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ABSTRACT

Hydrogenotrophic methanogenesis occurs in multiple environments, ranging from the intestinal tracts of animals to anaerobic
sediments and hot springs. Energy conservation in hydrogenotrophic methanogens was long a mystery; only within the last de-
cade was it reported that net energy conservation for growth depends on electron bifurcation. In this work, we focus on Metha-
nococcus maripaludis, a well-studied hydrogenotrophic marine methanogen. To better understand hydrogenotrophic methano-
genesis and compare it with methylotrophic methanogenesis that utilizes oxidative phosphorylation rather than electron
bifurcation, we have built iMR539, a genome scale metabolic reconstruction that accounts for 539 of the 1,722 protein-coding
genes of M. maripaludis strain S2. Our reconstructed metabolic network uses recent literature to not only represent the central
electron bifurcation reaction but also incorporate vital biosynthesis and assimilation pathways, including unique cofactor and
coenzyme syntheses. We show that our model accurately predicts experimental growth and gene knockout data, with 93% accu-
racy and a Matthews correlation coefficient of 0.78. Furthermore, we use our metabolic network reconstruction to probe the im-
plications of electron bifurcation by showing its essentiality, as well as investigating the infeasibility of aceticlastic methanogen-
esis in the network. Additionally, we demonstrate a method of applying thermodynamic constraints to a metabolic model to
quickly estimate overall free-energy changes between what comes in and out of the cell. Finally, we describe a novel reconstruc-
tion-specific computational toolbox we created to improve usability. Together, our results provide a computational network for
exploring hydrogenotrophic methanogenesis and confirm the importance of electron bifurcation in this process.

IMPORTANCE

Understanding and applying hydrogenotrophic methanogenesis is a promising avenue for developing new bioenergy technolo-
gies around methane gas. Although a significant portion of biological methane is generated through this environmentally ubiq-
uitous pathway, existing methanogen models portray the more traditional energy conservation mechanisms that are found in
other methanogens. We have constructed a genome scale metabolic network of Methanococcus maripaludis that explicitly ac-
counts for all major reactions involved in hydrogenotrophic methanogenesis. Our reconstruction demonstrates the importance
of electron bifurcation in central metabolism, providing both a window into hydrogenotrophic methanogenesis and a hypothe-
sis-generating platform to fuel metabolic engineering efforts.

Biologically produced methane is a topic of significant interest
based on both environmental impacts and bioenergy uses.

Methane is produced in the environment by biological and non-
biological sources (1) and plays a critical role in the global carbon
cycle. For example, a large proportion of anaerobic biomass me-
tabolism is coupled to methanogenesis, which is responsible for
the annual generation of 1 Gt of methane in the biosphere (2).
Methane is also the second most abundant greenhouse gas after
carbon dioxide (3) and is 21 times more potent than CO2 (4) in
absorbing and emitting energy. In terms of its role in bioenergy,
methane is the major component (�87%) of natural gas, used as a
heating fuel in 22% of U.S. homes. It is also a candidate bridge fuel
(5), an energy source that aids the transition from traditional fossil
fuels to fully renewable sources, because it produces more heat per
mass unit (55.7 kJ/g) than any other hydrocarbon, plugs into a
substantial existing infrastructure, and burns comparatively
cleaner than traditional fossil fuels. Advancing technology also
enables this gas to be converted to high-energy-density liquid fuels
with a lower carbon footprint (6).

Methanogenic Archaea grow on carbon dioxide or simple
carbon compounds and produce methane as a metabolic waste
product. The environmental ubiquity of this microbial group

makes it the largest biological contributor of methane on this
planet. Although phylogenetically and metabolically diverse,
methanogens can be separated into two groups based on the
presence or absence of cytochromes (2). The cytochrome-lacking
methanogens (sometimes referred to as hydrogenotrophic meth-
anogens) mainly use H2, and sometimes formate, as sources of
electrons for CO2 reduction to methane. In contrast, cytochrome-
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containing (or methylotrophic) methanogens utilize acetate and
methylated compounds for methanogenic growth, with a minor-
ity also being able to use H2 and CO2. Although both groups have
similar central pathways of CO2 reduction, there are also differ-
ences in energy conservation (7) at the last methanogenic step
involving heterodisulfide reductase (Hdr).

The reduction of the CoM-S-S-CoB heterodisulfide (where
CoM and CoB are coenzyme M and coenzyme B, respectively)
with H2 or reduced electron carriers is exergonic and can be di-
rectly or indirectly coupled to energy generation. In the methyl-
otrophic methanogens, a membrane-associated cytochrome-con-
taining Hdr (HdrDE) receives reducing equivalents from a
methanogen-specific membrane-soluble electron shuttle, metha-
nophenazine, for reduction of the heterodisulfide. This results in
proton extrusion and the creation of a membrane potential for
ATP generation (8, 9). However, in the hydrogenotrophic meth-
anogens, the Hdr (HdrABC) contains flavin instead of heme, is
cytoplasmic, and generates no membrane potential. Instead, Hdr
mediates a bifurcation of electron flow (likely via the flavin group
[10]) in which the exergonic heterodisulfide reduction is coupled
to and drives the endergonic reduction of a ferredoxin used for the
first step of methanogenesis (11).

Methanococcus maripaludis (12) belongs to the group of hy-
drogenotrophic cytochrome-lacking methanogens. Compared to
the larger genomes of methylotrophic methanogens, its genome is
relatively small and contains only 1,722 protein-coding genes
(13). It grows robustly, with a doubling time of 2 h (12), and is
genetically tractable (14); thus, it has been an ideal candidate for
studying methanogenesis, unique cofactors and their biosynthesis
(15), and gene regulation (16). To avoid environmental fluctua-
tions that can affect gene regulation, a system for continuous cul-
ture of M. maripaludis (17) has been established for steady-state
transcriptomic (18) and proteomic (19) studies of M. maripaludis
strains. Several groups have also employed larger systems biology
approaches to perform predictive studies using this organism
(20). With these tools in place and the ability for expression of
heterologous genes in M. maripaludis (21, 22), the metabolic en-
gineering of M. maripaludis for industrial use is a clear next step.

