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Abstract

Functional transcrannial Doppler (fTCD) is used for monitoring the hemodynamics characteristics of major cerebral arteries.
Its resting-state characteristics are known only when considering the maximal velocity corresponding to the highest
Doppler shift (so called the envelope signals). Significantly more information about the resting-state fTCD can be gained
when considering the raw cerebral blood flow velocity (CBFV) recordings. In this paper, we considered simultaneously
acquired envelope and raw CBFV signals. Specifically, we collected bilateral CBFV recordings from left and right middle
cerebral arteries using 20 healthy subjects (10 females). The data collection lasted for 15 minutes. The subjects were asked
to remain awake, stay silent, and try to remain thought-free during the data collection. Time, frequency and time-frequency
features were extracted from both the raw and the envelope CBFV signals. The effects of age, sex and body-mass index
were examined on the extracted features. The results showed that the raw CBFV signals had a higher frequency content,
and its temporal structures were almost uncorrelated. The information-theoretic features showed that the raw recordings
from left and right middle cerebral arteries had higher content of mutual information than the envelope signals. Age and
body-mass index did not have statistically significant effects on the extracted features. Sex-based differences were observed
in all three domains and for both, the envelope signals and the raw CBFV signals. These findings indicate that the raw CBFV
signals provide valuable information about the cerebral blood flow which can be utilized in further validation of fTCD as a
clinical tool.
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Copyright: � 2013 Sejdić et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors would like to thank the University of Pittsburgh for funding for this project. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: esejdic@ieee.org

Introduction

Cerebral metabolism and brain function are related to

cerebral blood flow [1]. Various imaging modalities such as

functional magnetic resonance imaging (e.g., [2]) were used to

demonstrate that mental and motor activities result in an

increased cerebral blood flow in the feeding bed arteries,

especially because of increased regional demand for O2, glucose

and other metabolites [1]. However, these imaging techniques

can be expensive and complex to operate [3], and functional

transcranial Doppler (fTCD) arose as a viable alternative to

monitor cerebral blood flow. fTCD is a noninvasive and easily

operated ultrasound diagnostic technique that can be used to

monitor the hemodynamic characteristics of major cerebral

arteries in normal and pathologic conditions [4]. Measurements

are taken with a probe placed on the skull of a subject, usually

over the transtemporal window [5], which enables the

monitoring of main cerebral arteries. fTCD has a high temporal

resolution and has been used in many psychophysiologic studies

involving various cognitive tasks (e.g., [3], [5], [6], [7], [8], [9]).

These studies demonstrated that mean cerebral blood flow

velocity (CBFV) obtained from fTCD data increases when users

are doing a cognitive activity compared with baseline periods

[10], [11], [12], [13].

The resting-state imaging, especially resting-state functional

magnetic resonance imaging, arose in recent years as a method to

investigate the regional interactions when a subject is not

performing an explicit task. Therefore, it is important to

characterize the resting-state CBFV using fTCD as the resting-

state activity of the brain can influence the consequent mental

tasks. Early studies considering the resting-state fTCD showed that

the measured CBFV at rest decreased significantly with increasing

age [14], [15], [16]. Also, younger females had significantly higher

blood velocity values than males [14], [15], [16]. However,

previous publications dominantly considered the maximal velocity

corresponding to the highest Doppler shift as a measure of the

CBFV (e.g., [3–17]). Figure 1 depicts a relationship between the

raw CBFV signal as captured by fTCD and the maximal velocity,

which is usually called the spectral envelope signal. It is clear that

the envelope signal only partly captures information about

cerebral blood flow, as the received ultrasound signal is a sum of

sinusoidal components corresponding to a large number of blood

particles moving at different velocities [17]. Therefore, even

though the resting-state values for fTCD have been previously

investigated, there is a lack of knowledge to date regarding the

relationship between the raw CBFV signals and the envelope

signals and what additional information can be gained from the

raw CBFV signals. This is a particularly important issue as fTCD

is becoming an important clinical tool to study cerebral blood flow

and was a recently proposed as a viable option for brain-to-

computer interfaces [18].
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There are two major contributions of the current study. First,

the characterization of the resting-state fTCD using simultaneous-

ly acquired raw and envelope CBFV signals is novel, as previous

studies focused only on the envelope signals. Second, the paper

introduces several analysis approaches such as information-

theoretic approaches and time-frequency techniques to analyze

these resting-state signals. Most of the previous contributions

focused on statistical analysis of the envelope signals, and some

recent contributions considered more advanced tools such as

frequency analysis (e.g., [9]).

