating host cellular responses to Cm infection that extend beyond
inflammation and fibrosis, and implicate TLR3 as a major component in the cellular
response to Chlamydia infection in genital tract epithelial cells.

Discussion

We previously showed that Cm infection induces IFN- secretion in OE cells in a mostly
TLR3-dependent manner, and that TLR3 deficiency lead to the dysregulation in syntheses of
a plethora of other innate inflammatory modulators including 1L-6, CXCL10, CXCL16 and
CCLS5. Although the expression of these cytokines induced by Chlamydiawas severely
diminished in TLR3 deficient OE cells and mice, replication of Crm during TLR3-deficiency
was more robust than in OE-WT cells and mice. These data suggested that TLR3 had a
biological impact on the innate immune response to Chlamydia infection; however, the
impact of TLR3 signaling on the global cellular response to Chlamydia infection in OE cells
remained unanswered. In the present study, we performed transcriptomics on wild-type and
TLR3-deficient OE cells and conducted IPA to understand the complexity of genes and
pathways in murine OE cells that are affected during Crm infection. In this regard, we are
hoping to identify the spectrum of pathways that are either activated or inhibited during Crm
infection, in order to ascertain those critical cellular mechanisms that can be exploited for
the development of better treatments for chlamydial disease and therapeutic agents.

Microarray results uncovered a multitude of genes that were either up-or down-regulated =
2.5-fold in Cm infected OE-WT cells when compared to the mock-infected controls, and
revealed that many of those genes were differentially regulated during TLR3-deficiency
when comparing transcriptome data generated in Crm-infected OE-WT cells to results
generated in the Crm-infected OE-TLR3KO cells. Among the most highly up-regulated
genes during Cm infection of OE cells, the overwhelming majority were pro-inflammatory
cytokines and chemokines (Table 1 and Supplementary Table 3, excel file). Our data showed
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that many of these pro-inflammatory mediators were either severely attenuated in their
expression levels during TLR3 deficiency, or that their expression was down regulated below
basal expression levels. Because epithelial cells lining the genital tract serve as
immunological sentinels tomicrobial pathogens, and are responsible for initiating the
primary phases of the host immune response [19, 21, 23], a comprehensive understanding of
the cascade of cellular events that are triggered in OE cell during Cm infection would
significantly enhance our knowledge and increase our understanding of the cellular
mechanisms induced during chlamydial pathogenesis.

Cytokines and chemokines are crucial in regulating a variety of molecular and cellular
events specifically inflammation, scarring, and fibrosis. We found that CCL5 (RANTES),
CXCL2 (MIP2-a), CSF3, CXCL5 (ENA-78), IL-6, CCL4 (MIP-1b), CCL2 (MCP-2) and
CCL7 (MCP-3) were among the highest up-regulated cytokine and chemokines. CCL5
showed the highest up-regulation (80.053-fold) in WT-OE cells during Cm infection in
comparison to mock-infected WT-OE cells, corroborating results from previous studies [26,
61]. CCL5 is a chemotactic factor that is secreted by a variety of cells including epithelial
cells, and functions by recruiting leukocytes to the inflamed sites via binding to its CCR3
receptor. CCL5 also recruits macrophages to the site of inflammation by binding the CCR5
receptor. CCL5 is also a key chemokine in the induction of other Thl cytokines, and has a
functional role in the humoral immune responses against chlamydial pathogens [62, 63]. The
C-X-C motif chemokine ligand 2, CXCL2 (MIP2-a.) was also shown to be highly induced
and was the next highest upregulated chemokine behind CCL5 in the microarray analyses.
CXCL2 (along with CCL4) has been demonstrated to be involved in the recruitment of both
lymphocytes and neutrophils to the inflamed sites in mouse model of Chlamydia infection
[64, 65]. Other significantly up-regulated cytokine and chemokine markers were colony
stimulating factor 3 (CSF3), IL-6, CXCL5, CCL2 and CCL7. Induction of CSF3 and
CXCLS5 has been reported to be involved in attraction of neutrophils and other acute
inflammatory cells against Chlamyadia infection [18, 21, 66-68]. IL-6 is an important
mediator of fever and major component of the acute inflammatory response; however, the
role IL-6 synthesized during chlamydial genital tract immunopathology in mice is somewhat
lesser defined and variable [69, 70]. CCL2 (MCP-1) and CCL7 (MCP-3) were also up-
regulated by Cm infection in OE-WT cells, and was shown to play a crucial role in
recruiting neutrophils, macrophage/monocytes, and dendritic cells to the site of chlamydial
infection by other researchers [18, 68]. Because all of these highly up regulated cytokines
and chemokines were severely down-regulated in TLR3deficient OE cells when compared
to WT-OE cells during Crm infection, the microarray results provides more comprehensive
evidence that TLR3 deficiency results in a significantly impaired inflammatory immune
response to Crm infection in OE cells, and supports our findings that TLR3 alters the
pathogenicity of Chlamydia infection in vivo [59].