Genome scale metabolic reconstructions are powerful tools
that map and elucidate metabolic pathways. They are organism-
specific knowledge bases that can be used for simulating steady-
state growth via flux balance analysis (FBA) (23) by generating
constraint-based models. Using these models, we can hypothesize
different metabolic scenarios that can then be tested experimen-
tally. They have helped guide metabolic engineering efforts to pro-
duce industrial biochemicals in multiple organisms (24, 25). Sim-
ilarly, a genome scale metabolic reconstruction for M. maripaludis
would not only promote a better understanding of methanogen-
esis but also support metabolic engineering efforts that could har-
ness the unique metabolism of this hydrogenotrophic methano-
gen. Other groups have already created metabolic models of M.
maripaludis as part of a mutualistic community model with De-
sulfovibrio vulgaris (26) and under axenic conditions (27). In the
former case, the model of M. maripaludis included 82 reactions
and 72 intracellular metabolites that represented only core metab-
olism and was used primarily to investigate interactions between
the two different species rather than map out more comprehen-
sively the organism’s metabolism (26). The latter case was the first
genome scale metabolic reconstruction of M. maripaludis (27), an
important step toward understanding M. maripaludis metabo-

lism. However, that model relied heavily on the KEGG and Meta-
Cyc databases, utilizing only 16 additional literature sources, a
small amount of reference materials that resulted in the omission
of many important biosynthetic pathways. In addition, the model
erroneously utilized methanophenazine in an HdrDE-dependent
electron transport chain and omitted electron bifurcation. Much
work remains to fully map this complex network and better rep-
resent biochemically characterized pathways through close inte-
gration of experimental and computational efforts.

In this genome scale metabolic reconstruction, iMR539, we
include 539 genes and 688 metabolic reactions spanning the vital
catabolic and biosynthetic pathways important in the metabolism
of M. maripaludis. We describe important updates, corrections,
and refinements, based on recent literature, to the previous met-
abolic models. The most critical addition is the electron bifurca-
tion step, which explains the ability of this organism to grow de-
spite the lack of a proton-exporting electron transport chain. This
correction also eliminated methanophenazine utilization and
synthesis, which is part of the membrane-bound electron trans-
port system of the methylotrophic methanogens and is absent
from hydrogenotrophic methanogens (2). Additional features in-
clude a corrected sulfur assimilation pathway (28) and the addi-
tion of biosynthesis pathways for all of the unique coenzymes
involved in methanogenesis (15). We increased genome coverage
by employing likelihood-based gap filling, a recently developed
technique that fills reaction gaps based on gene homology rather
than on parsimony (29). Furthermore, we expanded the scope of
our reconstruction beyond stoichiometric considerations by cre-
ating a method to approximate overall model free energy. This is
an especially salient consideration for methanogenic archaea,
which can grow close to the thermodynamic limits that support
life (30). A well-established method of applying free-energy con-
straints involves applying the second law of thermodynamics to
metabolic models to restrict reaction directionalities in the direc-
tion of negative free-energy generation (31, 32). Rather than apply
thermodynamic constraints to every metabolic reaction as in the
aforementioned approach, we created a simple flux-balance ac-
counting to estimate overall free-energy change during steady-
state growth based solely on standard free energies and effective
concentrations of external metabolites. In combining these ther-
modynamic considerations with stoichiometric information,
iMR539 provides a means to predict energetically feasible strain
designs, enhancing our metabolic engineering capabilities with M.
maripaludis. Using our reconstruction, we tested the essentiality
of bifurcation for hydrogenotrophic methanogenesis, investi-
gated the inability of M. maripaludis to grow on acetate as a carbon
and energy source, and predicted growth phenotypes for hydro-
genase mutants.

MATERIALS AND METHODS
Genome scale reconstruction procedure. The process of genome scale
metabolic network reconstruction has been reviewed previously (33) and
begins with annotating an organism genome using gene-protein-reaction
(GPR) relationships stored in a reaction database. Several databases are
available for this purpose (34–36); we chose the Department of Energy
Systems Biology Knowledgebase (Kbase; www.kbase.us), a suite of tools
that includes the Model SEED reaction database (36). We created our first
draft reconstruction using the stored Kbase genome for M. maripaludis S2
(genome identifier kb|g.575) and the automated reconstruction method
(“reconstruct genome scale metabolic model”). For this initial recon-
struction, we used the default Gram-negative biomass composition and
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filled knowledge gaps using likelihood-based gap filling (this method cur-
rently is not supported in the Kbase Narrative Interface). This yielded a
first full draft of the metabolic reconstruction that could predict growth
when simulated as a model.

We expanded and refined the model by manually adding information
from literature sources. In cases where reactions from literature were part
of the Model SEED database, we labeled the reactions using SEED identi-
fiers, names, subsystems, and EC numbers. For other cases where we en-
countered reactions that were not part of the Model SEED, we created
unique reaction identifiers and names and then added subsystem infor-
mation based on our knowledge of the metabolic network. We also ad-
hered to SEED identifiers, names, formulas, and charges for metabolites
whenever possible and had very few cases where we specified our own
values. Metabolites were compartmentalized using standard tags for cy-
tosol (“c0”) and extracellular (“e0”) compartments. These tags addition-
ally identify M. maripaludis as “Organism 0” in the possible future case
where we could add other organisms to create a community metabolic
reconstruction. Exchange reactions used for introducing metabolites to
the extracellular compartment were standardized in “EX_{metabolite
ID}[e0]” format. Comprehensive information on the reactions, metabo-
lites, and genes in our reconstruction can be found in Data set S1 in the
supplemental material.

Model simulations with flux balance analysis. To make rigorous
quantitative growth predictions, a genome scale metabolic reconstruc-
tion can be simulated as a model. Reactions and their participating
metabolites in the metabolic network are connected via the stoichio-
metric matrix (S), which contains the stoichiometric coefficients for
each metabolite (row) in each reaction (column). The S matrix is used
as the basis of a model via the principles of metabolite mass conserva-
tion by recognizing that time-dependent accumulation of metabolites
in the system (b) is equivalent to the product of the S matrix and the
vector of reaction fluxes (v):

Sv � b

In flux balance analysis (FBA), we further simplify this differential system
by assuming our organism is in steady-state growth; thus, b equals 0 and
the system is linear (37). This assumption bounds our model system to a
large solution space that can be constrained further by applying upper and
lower bounds to each individual reaction flux (vi):

vi, lower � vi � vi, upper

To find feasible flux distributions that represent likely physiological states
within this solution space, we solved our model by optimizing the biomass
objective function, a simulation of maximum cell growth yield (38).
Mathematically, this is represented as the product of the reaction fluxes
and the objective vector (c), which in this case is 0 for all indices except
biomass production:

Maximize c� v

We further constrained possible flux distributions by minimizing the
squared sum of fluxes (minNorm � “one” in call to optimizeCb-
Model.m), effectively forcing our model to find solutions that minimize
the total flux in the system while maximizing growth:

Minimize �
i

m

vi
2

Adding this optional parameter cut down on reactions with needlessly
high fluxes, which typically results in more realistic flux predictions. All
model simulations were performed using the COBRA Toolbox 2.0 (39) in
MATLAB (7.14.0.739) (The MathWorks Inc., Natick, MA).