Methods

Data Acquisition
Twenty able-bodied participants were recruited, screened, and

tested (10 females; 21:5+1:86 years old (19–26 years old);

67:9+14:2 kg (50:4{99:9 kg); 174+9:69 cm (157{191) cm;

body mass index: 22:3+2:94 (17.7–29.1)). No participants had a

history of heart murmurs, strokes, concussions, migraines, or other

brain conditions. At the beginning of the experiment session, each

participant was seated in front of a desk and a computer monitor.

The participants filled out screening questionnaires, Edinburgh

handedness tests, and consent forms which were all approved by

the University of Pittsburgh Institutional Review Board. The

entire testing procedure was explained to each participant prior to

data acquisition. Handedness was determined using the Edinburgh

handedness test [19]. 16 subjects were right handed with a mean

score of 64% and a range of 38–93%, while three subjects were left

handed with a mean score of 80% and a range of 76% to 88%.

For one subject, it has been determined that the subject equally

uses right and left hands.

A SONARA TCD system (CareFusion, San Diego, CA, USA)

was used to acquire CBFV data from the middle cerebral arteries

(MCA). Two 2 MHz transducers were used simultaneously to

gather bilateral CBFV measurements from the left MCA (L-MCA)

and the right MCA (R-MCA). The fTCD transducers were placed

at the subjects’ transorbital windows on both the left and right side

of the skull. The transorbital window lies above the zygomatic

arch, located 1–5 cm in front of the ear [6]. The locations, angles,

and insonation depth of the TCD transducer were modified until a

correct MCA flow was found. The procedure to find the area of

insonation was based on Alexandrov et al. [20]. Upon finding the

area of insonation, the two TCD transducers were affixed to the

participant using a headset. As changes in end-tidal CO2 (ETCO2)

levels are known to affect CBFV in the MCA [21], a Capnocheck

Sleep Capnograph/Oximeter (Smiths Medical, Dublin, OH,

USA) was used to monitor ETCO2. Subjects wore nasal cannulas

that were placed after the TCD transducers were affixed.

The participants were instructed to remain awake, stay silent,

and try to remain thought-free throughout the 15-minute resting

period. Upon the completion the 15-minute resting period, the

participants were asked to complete other tasks, which are not

considered in the current study. The depth of insonnation for both

L-MCA and R-MCA was 53+3 mm.

Once the data acquisition was completed, data were exported

using the fTCD system’s custom software. The data were

extracted as audio files sampled at 44100 Hz representing the

cerebral blood flow from R-MCA and L-MCA. The data were

downsampled to 8820 Hz in order to speed up the calculations.

Feature Extraction
Considering a general form of a signal X~ x1,x2, . . . ,xnf g,

where n is the total number of samples the following statistical

features were extracted:

N Standard deviation of the signal amplitude is related to the AC

signal power and typically measures the spread of the

amplitude distribution [22]:

sX ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n{1

Xn

i~1

(xi{mX )2

s
ð1Þ

where mX denotes the mean of the signal.

N The skewness of the amplitude distribution computed as

follows [22]:

jX ~
1
n

Pn
i~1 (xi{mX )3

1
n

Pn
i~1 (xi{mX )2

� �3=2
ð2Þ

measures the asymmetry of the distribution.

N The kurtosis of the amplitude distribution computed as follows

[22]:

Figure 1. Relationship between the raw CBFV signal and its maximal velocity: (a) a sample raw CBFV signal; (b) its time-frequency
representation with the thick black line denoting the maximal velocity (i.e., the envelope signal); (c) the envelope signal converted
to cm/s.
doi:10.1371/journal.pone.0055405.g001
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cX ~
1
n

Pn
i~1 (xi{mX )4

1
n

Pn
i~1 (xi{mX )2

� �2
ð3Þ

measures how the distribution behaves near the extremes (i.e.,

whether or not it decays slowly).

N The cross-correlation coefficient at the zeroth lag between X

and Y was computed as follows [22]:

CCXY ~
1

n

Xn

i~1

xiyi ð4Þ

and it assesses the similarity of time structures of X and Y .