In addition to the vast array of inflammatory mediators that were affected by Crm infection in
OE cells, there were other classes of genes that were significantly up-regulated as part of the
cellular response to infection. IPA data showed that Crm infection in OE-WT cells induced
genes encoding the glycoprotein laminin subunit gamma-2(LAMC2), follistatin (FST),
matrix metalloproteinase (MM10),epiregulin (EREG), autotaxin (ATX or ENPP2)],
fibroblast growth factor23 (FGF23), metalloreductase (STEAP4), MAdCAm, and
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ICAM1,which are known to function in remodeling of extracellular matrix (ECM) proteins
[31]. The ECM provides structural and biochemical support of surrounding cells, and
although the actual composition of ECM varies between multicellular structures, properties
including cell adhesion, cell-to-cell communication, and cell differentiation are common
functions of the ECM [71, 72]. The transcriptome data show that Crm infection in OE-WT
cells substantially up regulates these ECM genes, and thereby can trigger or disrupt cellular
processes that are essential for processes including cellular growth, wound healing, and
fibrosis, but are highly suggestive that C/A/amydia infection can also have impact on
processes such as cell migration, gene expression, and cellular differentiation in
macrophages and other hematopoietically-derived cells [73,74]. Our findings support the
investigations of others who have implicated several members of this subset of ECM
proteins in various disorders associated with genital tract Chlamyadia infections such as
oviduct fibrosis and scarring, uterus and oviduct distention, and tubal damage caused by
ectopic pregnancy [75-80]. Because the transcriptome data show that TLR3-deficiency
causes dysregulation in the gene expression levels of most of the ECM proteins identified by
IPA, these data provides insight into a possible mechanism that expounds our recent report
demonstrating thatTLR3 deficient mice suffer more severe genital tract pathology than wild-
type mice during Cm infection [59].