To encourage model transparency (40) and assist future users in sim-
ulating condition-specific models, we designed several functions that cre-
ate these models, simulate maximum growth with the aforementioned
constraints, and print relevant information from the flux distribution (see
Text S4 in the supplemental material). We also wrote numerous functions
to help modify the reaction network, retrieve specific useful pieces of
information from model simulations, and diagnose issues that may arise

during model use. For several of these functions, we used the Paint4Net
toolbox (41) to draw flux maps that show the direction and magnitude of
fluxes in a given FBA solution. A description of some of our functions in
their current versions is included (see Text S4) with the full set of up-to-
date tools available on GitHub (https://github.com/marichards
/methanococcus).

Gene knockout phenotype simulations. Because a model is based
around the stoichiometry of reactions contained in the S matrix, knocking
out a gene is akin to knocking out all reactions that depend on the gene.
Thus, performing a gene knockout phenotype simulation in a metabolic
model requires that model reactions be linked to genes via GPR relation-
ships. We performed gene knockout simulations using our function
“simulateKOPanel.m” (see Text S4 in the supplemental material), which
relies heavily on the “deleteModelGenes.m” function in the COBRA Tool-
box 2.0 (39) as well as several of our own functions. Our experimental test
set was comprised of 30 total experimentally verified gene knockouts,
including 18 unique genotypes and 4 unique growth conditions (42–47).
We simulated growth phenotypes for all 30 of these wet-laboratory exper-
iments as well as the 42 other possible genotype-medium combinations
that did not correspond to experimental data. For all 72 combinations of
knockout genotypes and growth conditions, we evaluated the predicted
growth phenotypes as lethal/nonlethal with a threshold of 10% wild-type
growth. Predictive accuracy was assessed by comparing predictions on the
30 known phenotypes with wet-laboratory data; the remaining 42 predic-
tions had no associated wet-laboratory data for validation and could not
be assessed for accuracy. We further evaluated our model’s performance
using the Matthews correlation coefficient (MCC), a metric that evaluates
correlation based on a �1 to 1 scale (48):

MCC �
(TP � TN) � (FP � FN)

�(TP � FP)(TP � FN)(TN � FP)(TN � FN)

where TP is true positive, TN is true negative, FP is false positive, and FN
is false negative. We interpreted nonlethal gene knockouts as positive
growth and lethal gene knockouts as negative growth.

Thermodynamic calculations. When simulating optimal growth us-
ing a metabolic model, we expect that our system must necessarily have
negative overall free energy to support growth. We added standard free
energies of formation (1 mM, 25°C, 105 Pa, pH 7, ionic strength of 0.1 M)
from the Equilibrator database (49) to all exchange reactions for which
these values could be reliably estimated via the group contribution
method (50). These exchanges effectively represent the organism’s
overall biochemical reaction; therefore, it is reasonable to expect this
overall reaction must produce a negative overall free energy to support
growth. To incorporate these values into our reconstruction, we ex-
panded the standard model structure to include a “freeEnergy” nu-
merical array with length equal to that of the “reactions” array. For
calculating overall free energy of a flux distribution, we created an
“optimizeThermoModel.m” function (see Text S4 in the supplemental
material) that is built around the “optimizeCbModel.m” function in
the COBRA Toolbox 2.0 (39). Our script accepts effective concentra-
tions (millimolar) for specified exchange metabolites, assumes stan-
dard activities of 1 mM for unspecified metabolites, and uses these
values to calculate effective metabolite free energies based on the re-
construction’s stored values for each exchange reaction. Prior to per-
forming FBA, we add these free energies to the exchange reactions,
which ordinarily have the form

Ae0º

We alter these exchanges such that production of a metabolite creates free
energy equivalent to the metabolite’s free energy of formation:

Ae0º(�GAe0)dG

where �GAe0 is the stoichiometric coefficient of a new metabolite, dG, that
is used to sum model free energy. Because exchange reactions must satisfy
mass balance by necessarily entering or exiting the model without creating
new metabolites, adding free energies to the model creates an imbalance
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that we must correct. We restore model balance by allowing dG to exit the
model via its own exchange reaction (GIBBS_kJ_GDW):

dGº

Measuring the total flux of the exchange reaction gives an estimation of
total free energy being generated in an FBA solution on a per-cell-mass
basis. We have incorporated this thermodynamic calculation into all of
our available model simulations (see Text S4 in the supplemental mate-
rial); thus, by default, we calculate and print overall model free energy in
every flux distribution. Optionally, this calculation can be used as an ad-
ditional model constraint that restricts overall free energy to be negative,
the equivalent of imposing the second law of thermodynamics on the
organism itself. For an example that demonstrates this method for pre-
dicting overall free energy over a range of H2 levels, see Text S3.

Dry cell weight and growth yield measurements. Wild-type M. mari-
paludis S2 cells were grown in McNA medium, a chemically defined me-
dium for growth on H2 and CO2 supplemented with acetate (see Data set
S1 in the supplemental material), using a 1-liter chemostat under anaer-
obic conditions as described previously (17). The chemostat was operated
in steady-state continuous mode under H2-limiting conditions to match
model simulation conditions, with gas flows of 10 to 20 ml/min H2, 40
ml/min CO2, 15 ml/min of an H2S-Ar mixture (1:99, vol/vol), and a bal-
ance of N2 up to a total of 200 ml/min. We altered our growth rate of M.
maripaludis by varying pump speeds to achieve dilution rates of approx-
imately 0.045 to 0.090 h�1, checking the optical density at 660 nm
(OD660) periodically to ensure steady state at each data point. For each
sample point, we measured growth rate based on dilution rate and meth-
ane evolution rate via a combination of a bubble flow meter to assess total
gas outflow and a Buck Scientific model 910 gas chromatograph equipped
with a flame ionization detector to quantify the methane fraction.