Next, we consider information-theoretic features often used in

the analysis of biomedical signals (e.g., [23], [24], [25]):

N The Lempel-Ziv complexity (LZC) measures the predictability

of the signal [25], [26]. To compute LZC, the signal needs to

be first converted to a sequence of finite symbols which was

achieved with 99 thresholds, Ti, 1ƒiƒ99, i[Zz. This

inherently divides the signal amplitude distribution into 100

equal spaces (i.e. 100 symbols). Next, the quantized signal

Sn
1~ s1,s2, . . . ,snf g was decomposed into k blocks. A block is a

sequence of consecutive symbols of length ‘{jz1 which can

be expressed as follows:

F~S‘
j ~ sj ,sjz1, . . . ,s‘
� �

, 1ƒjƒ‘ƒn, j, ‘[Zz ð5Þ

The first block was simply initialized to be the first symbol, i.e. and

subsequent blocks were determined based on the following

relation.

Fmz1~S
hmz1
hmz1, m§1, m[Zz ð6Þ

where hm is the ending index for Fm, such that Fmz1 is a unique

sequence of minimal length in the sequence S
hmz1{1

1 . Finally,

LZC was computed as follows:

LZC~
k log100 n

n
ð7Þ

where the logarithmic base of 100 was used because the signal was

quantized to 100 symbols.

Figure 2. Comparison of sample raw signals and the envelope signals: (a) the raw CBFV signal from the right MCA; (b) the raw CBFV
signal from the left MCA; (c) the envelope CBFV signal from the right MCA; (d) the envelope CBFV signal from the left MCA.
doi:10.1371/journal.pone.0055405.g002
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N The entropy rate (r) measure quantifies the extent of regularity

in a signal [24]. The measure is particularly useful when a

relationship among consecutive data points is anticipated. The

first step is to to normalize X to zero mean and unit variance,

by subtracting mX and dividing by sX . The normalized X was

then quantized into 10 equally spaced levels represented by

integers from 0 to 9, ranging from the minimum to maximum

value. Using the quantized signal, X̂X~ x̂x1,x̂x2,:::,x̂xnf g, sequenc-

es of consecutive points in X̂X of length L, 10ƒLƒ30, were

coded as a series of integers, VL~fw1,w2,:::,wn{Lz1g,
according to the following:

wi~10L{1x̂xizL{1z10L{2x̂xizL{2z:::z100x̂xi

.

This implies that wi ranged from 0 to 10L{1 and base 10 was

used because there were 10 quantization levels. The Shannon

entropy of VL was defined as follows:

SE(L)~
X10L{1

j~0

pVL
(j) ln pVL

(j)

where pVL
(j) represents the probability of the value j in VL,

approximated by the corresponding sample frequency. The

normalized entropy rate was then computed as follows:

NER(L)~
SE(L){SE(L{1)zSE(1)perc(L)

SE(1)

where perc(L) is the percentage of the coded integers in VL that

occurred only once. Finally, an index of regularity, r, was

calculated as the entropy rate feature in this study:

r~1{ min (NER(L))

which ranged from 0 (maximum randomness) to 1 (maximum

regularity).

N Extending the entropy rate measure, the cross-entropy rate

(LX DY ) quantifies the entropy rate between two stochastic

processes [23]. This measure describes the predictability of a

data point in one signal given a sequence of current and past

data points in the other signal. First, both X and Y were

normalized, quantized, and coded using the same methodol-

ogy as for the entropy rate feature, yielding VX
L and VY

L ,

respectively, with 10ƒLƒ30. In addition, VX DY
L was con-

structed as follows:

w
X DY
i ~10L{1x̂xizL{1z10L{2ŷyizL{2z:::z100ŷyi

where bxixi and byiyi are the quantized samples of X and Y. Then, with

SEX (L), SEY (L), and SEX=Y (L) representing the Shannon

entropies of VX
L , VY

L , and VX DY
L , respectively, the normalized

cross-entropy of X given Y was computed as follows:

NCERX DY (L)~
SEX DY (L){SEY (L{1)zSEX (1)percX DY (L)

SEX (1)

where percX DY (L) is the percentage of the elements in VX DY
L that

occurred only once. Next, the uncoupling function was defined as

follows:

UFX ,Y (L)~ min NCERX DY (L),NCERY DX (L)
� �

Finally, the following index of synchronization was computed

and utilized as the cross-entropy rate feature in this study:

LX DY ~1{ min UFX ,Y (L)ð Þ ð8Þ

which ranged from 0 (X and Y are completely uncoupled) to 1

(perfect synchronization).