Other genetic factors that were significantly up regulated during Cm infection of OE-WT
cells included a subset of host-cell metabolism related genes encoding LCN2, CMPK2,
ARG2, SOD2, ERO1-a, CH25H, FABP4, and AK4. Lipocalin-2 (LCN2) is an iron-
sequestering multifunctional protein. Iron is an essential nutrient for many intracellular
pathogens including Chlamydia. LCN2 binds to bacterial siderophores and thereby limiting
the availability of iron for bacteria, inhibiting their growth, and thus protecting host from
intracellular pathogens [81-83]. Intracellular pathogens including Ch/amydia induce a
strong Thl immune response, which exerts pro-inflammatory effects by stimulating
production of free radicals such as reactive oxygen species (ROS) and reactive nitrogen
oxide species (RNOS) [84]. L-arginine is a crucial component for both inducible nitric oxide
synthase (iNOS) and ARGase %. It has been hypothesized that the enhanced expression of
host SOD2 and ARG2 protects the host cells from the damaging ROS and RNOS [85-87],
and both genes were found to be up-regulated in our analyses. FABP4 (fatty acid binding
protein 4) is primarily expressed in adipocytes and macrophages, and has roles in
modulating immune responses and in lipid metabolism [88]. Walenna NF. et a/ demonstrated
that C. pneumonia exploits host FABP4 for lipid metabolism in order to obtain ATP and
lipids from the host cell, in order to facilitate its robust replication in adipocytes [89]. Not
surprisingly, our findings show that TLR3 deficiency either severely attenuates or down
regulated the expression of all of these metabolic factors, and presents the hypothesis that
dysregulation of these metabolic factors will have a negative impact on the ability of the OE
cells to control chlamydial replication. We showed in our previous reports that Crm
replication in OE-TLR3KO cells was significantly more robust, and that the chlamydial
inclusions were larger and more aberrantly shaped when compared to infection in OE-WT
cells [26]. Collectively, our data show that TLR3 signaling does indeed play a role
controlling chlamydial replication within the cell, and the data generated in IPA supports the
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hypothesis that TLR3 mediates this function by regulating the transcription of many of these
host cell metabolism related genes.

Other genes that were highly up-regulated in the Cm-infected OE-WT cells but were
differentially regulated in the Crm-infected OE-TLR3KO cells included genes that encode
proteins that are involved in other areas of innate immunity such as ARL4D, NEURLS3,
PTX3, SERPINE1 and SERPINB2. These proteins include GTPases, ligases, and protease
inhibitors that play important roles in actin remodeling, tissue repair, and ECM degradation
[90-98]. In addition to the genes mentioned above, we observed significant increased
expression levels of the interferon-responsive genes Gop5 (a member of IFN-inducible
subfamily of GTPases) and Parp12. GBP5 protects host against diverse pathogens [33, 99]
and PARP12 localizes to the stress granules under stress condition, mediates cell survival/
growth, and induces an anti-viral response by inhibiting protein translation at both viral and
cellular protein levels [34-37]. We also saw up-regulated expression of the pro-apoptotic
genes Fasand Xafl (XIAP associated factor 1) in our analysis, and increased transcription
of genes encoding proteins involved in antigen processing including TAP1, LMP7, and
LMP2.

We found 8 genes that were induced during Cm infection in OE-WT cells but were not
reduced or inhibited in the Cm-infected OE-TLR3KO cells when compared to the Crr
infected WT-OE cells. In contrast to the large majority of genes that were either down
regulated or inhibited in TLR3’s absence, /sg15, Mx1, Gm4951, Oaslb, Mpegl, Zfp296 and
Kihl2 were all significantly up regulated in Cm-infected TLR3-deficient OE cells when
compared to Crm-infected OE-WT cells. Because the absence of TLR3 results in the
increased expression of these genes during Chlamydia infection, these results suggest a
repressor role for TLR3 in the transcription of these particular genes in OE cells. The
repressor function of TLR3 was also observed in the expression of Aldhlal, Ankrd35,
Chchd10, Daam?Z, Fbin5, Fbxo31, Gentl, Lum, PomlIe, Piprvand Txnipin Crr-infected OE-
WT cells. These genes were either significantly up regulated in the TLR3-deficient OE cells,
or their expression levels no longer repressed as they were in OE-WT cells (see Table 2).
Although the role of TLR3 as an activator of gene expression has been well described such
as in the direct activation of IFN-B in response to dsSRNA [100], or in the indirect activation
of CCL5 via TLR3-induced IFN-B [101], a mechanism to describe TLR3 signaling as a
repressor pathway remains unclear and requires further study.