We recalculated calibration curves for dry cell weight versus optical
density by measuring dry cell weight via cell filtering and OD660 via a
UV-visible spectrophotometer (path length of 13 mm; Spectronic 20D�)
blanked with water. After measuring chemostat optical density, we sam-
pled 50-ml aliquots of cells in suspension directly from chemostat culture
and centrifuged samples at 8,656 � g (7,000 rpm) for 15 min. Forty mil-
liliters of supernatant was removed by pipette, and then cells were resus-
pended in the remaining 10 ml of medium. These concentrated aliquots
were vacuum filtered through 0.45-�m-pore filters to remove all noncel-
lular components, dried at room temperature, and weighed daily until
their weights stabilized.

Growth yields (Y; in grams of dry weight per mole of CH4) were cal-
culated based on doubling time [td; equal to ln(2) � (dilution rate �
60)�1] as described previously (51) but with our measured conversion
between OD660 and cell density:

Y �
OD660

CH4
�

0.46 g ⁄ liter

OD600
�

1

td
�

22,400 ml

mol

where CH4 is measured in milliliters per minute and td is in minutes.
ATP maintenance and predicted growth yields. As described by

Thiele and Palsson, the optimal way to obtain accurate ATP maintenance
values is to plot ATP production versus growth data from chemostat
growth experiments (33). In practice, this requires measuring steady-state
growth rate in concert with an uptake rate or, in our case, a product
secretion rate, as described above. To calculate ATP maintenance values in
our model, we constrained our model to our measured growth rate and
methane secretion rate at each sampling point and set the model objective
to maximize ATP hydrolysis (rxn00062[c0]). We plotted each resulting
value of ATP production as a function of growth rate and obtained the
growth-associated (slope) and non-growth-associated (y intercept) ATP
maintenance values using a linear model, as described by Thiele and
Palsson (33). The resulting plot can be found in Text S2 in the supplemen-
tal material.

Our growth data points comprised a set of 9 measurements. To miti-
gate overfitting issues, we employed leave-one-out cross validation
(LOOCV) in estimating and then testing effects of ATP maintenance es-

timation. In the LOOCV approach, a set of n samples was divided into a
training data set of n � 1 points and a test sample of 1 point. The model
developed on the training set was then tested on the remaining point that
was left out of the training data. In employing this method for each of our
9 measurements, we determined ATP maintenance values for the n � 1
data set as described above to create a trained model. We then constrained
our model’s methane secretion flux to the measured rate in the remaining
test point and predicted maximum growth rate within that constraint
using our trained model. Using these values, we calculated predicted
growth yields for each point using the above-described formula and com-
pared them to our measured values for each point. All simulations were
performed using the default H2 plus CO2 medium formulation supple-
mented with acetate (McNA medium).

Reconstruction and model availability. Reconstructing a metabolic
network is an iterative process; therefore, to encourage future updates and
expansions, it is paramount that reconstructions be as clear as possible
(40). We have strived for clarity in both our nomenclature and in our
decision-making process for including each reaction present in our recon-
struction. Reactions and metabolites in our network are based upon iden-
tifiers and names found in Kbase but also include cross-links to ChEBI
(52) and KEGG identifiers (34), enzyme commission numbers, and reac-
tion subsystems where available. Each reaction in the reconstruction is
also connected to its literature and/or database source, plus its reaction
confidence score when applicable (see Data set S1 in the supplemental
material).

Additionally, we have sought to maximize usability of both our recon-
struction and our model. The systems biology markup language (SBML)
is a standard medium for distributing metabolic reconstructions (53);
thus, we have included our reaction network in SBML level 2, the highest
version currently supported by the COBRA Toolbox (39). In our experi-
ence using reconstructions from other groups, we have found a wide
range of usability, from those that can easily be imported and simulated to
those that are difficult to use and interpret. In the interest of making our
simulations and results easy to reproduce, we have included our recon-
struction in MATLAB data structure format and all of our scripts for
simulating model growth on different media and gene knockout pheno-
types (see Text S4 in the supplemental material).We have made our scripts
and reconstruction available on GitHub (https://github.com/marichards
/methanococcus) and have deposited our SBML model in the BioModels
Database (54) with the identifier MODEL1607200000.

RESULTS
Basic reconstruction statistics. The basic statistics for iMR539
are displayed in Table 1. Notably, reactions are categorized as (i)
internal reactions, occurring entirely within the cytoplasm; (ii)
transport reactions, involving translocation of at least one chem-
ical species across the cell membrane; and (iii) exchange reactions,
which supply metabolites to or remove metabolites from the
model. Of the 580 internal reactions in our network, 85.7% have
been assigned to at least one gene. This is a rather high percentage,
eclipsing that of the previous M. maripaludis reconstruction

TABLE 1 General statistics for the iMR539 reconstructiona

Parametera Value(s)

Protein-encoding genes (n) 539
% ORF coverage 31
Intracellular/extracellular metabolites (n) 657/53
Dead-end metabolites (n) 260
Internal reactions (n) 580
Transport/exchange reactions (n) 49/59
Dead-end reactions (n) 206
Gene-associated reactions (n) 497
a M. maripaludis S2 model statistics. ORF, open reading frame.
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(81.4%) (27) and comparing favorably to reconstructions of fel-
low methanogens Methanosarcina barkeri and Methanosarcina
acetivorans (85.7% and 85.1%, respectively) (55, 56). We suspect
that a major reason for this high percentage of gene-associated
reactions was our use of likelihood-based gap filling (29), which
resulted in the automated addition of 66 genes to our reconstruc-
tion before manual curation. Furthermore, we relied heavily on
biochemical knowledge from literature sources, particularly re-
garding recently elucidated biosynthesis pathways that were not
correctly annotated in annotation databases. Our combined use of
maximum-likelihood gap filling and reliance on published litera-
ture sources are the likely explanations for our consistent ties to
gene homology.

Another salient detail of our reconstruction is that it includes
many dead-end metabolites and reactions that cannot be synthe-
sized or consumed. Although such metabolites and reactions can-
not yet be included in our simulatable model, because they all have
at least one gene association supporting their involvement in me-
tabolism, we have included them in our metabolic reconstruction.
They represent excellent candidates for further exploration of M.
maripaludis metabolism, particularly as full synthesis or con-
sumption pathways are elucidated, allowing iMR539 to be up-
dated and expanded in the future.