In the frequency domain, we consider the following three

features [27]:

N The peak frequency associated with the maximum spectral

power was determined by the following:

fp~ arg max
f [0,fmax�

DFX (f )D2 ð9Þ

Table 1. A summary of statistical features extracted from the
raw and envelope CBFV signals.

Raw Envelope

L-MCA R-MCA L-MCA R-MCA

s 0:25+0:14{ 0:24+0:14{ 13:3+3:25 12:9+2:72

j ({1:91+19:1)�{ (1:69+13:1)�{ 0:90+0:32# 0:90+0:32#

c 3:01+0:41{ 2:99+0:39{ 3:77+0:85# 3:72+0:93#

CCL{R 30:4+3:25ð Þ�{ 0:98+0:01

An asterisk denotes multiplication by 10{4 .
{statistical differences between the envolope- and raw signal based features.
#sex-based differences.
s~ standard deviation; j~ skewness; c~ kurtosis; CCL{R = cross-correlation
coefficient.
doi:10.1371/journal.pone.0055405.t001

Table 2. Information-theoretic features extracted from the
collected CBFV signals.

Raw Envelope

L-MCA R-MCA L-MCA R-MCA

LZC 0:71+0:04{ 0:69+0:03 0:68+0:02# 0:68+0:02#

r 0:30+0:14{ 0:33+0:12{ 0:06+0:05 0:06+0:05

LLDR 0:33+0:11{# 0:10+0:04

{statistical differences between the envolope- and raw signal based features.
#sex-based differences.
LZC~ Lempel-Ziv complexity; r~ entropy rate; LLDR = synchronization index.

doi:10.1371/journal.pone.0055405.t002
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where FX (f ) is the Fourier transform of the signal X and fmax

in this study was 4410 Hz.

N The centroid frequency was computed as follows:

fc~

Ð fmax
0

f DFX (f )D2 dfÐ fmax
0

DFX (f )D2 df
ð10Þ

N The bandwidth of the spectrum was defined as follows:

B~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ fmax
0

f {f̂f
� �2

DFX (f )D2 dfÐ fmax
0

DFX (f )D2 df

vuuut ð11Þ

Lastly, we consider typically used time-frequency features (e.g.,

[28], [29]):

N The relative energy in different time-frequency bands was

calculated based on the wavelet transform. A 10-level discrete

wavelet decomposition of the signal using the discrete Meyer

wavelet was used (e.g. [28], [29]). The resulting decomposition

is given by WTX ~½a10 d10 d9 . . . d1�, where a10 are the

approximation coefficients and dk is the kth-level detail

coefficients. Then, the relative energy from the approximation

coefficients can be computed as follows:

Ja~
DDa10DD2

DDa10DD2z
P10

k~1 DDdk DD2
|100% ð12Þ

where DD.DD is the Euclidean norm. Using the detail coefficients

at the kth-level, the relative energy for that level can be

obtained as:

Jdk
~

DDdk DD2

DDa10DD2z
P10

k~1 DDdk DD2
|100% ð13Þ

N A wavelet entropy given by [29]:

V~{Ja10
log2 Ja10

{
X10

k~1

Jdk
log2 Jdk

ð14Þ

measures the degree of time-frequency based order-disorder of

the signal. In other words, more complex time-frequency

structures (e.g., a linear FM signal) will have a higher value of

V than those structures represented for a simple sinusoidal

signal.

Statistical Tests
To test for statistical differences on the extracted features, we

used non-parametric tests such as the Kruskal-Wallis (e.g., [30])

and the Mann-Whitney test (e.g., [31]) test. We also used a linear

regression test to examine any dependence between the extracted

features and age/BMI, with the null hypothesis being that there is

no linear relationship (i.e., the slope is zero).

Results

The next few subsections summarize the results of the analysis.

The results are grouped according to the type of the feature. It

should be mentioned that none of the extracted features were

affected by age or BMI (linear regression test, pw0:05). Also, none

of the participants experienced great variations in ETCO2 values

(33:2+2:01 mmHg) and the values were not affected by age or

BMI (linear regression test, pw0:05).

Statistical Features
Table 1 summarizes the results for statistical features. There

were no statistical differences for any of the parameters between

left and right sides for either the raw signals or for the envelope

signals (pw0:63). However, it can be observed that the raw CBFV

signals and the envelope CBFV signals have completely different

statistical characteristics due to their appearances in the time

domain (please see Figure 2).