IPA identified several inflammatory pathways such as acute phase response signaling,
dendritic cell maturation, role of PRR in recognition of bacteria and viruses, IL-6 signaling,
interferon signaling, TREM1 signaling, VDR/RXR-activation, p38 MAPK signaling, LPS-
stimulated MAPK signaling, Th1 signaling, LPS/IL-1 mediated inhibition of RXR function,
JAK/STAT signaling, HMGBL1 signaling, PI3BK/AKT signaling, Tec kinase signaling and
TLR signaling pathway to be most crucial in Chlamydia pathogenesis. These pathways were
predicted to be significantly activated in Crm-infected OE-WT cells, but were predicted to be
either severely attenuated or inhibited in TLR3-deficient OE cells during Crm infection. In
contrast, we also found some canonical pathways that were predicted to be inactivated in
Crrinfected OE-WT cells such as LXR/RXR activation, PPAR signaling and PPARa/
RXRa activation pathway, but were activated in OE cells by Cm during TLR3-deficiency
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(LXR/RXR activation and PPAR signaling). Not surprisingly, there were several genes
affected by Cm infection that are common amongst the various activated and inhibited
pathways suggesting that many of these gene products are pleiotropic in their function;
however, their impact in their respective pathways were differentially impacted based on the
presence or absence of TLR3. These IPA data corroborates the hypothesis that TLR3
functions as a regulator in cellular responses to Chlamydia infection in OE cells, and can
function as either an activator or repressor of numerous pathways associated with the
inflammatory immune response.

Finally, IPA can be used to identify a cascade of upstream transcriptional regulators from
transcriptome data identifying the genes that are activated or repressed during Cm infection
of OE cells. In our analyses, we identified a multitude of upstream regulators that were
either activated or repressed during Cm infection of OE cells including immunological
(cytokines and chemokines), chemical, kinase, transcription factor, transmembrane receptor,
translation regulator, and transporter regulators. Among the most highly activated upstream
regulators, cytokines were at the top of the list, suggesting Chlamydiawas able to modulate
the cellular immune responses by altering the expression patterns of some critical immune
system molecules including cytokines. Additionally, the main anti-inflammatory-cytokine,
IL-10, was shown to be down regulated in Crm-infected OE-WT cells whereas; it was
significantly activated in the Cm-infected TLR3-deficient OE cells which supports our
recently published /in vivoresults [59]. IL-10 has been identified as a key player in the
establishment and perpetuation of viral persistence, is known to be negatively regulated by
IFN-B production, and promotes a suppressive environment that diminishes the antiviral
response [102-104]. Because the Cm-induced synthesis of IFN-p is severely diminished in
TLR3-deficient OE cells, IPA showing that IL-10 synthesis was significantly up regulated
during Cm infection of OE-TLR3KO cells fits the paradigm that its synthesis is regulated by
TLR3-dependent IFN-B.

IPA results show that other upstream-activated regulators belonging to classes of kinases,
transcription factors, transmembrane receptors, translation regulators, and transporters
groups were also impacted by Cm infection in OE cells. As was demonstrated with the
immunological regulators, these additional upstream regulators were also negatively
regulated in the TLR3-deficient OE cells during Crm infection when compared with Cr+
infected OE-WT cells. Further, IPA results show that the Cm infection induced regulators
either activated or inhibited cellular pathways in OE-WT cells that were more likely to
restrict chlamydial pathogenesis. The IPA data was suggestive that the upstream regulators
affected during Crm infection of OE-WT cells were more likely to attenuate chlamydial
replication and promote growth of epithelial tissue; whereas, Crm infection in TLR3-
deficient OE cells showed activation or inhibition in upstream regulators controlling 3-4
times the number of pathways involved in organ inflammation, fibrosis, and necrosis of
epithelial tissue than that in the Crm-infected OE-WT cells. Collectively, the transcriptome
and IPA results further validates our previous findings that TLR3 could elicit and regulate
host protective cellular responses that limit bacterial proliferation and genital tract
pathologies caused by Chlamyadiainfection [26, 59], and implicate TLR3 as a potential
therapeutic target for drug and/ or vaccine development.
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