Conversely, our reconstruction contains 83 internal reactions
that lack genes, many of which were added during automated gap
filling but some of which were added manually. All of our reac-
tions are annotated with subsystems, allowing us to assess where
each reaction (including those without genes) fits into metabo-
lism. Figure 1 shows the breakdown of reactions without genes,
where the subsystems have been manually grouped into broader
categories (e.g., “Amino Acid Biosynthesis” instead of “Glycine
Biosynthesis”). The largest group of these reactions is “Unique
Coenzyme Syntheses,” which includes reactions that synthesize
coenzyme M, coenzyme B, tetrahydromethanopterin (H4MPT),
methanofuran, coenzyme F420, and coenzyme F430. Although
these 24 reactions lack genes, all of them were added manually as

hypothetical steps to complete essential biosynthetic pathways
and are based on information from biochemical literature. These
are distinct from the 11 reactions encompassed by “Vitamin and
Cofactor Synthesis” that were added to fill biosynthesis gaps but
have no supporting literature evidence. We expect that as experi-
mental research groups uncover more biochemical phenomena,
they will determine genes that are tied to the reactions in the
“Unique Coenzyme Synthesis” group. These gap-filling reactions,
much like dead-end reactions and metabolites, point toward
poorly understood areas of metabolism that require more inves-
tigation into both the reaction pathways and their associated
genes.

As an additional feature of our reconstruction, our use of like-
lihood-based gap filling also assigned likelihood scores for many
of the reactions in the reconstruction. These confidence scores
quantify the probability of a given reaction being part of the met-
abolic reconstruction on a scale of 0 to 1 and provide a new metric
of evaluating our confidence in the reconstruction (see Data set S1
in the supplemental material). We can then use the scores both to
quickly hone in on reactions that lack genes and gene-associated
reactions with low gene homology as possible targets for future
experimental investigations and to expand upon and improve the
existing reconstruction.

Model prediction of electron bifurcation essentiality in hy-
drogenotrophic methanogenesis. Methanogenesis from H2 and
CO2 is often represented as a linear pathway with heterodisulfide
reduction as the final step (Fig. 2). Our model for a hydrog-
enotrophic methanogen links the heterodisulfide reductase step to
the first CO2 reduction step via a ferredoxin (2, 43) as described
previously, resulting in a cyclical methanogenic pathway (57),
CoB � S � S � CoM � 2H2 � Fdoxº HS � � HS � CoM �
2H� � Fdred (reaction 1), where Fdox is oxidized ferredoxin and
Fdred is reduced ferredoxin.

To demonstrate that the linear pathway cannot support
growth of M. maripaludis in the absence of the methano-
phenazine-dependent HdrDE complex, we altered the native elec-

Nucleo

FIG 1 Chart showing broad subsystem groupings of the 83 reactions in iMR539 that are not associated with any genes. Reactions falling underneath the “None”
subsystem grouping were present in the Model SEED database but had no subsystems listed there and no obvious membership in another subsystem. Reactions
grouped within “Other” were dissimilar both from the other categories and from one another; thus, we felt they did not merit creation of multiple additional
categories.
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tron-bifurcating HdrABC reaction (reaction 1). We removed
electron bifurcation from this reaction by removing ferredoxin,
balancing mass and charge to yield an altered reaction, CoB � S �
S � CoM � H2ºHS � CoB � HS � CoM (reaction 2).

This scenario represented a hypothetical case where M. mari-
paludis does not contain a membrane-bound HdrDE complex but
cannot perform electron bifurcation. Unsurprisingly, we were un-
able to predict in silico growth on CO2 plus H2. Ferredoxin reduc-
tion via electron bifurcation is an essential part of our network;
without this energy-coupling step, M. maripaludis would not
grow. The alternative source of reduced ferredoxin is the energy-
converting Eha hydrogenase, which utilizes a sodium ion gradient
to reduce ferredoxin with H2 at a 1:1 ratio. CO2 reduction to
methane requires reduced ferredoxin and pumps out sodium
ions, also at a 1:1 ratio. Thus, each cycle of methanogenesis in this
scenario effectively produces no net sodium ion gradient for syn-
thesizing ATP, the central component necessary for biomass for-
mation. Overall, this simple exercise illustrates the essentiality of
ferredoxin reduction via electron bifurcation and reinforces the
idea that Eha hydrogenase can play only an anaplerotic role in
methanogenesis (43).

M. maripaludis can assimilate acetate as a source of carbon, but
it cannot replace H2 and CO2 as an energy source (58). This con-
trasts with the situation in methylotrophic methanogens, such as
Methanosarcina barkeri, that can subsist using solely the aceticlas-
tic pathway (59). It is unknown why M. maripaludis cannot grow
on acetate as a source of energy, and our reconstruction did not
reveal any strictly stoichiometric obstacle to growth. However,
much like the pathway in M. barkeri, an aceticlastic pathway in M.
maripaludis would require energy-converting hydrogenases (Eha
and Ehb) to produce H2 using reduced ferredoxin, pumping out
sodium ions, and thrusting this reaction into a central stoichio-
metric role rather than an anaplerotic one. When we simulated
our model and allowed Eha/Ehb unlimited flux, we could predict
aceticlastic growth, with Eha/Ehb oxidizing approximately 2 mol
of ferredoxin per mol of methane produced (Fig. 3). We then
constrained our model to enforce a solely anaplerotic or biosyn-
thetic role of energy-converting hydrogenase by limiting flux
through the Eha/Ehb reaction to 10% of the methane secretion
rate. Doing so prevented our model from predicting growth from
acetate alone but did not restrict hydrogenotrophic growth or
supplementary acetate uptake. This simulation supports the hy-
pothesis that M. maripaludis cannot achieve aceticlastic growth
because Eha or Ehb cannot assume a central role in methanogen-
esis. In keeping with these results, we have restricted flux through
Eha/Ehb in our model to �10% of methane secretion as a default
constraint.

Improvements to the reconstruction of other biochemical
pathways. A major part of our manual curation was adding bio-
synthetic pathways for the methanogenic coenzymes, sugars, and
lipids. M. maripaludis utilizes a number of unusual coenzymes
(methanofuran, H4MPT, coenzyme F420, coenzyme B, coenzyme
M, and coenzyme F430) as carbon and electron carriers during
methanogenesis (60). It also contains recently characterized path-

FIG 2 Native pathway of hydrogenotrophic methanogenesis present in M.
maripaludis. As shown, electrons from 2 mol H2 are split between reducing
ferredoxin and regenerating coenzymes B and M. Reduced ferredoxin from
this reaction links it to CO2 reduction, the first step in the pathway. Enzyme
names are shown in blue. Metabolites: Fdrd, reduced ferredoxin; Fdox, oxidized
ferredoxin; MFR, methanofuran; HSCoM, coenzyme M; HSCoB, coenzyme B.
Enzymes: Fwd, formylmethanofuran dehydrogenase; Ftr, formylmethano-
furan-H4MPT formyl transferase; Mch, methenyl-H4MPT cyclohydrolase;
Hmd, H2-dependent methylene-H4MPT dehydrogenase; Mtd, F420-depen-
dent methylene-H4MPT dehydrogenase; Mer, methylene-H4MPT reductase;
Mtr, methyl-H4MPT coenzyme M methyltransferase; Mcr, methyl coenzyme
M reductase; Hdr, heterodisulfide reductase; Eha/Ehb, energy-conserving hy-
drogenases; ATPS, ATP-synthase; Fru, F420-reducing hydrogenase (selenocys-
teine containing); Frc, F420-reducing hydrogenase (cysteine containing).