The envelope signals had a greater spread of amplitude values

as observed differences in values of standard deviations (s). The

skewness (j) values also showed that the amplitude distributions for

the envelope were more to the right side from their mean values in

comparison to the raw CBFV signal. This was reinforced by the

kurtosis values (c) which showed that the amplitude distributions

for the envelope signals had more extreme values in comparison to

the amplitude distributions for the raw CBFV signals. Further-

more, the skewness (j) and the kurtosis (c) on both sides were

affected by sex when considering the envelope CBFV signals

(pvv0:01). In particular, when considering R-MCA,

j~1:14+0:23 and c~4:38+0:85 for males, and

j~0:66+0:18 and c~3:06+0:36 for females. Similarly, when

considering L-MCA, j~1:12+0:27 and c~4:28+0:85 for

males, and j~0:67+0:19 and c~3:26+0:47 for females.

However, sex did not impose any statistical differences on these

features from the left or right MCA for the raw CBFV signals. The

most striking difference is almost zero correlation between the raw

CBFV signals from the left and right MCAs. On the other hand,

the envelope signals were very highly correlated.

Information-theoretic Features
The information-theoretic features for the considered signals are

shown in Table 2. There were no statistical differences between

left and right sides for either the raw or envelope CBFV signals

(pw0:41).

The predictability of the signal as measured by LZC showed

that the raw and the envelope signals from R-MCA were not

statistically different (p~0:12), while LZC from L-MCA were

statistically different for the raw and the envelope signals. The raw

CBFV signals from L-MCA were less predictable than the signals

from L-MCA based on the envelope signals. Furthermore, LZC

was influenced by sex for both left (females: LZC~0:69+0:02;

males: LZC~0:67+0:02; p~0:03) and right (females:

LZC~0:67+0:02; males: LZC~0:69+0:01; p~0:01) sides

when considering the envelope CBFV signals.

When considering the regularity of the signals as measured by r,

it was interesting to note that the raw CBFV signals had

statistically higher regularity than the envelope CBFV signals

(pv0:01). In other words, the consecutive data points in the raw

CBFV signals were more related to each other than the

consecutive points in the envelope signals. In fact, the envelope

CBFV signals are almost random given the very low r values.

The synchronization index, LLDR, was statistically higher for the

raw CBFV signals than for the envelope signals (pv0:01). That is,

the left and right raw CBFV signals have more common

Resting-State Functional Transcranial Doppler
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information than the left and right envelope signals. However,

there were sex-based differences for the raw signals (females:

LLDR~0:28+0:06; males: LLDR~0:39+0:14; p~0:04).

Frequency Features
The considered spectral features are summarized in Table 3,

while the power spectral densities of the raw and envelope signals

from both sides are depicted in Figure 3. No statistical differences

were observed between the features stemming from the left and

right MCA (pw0:31). The features stemming from the raw CBFV

signals had statistically higher values than the features based on the

envelope signals (pv0:01). Interestingly, when considering the raw

CBFV signals from R-MCA, the spectral centroid, fc, was

statistically different between males (fc~856+165 Hz) and

females (fc~1106+202 Hz) (pv0:01). Similarly, there were sex-

based statistical differences on the peak frequency, fp (females:

fp~1021+318 Hz; males: fp~665+200 Hz; pv0:01). The

recordings from L-MCA or based on the envelope CBFV signals

were not affected by sex.

Time-frequency Features
The time-frequency features are summarized in Table 4. Time-

frequency representations of a few seconds of sample raw and

envelope signals are shown in Figure 4. The wavelet entropy, V,

was statistically higher for the raw signals than for the envelope

signals. Additionally, there were sex-based differences (females:

V~0:29+0:07; males: V~0:40+0:10) in V for the envelope

signals from R-MCA (p~0:02). When considering the distribution

of energy in different time-frequency bands, it can be noticed that

the envelope signals have almost all of their energy concentrated in

a very low-frequency region, while the raw CBFV signals have

most of their energy concentrated in higher frequency bands. The

energy concentration in the low-frequency region for the envelope

signal from R-MCA was affected by sex (females:

Ja10
~96:6+0:94; males: Ja10

~95:1+1:66; p~0:03). On the

Figure 3. Spectral content of the raw and envelope signals from a single subject obtained through estimates of power spectral
densities (PSD) using the Welch method: (a) a PSD of a raw CBFV from R-MCA; (b) a PSD of a raw CBFV from L-MCA; (c) a PSD of the
envelope CBFV from R-MCA; and (d) a PSD of the envelope CBFV from L-MCA.
doi:10.1371/journal.pone.0055405.g003

Table 3. Frequency characteristics considered in this study.