FIG 3 Hypothetical pathway for aceticlastic methanogenesis in M. maripalu-
dis. As demonstrated, this scheme would require 2 cycles of Eha/Ehb in order
to oxidize ferredoxin reduced by the CODH/ACS and Hdr reactions. By con-
straining the Eha/Ehb reaction to only 10% of methane efflux, this pathway
becomes infeasible. Enzyme names are shown in blue. Metabolites: Fdrd, re-
duced ferredoxin; Fdox, oxidized ferredoxin; MFR, methanofuran; HSCoM,
coenzyme M; HSCoB, coenzyme B. Enzymes: CODH/ACS, carbon mon-
oxide dehydrogenase/acetyl-CoA synthase complex; Mtr, methyl-H4MPT
coenzyme M methyltransferase; Mcr, methyl coenzyme M reductase; Hdr,
heterodisulfide reductase; Eha/Ehb, energy-conserving hydrogenases;
ATPS, ATP-synthase.
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ways for synthesizing a tetrasaccharide for N-linked glycosylation
of archaellin (archaeal flagellin) (61) and multiple forms of ar-
chaeol, an archaeal membrane ether lipid (62). None of these
pathways were included in our draft reconstruction, and few were
completely present in the Model SEED database (63); thus, the
bulk of these reactions were added manually. These biosynthetic
pathways, particularly for coenzymes, are required biomass com-
ponents of M. maripaludis metabolism that set it apart from the
vast majority of known biochemistry and are crucial for distin-
guishing our reconstruction from existing networks.

In a similar vein, we sought to accurately represent sulfur as-
similation, a pathway not yet fully understood in M. maripaludis.
Sulfate is known not to be the sulfur source for M. maripaludis;
moreover, sulfate reduction would produce sulfite, a methano-
genesis inhibitor (64). However, because sulfate is the default sul-
fur source for most microorganisms, our first draft reconstruction
included a sulfate transporter and sulfate reduction pathway. We
removed this default pathway and instead added a pathway to
utilize hydrogen sulfide gas, the primary sulfur source for M.
maripaludis (65). Our updated sulfur assimilation pathway in-
cludes sulfide oxidation to sulfite, an essential metabolite for mul-
tiple biosynthetic pathways, via a hypothesized dissimilatory sul-
fite reductase-like protein (28).

Growth yield validation and ATP maintenance. Evaluating a
metabolic network reconstruction by qualitatively comparing it to
known biochemical phenomena is a valuable way to gauge how
close the network can represent actual biochemistry. To make
more quantitative comparisons, we must convert the reconstruc-
tion to a metabolic model by imposing flux constraints on the
network, enforcing mass balance on all metabolites, and optimiz-
ing to an objective function (see Materials and Methods). A stan-
dard way to quantitatively evaluate the resulting model is to sim-
ulate maximum cell growth under steady-state conditions and

compare growth yield predictions to experimentally determined
values. There is scarce published growth yield data for M. mari-
paludis; thus, we generated our own experimental growth yield
measurements. We conducted chemostat growth experiments
under H2-limiting conditions and measured growth yields as de-
scribed previously (51), but we varied our dilution rate to gather a
range of different yield measurements. Cell density was assessed as
the OD660. Previous measurements at 600 nm determined a con-
version factor of an OD600 of 1, corresponding to 0.34 mg (dry
weight) · ml�1 (44). Using a combination of centrifugation and
vacuum filtering (see Materials and Methods), we plotted a new
calibration curve (see Text S2 in the supplemental material) and
determined that an OD660 of 1 corresponds to 0.462 	 0.015 mg
(dry weight) · ml�1. Using this value, we determined growth yields
and growth rates (equal to dilution rates) and compared them to
measured methane evolution rates (see Materials and Methods).
Measured growth yields for nine independent steady-state time
points are plotted in Fig. 4.

We then tested our model by generating growth yield predic-
tions and comparing them to measured growth yields. Growth
yield predictions depend both on metabolic steps, where ATP is
generated or hydrolyzed, and on ATP maintenance energies (55).
From a modeling perspective, maintenance energies include the
moles of ATP needed to support cellular processes not otherwise
depicted in metabolism, including DNA replication, RNA tran-
scription, protein synthesis, and other requirements. We recog-
nized that our model was essentially untrained in terms of ATP
maintenance and contained automated values from our first draft
reconstruction. Thus, it was crucial to train our model by fitting it
to our experimental data set. However, we were also wary of over-
fitting our model by training and testing on the same set of sam-
ples. We addressed both concerns by performing LOOCV on our
full data set. Thus, for each of our nine growth rate values, we used

FIG 4 Comparing growth yield predictions on hydrogen to measured data using LOOCV (see Materials and Methods). All but two predicted growth rates fall
within the 95% confidence interval of the measured values. Both of the outlying predictions are for slightly higher growth yields than were measured. gDCW,
grams of dry cell weight.
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the remaining eight growth rates and their associated measured
methane evolution rates to derive ATP maintenance values. We
then used that ATP maintenance value in our calculation of pre-
dicted growth yield for the given growth rate. This method al-
lowed us to essentially test our model’s growth yield predictions
on each separate test point while training on the remaining 8 mea-
surements. The resulting predicted growth yields are plotted in
Fig. 4 along with our measured growth yields. As illustrated by this
plot, our model was able to consistently predict growth yield
within the 95% confidence interval of a measured test sample after
being trained on a separate data set, with the exception of two
predictions that were just above the 95% interval. These two small
discrepancies most likely indicate random variations in these par-
ticular growth experiments that, while not particularly unusual,
cause our linear model to slightly overestimate growth yield.

We also used the full data set of growth rates and methane
evolution rates to set final values for growth-associated mainte-
nance (GAM) and non-growth-associated maintenance (NGAM).
The GAM represents how much ATP hydrolysis is required to
support growth-related processes, and NGAM represents how
much ATP hydrolysis is required for non-growth-associated cel-
lular upkeep. GAM was originally set as 40.11 mmol per g of cell
mass, a relatively low value compared with that of a fast-growing
bacterial species; for example, the GAM for Escherichia coli is 59.81
mmol per g of cell mass (66). NGAM, represented by simple ATP
hydrolysis, was unbounded in our first draft reconstruction and
took on a value of 0 during all model simulations. After training
on our full data set, we set our GAM and NGAM values to 169.9
mmol ATP per g of cell mass and 5.0 mmol ATP per gram of cell
mass h�1, respectively (see Text S2 in the supplemental material).
Notably, these maintenance values are much higher than those in
other methanogen models; for example, the fellow methanogen
Methanosarcina barkeri was reported to have a GAM of 65.00
mmol per g of cell mass (55), about 38% of our calculated value.
This difference is reflective of the observed differences in growth
yield for these organisms during growth on H2 and CO2. Using the
same formula for growth yield in each case at nearly identical
doubling times of 12 h, M. maripaludis grew at a yield of about
33% of that reported for M. barkeri (55). Thus, although we cal-
culated unusually high ATP maintenance requirements for
growth, these high values reflect observed differences in growth
data compared to a methylotrophic methanogen growing on the
same substrates.

Gene knockout validation. Gene knockout experiments pres-
ent a different method for validating a metabolic reconstruction.
At its core, a constraint-based model is built around standard
gene-protein-reaction relationships that connect genotype to
growth phenotype. Thus, comparing model predictions of gene
knockout lethality provides an excellent way to quantitatively test
the model and also potentially discover metabolic/genetic flexibil-
ity in M. maripaludis. This process hinges on the availability of
gene knockout data for the organism being modeled. Unlike a
traditional model organism, such as E. coli (67), M. maripaludis
lacks this abundance of in vivo gene knockout data; however, it has
been used for transposon mutagenesis to calculate an essentiality
index of all of its genes (68). Although this data set does not con-
tain the same quality of knockout data as actual knockout exper-
iments, the essentiality index provides a valuable first-pass test set
for gene essentiality of our model. Results of comparing our mo-

del’s predictions to this data set can be found in Text S1 in the
supplemental material.

The bulk of available gene knockout data involves hydrogenase
knockouts under different growth conditions. For our test set, we
assembled a knockout panel of 30 binary growth phenotypes from
previous work (42–47). Although the breadth of these knockout
genotypes is limited, they are involved in various important por-
tions of the methanogenic pathway; therefore, they provide a good
idea of how well our model can predict knockouts in central ca-
tabolism. In comparison to these data, as shown in Fig. 5, our
model achieved 93% prediction accuracy and an MCC of 0.78.
This result was particularly encouraging because we avoided
training our model on this data set in the interest of preventing
overfitting our model to the validation set.

As shown in Fig. 5, our model incorrectly predicts knockout
lethality for 2 cases; both of these incorrect predictions have sim-
ilar bases in the model. In these cases, knockouts of 5 or 6 hydro-
genases are experimentally found to be lethal in formate-grown
cells, yet our model predicts these knockouts are nonlethal. The
reason for this disagreement lies in our innate assumption that
every reaction performs at 100% efficiency, an ideal scenario that
is not achievable in an actual organism. Methanogenesis cannot be
expected to operate at 100% enzyme efficiency, as some substrates
and electron carriers will not react; thus, it can be considered a
leaky process where a portion of the metabolites are unused in
every cycle. Specifically, in the �5H2ase and �6H2ase knockouts
(Fig. 5), small amounts of hydrogen are synthesized in biosyn-
thetic reactions. Eha hydrogenase remains active in each mutant
and can use H2 to supply anaplerotic reduced ferredoxin for
methanogenesis. However, in reality, an additional nonstoichio-
metric amount of hydrogen is required (43). Thus, the actual mu-
tants cannot grow on formate alone and require hydrogen.

Notably, most of our knockout predictions were made with
glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR)
constrained to carry zero flux. The GAPOR reaction is ferredoxin
reducing and can serve as a supplemental source of reduced ferre-
doxin for growth on formate in the case of Eha knockout (45).
However, in wild-type strains the expression of GAPOR is not
sufficient to support growth in the absence of other hydrogenases
(e.g., the �5H2ase and �6H2ase mutants). As demonstrated pre-
viously, a mutation resulting in overexpression of the GAPOR
operon allows for growth of these mutants (�6H2asesupp and
�7H2asesup) on formate (45). To best reflect these genotypic dif-
ferences, we altered the bounds of the GAPOR reaction
(rxn07191[c0]) in our knockout simulation script, constraining
the reaction to zero flux in all cases except those of the �6H2asesupp

and �7H2asesup mutants. This introduces the variables of overex-
pression mutations and ferredoxin promiscuity, which creates
new links between pathways not normally occurring in the wild-
type strain.

DISCUSSION

Genome scale metabolic reconstructions provide a wide lens for
studying biochemical complexity in a computational setting. We
used likelihood-based gap filling and meticulous manual curation
to build iMR539, a comprehensive reconstruction of M. maripalu-
dis that incorporates electron bifurcation to portray cyclical hy-
drogenotrophic methanogenesis. We incorporated many unique
pathways that differentiate our network from those for other or-
ganisms, creating a novel tool for understanding and probing
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more deeply into hydrogenotrophic methanogenesis. The result-
ing network model compared favorably with measured growth
yield and gene knockout data and provided a platform to develop
a new method for estimating overall free-energy generation dur-
ing steady-state growth.

The energetic coupling of heterodisulfide reduction to ferre-
doxin reduction for the first step of cyclical methanogenesis is in
stark contrast to existing methanogen models that contain the
linear one based on oxidative (electron transport) phosphoryla-
tion (27, 55, 56). While the linear model is correct for methano-
gens with cytochromes, it is not correct for methanogens without
cytochromes, such as M. maripaludis. We have demonstrated that,
in the absence of a membrane-bound HdrDE complex, this cou-
pling via electron bifurcation is essential for predicting growth in
our network. Furthermore, constraining the energy-conserving
Eha/Ehb reaction to a minor metabolic role provides a stoichio-
metric hypothesis for the inability of M. maripaludis to grow ace-
ticlastically and will undoubtedly influence model predictions
moving forward.

Although analysis of various pathways seems to suggest ferre-
doxin specificity from knockout data or from inclusion of a ferre-
doxin gene(s) within related enzyme operons (71), other data in-
dicate some limited flexibility in ferredoxin cross usage (45, 69).
Additionally, many in vitro enzyme assays studying electron bifur-
cation in methanogens utilize clostridial ferredoxins (11). M.
maripaludis has 59 annotated iron sulfur proteins (13), of which

there are at least 16 known ferredoxins (68), opening multiple
possibilities of ferredoxin cross usage. Ferredoxin specificity/pro-
miscuity for certain reactions remains an open question that could
profoundly affect electron carrier utilization and have implica-
tions in native and mutant genotypes, a possibility we have ac-
knowledged by allowing either promiscuous or specific ferredox-
ins in our reconstruction (see Text S4 in the supplemental
material). Using this function theoretically tightens the coupling
between the aforementioned reactions by restricting each set to
one pool of electron carriers; however, this change currently has
minimal effects on predicted growth yields and fluxes. The diffi-
culty of implementing ferredoxin specificity in iMR539 illustrates
a need for future studies to demystify the roles of different ferre-
doxin species for M. maripaludis metabolism, particularly in elec-
tron bifurcation. A clearer picture of ferredoxin promiscuity
could notably impact predicted flux distributions and gene
knockout phenotypes and have important implications for hy-
pothesizing strain designs; thus, including multiple ferredoxins
could be vital for effective metabolic engineering.

Beyond electron bifurcation itself, we added numerous un-
common biosynthetic pathways to our network from literature
sources that further separate it from models of other organisms.
These pathways included syntheses for methanogenic coenzymes,
archaellin sugars, and archaeol lipids, as well as a relatively novel
sulfur assimilation pathway. Additionally, using likelihood-based
gap filling helped us automatically identify 66 more genes, increas-

Genotype H2 Formate H2 + Formate Formate + CO 

∆hmd N N N N 

∆mtd N N N N 

∆frcA N N N N 

∆fruA N N N N 

∆frcA∆fruA N N N N 

∆vhcAU∆vhuA N N N N 

∆hdrB2 N N N N 

∆fdhA1 N N N N 

∆fdhA2 N N N N 

∆fdhA1∆fdhA2 N L N L 

∆fdhA2∆fdhB2 N N N N 

∆ehbF N N N N 

∆3H2ase N N N N 

∆5H2ase L N N N 

∆6H2ase L N N N 

∆6H2ase∆cdh L N N L 

∆6H2asesupp N N N N 

∆7H2asesupp N N N N 

Total Correct:  10 of 10 14 of 16 2 of 2 2 of 2 

FIG 5 Knockout lethality predictions from running FBA on our models show close agreement with experimental results of hydrogenase knockouts. Green boxes
indicate growth phenotypes where our models correctly replicated experimental results, red boxes indicate growth phenotypes where our models were incorrect,
and white boxes indicate growth phenotypes where we lacked experimental validation data. Across the full spectrum of conditions, our models correctly
predicted 28 of 30 conditions (93%), resulting in a strong Matthews correlation coefficient of 0.78. This suggests that our reconstruction produces models that
accurately depict the effects of genotype alterations on growth phenotypes. L, lethal prediction; N, nonlethal prediction.
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ing the gene coverage of our reconstruction prior to the start of
manual curation and assigning reaction likelihood scores for
many reactions that lend a measure of confidence to the network.
These modifications demonstrated the need for rigorous manual
curation to add known biochemical pathways that were not part of
the automated reconstruction and remove pathways that are
known not to function in the organism. By employing these meth-
ods and by working collaboratively with various groups intimately
familiar with M. maripaludis biology, we have created a recon-
struction that maximizes consistency with biochemical literature
for our organism. The efficacy of these methods is shown not only
in the qualitative accuracy of our reconstruction but also in the
formidable quantitative capabilities of the resulting model. Al-
though growth yield validation is not an absolute measure of
model performance, our model’s ability to closely reproduce ex-
perimental results in an LOOCV setting that mitigated overfitting
suggested a high propensity for generating viable growth predic-
tions. Moreover, the relative consistency between measured and
predicted values indicated our model’s robustness for predicting
growth yields across a range of different dilution and methane
secretion rates. Furthermore, our model’s comparatively high
correlation (MCC of 0.78) with experimental knockouts sug-
gested that our model is an excellent predictor of growth pheno-
type based on genotype changes in central carbon metabolism.
For context, this MCC compares favorably with the single-gene-
deletion overall MCCs for Saccharomyces cerevisiae models,
among the best curated and most revised models to date, that
range from 0.38 to 0.63 (70).

For a methanogen living close to the edge of thermodynamic
feasibility, we also thought it salient to include some calculation of
overall free energy when simulating our model. Thus, we have
introduced a novel method of predicting overall model free-en-
ergy generation based solely on standard free energies and con-
centrations of exchange metabolites. This is in contrast to existing
methods that predict reaction by reaction directionality using free
energies and concentration ranges for all metabolites; our imple-
mentation is on a much smaller scale and is aimed at approximat-
ing the overall state of the system rather than constraining indi-
vidual reactions. We expect that this straightforward calculation
(see Materials and Methods) will be a useful addition to our
model, particularly as we aim to use it as a platform for generating
possible strain designs. With regard to free energy, methanogens
are particularly notable in that they subsist close to the thermody-
namic limit to support growth (30). It follows that for any poten-
tial strain design, we must pay particular attention to the overall
free energy of our system, lest it dip below this vital threshold. It
may also provide a metric for differentiating between multiple
feasible strain designs by ranking them in order of thermody-
namic feasibility. At the very least, it serves as an additional capa-
bility of our model and as a checkpoint to ensure that our overall
stoichiometry matches up with overall free energy.

Although we have attempted to address as many parts of me-
tabolism as possible, many unexplored areas of M. maripaludis
metabolism still exist in our reconstruction and present ample
opportunity to expand and revise our reconstruction. Our inten-
tion was to make our reconstruction decisions transparent to fu-
ture users, and we hope that by providing information on the
origins and likelihoods of our reactions, we can encourage explo-
ration of as-yet-unknown pathways. In doing so, our reconstruc-
tion provides a tool to realistically portray the scope of possible

metabolic capabilities of hydrogenotrophic methanogens, push
forward biochemical discovery in these organisms, and unlock
their potential as metabolic engineering targets.
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