Raw Envelope

L-MCA R-MCA L-MCA R-MCA

fc (Hz) 983+218{ 981+220{# 6:44+3:01 5:47+2:02

fp (Hz) 771+247{ 843+317{# 0:99+0:79 1:16+0:67

B (Hz) 527+99:7{ 511+82:2{ 9:38+2:64 8:59+2:18

{statistical differences between the envolope- and raw signal based features.
#sex-based differences.
fc~ spectral centroid; fp~ peak frequency; B~ bandwidth.

doi:10.1371/journal.pone.0055405.t003

Resting-State Functional Transcranial Doppler
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other hand, the raw CBFV signals are mostly concentrated

(around 99% of energy) in the higher-frequency regions (from 6th

to 10th decomposition levels). Similarly as for the envelope signals,

the energy concentration for the raw CBFV signals from R-MCA

was affected by sex. In particular, the following features were

affected: Jd9
(females: Jd9

~39:0+11:0; males: Jd9
~19:3+12:0;

pv0:01), Jd8
(females: Jd8

~40:2+10:7; males:

Jd8
~49:1+6:70; p~0:03) and Jd7

(females: Jd7
~13:1+4:28;

males: Jd7
~25:0+12:0; p~0:02).

Discussion

The statistical analysis of the resting-state fTCD signals yielded

interesting results. First, the statistical features considered here

were greatly affected by sex when considering the envelope CBFV

signals. In particular, the shape of probability distributions of

amplitudes were affected by sex as shown by sex-based effects on

kurtosis and skewness. On the other hand, sex did not play any

significant role while examining these statistical features from the

raw CBFV signals. Second, while the envelope-based signals were

greatly correlated, the raw CBFV recordings from two L-MCA

and R-MCA exhibited very low correlation. In other words, the

signals from these two arteries have very different temporal

structures. However, interestingly enough, none of the considered

features were statistically different between left and right sides.

This is a very important finding when considering the applications

of fTCD such as cerebral laterilazation during different cognitive

tasks (e.g., language tasks considered in [32]).

The information-theoretic analysis of the recordings showed

that both the raw and the envelope CBFV signals have almost

identical predictability as measured by LZC. However, LZCs were

statistically different for recordings from L-MCA, which were still

around 0.7. This indicates that the signals from the both groups

are equally complex. That is, the sources producing both groups of

signals have equal complexity, which in our case, it is an identical

source. However, when considering the entropy rate (r), we found

that the envelope CBFV signals have very low entropy rate. In

fact, their entropy rates are very close to zero, which indicates a

random process. On the other hand, the entropy rates for the raw

CBFV signals were significantly higher due to the fact that raw

CBFV signals are composed of multiple weighted sinusoid signals

(i.e., a pure single-frequency sinusoid signal can have very high

value for the entropy rate). Additionally, the raw CBFV signals

also had higher values for the synchronization index, LLDR. From a

physiological point of view, it means that the raw recordings from

L-MCA and R-MCA contained more mutual information than

the envelope signals. This is a very important finding as the

temporal structures of these raw signals are very different as

demonstrated by very low correlation between them. On the other

hand, it was interesting to observe that the envelope CBFV signals

had almost identical temporal structure, but the contained mutual

information is significantly lower than for the raw CBFV signals.

Figure 4. Time-frequency representations (TFR) of the raw and the envelope signals form a single subject: (a) a TFR of a raw CBFV
from R-MCA; (b) a TFR of a raw CBFV from L-MCA; (c) a TFR of the envelope CBFV from R-MCA; and (d) a TFR of the envelope CBFV
from L-MCA.
doi:10.1371/journal.pone.0055405.g004
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Lastly, male participants had higher LLDR values than the female

participants when considering the raw CBFV signals. However,

these differences may be due to the limited number of subjects as

p~0:04.

The frequency analysis of the recorded signals showed that the

raw CBFV signals had a significantly higher frequency content

than the envelope CBFV signals. While the envelope CBFV

signals are typically low-frequency signals, the raw CBFV signals

are usually concentrated around frequencies close to 1000 Hz.

Therefore, by analyzing the raw CBFV signals, we may avoid

considering the very low-frequency physiological artifacts that can

impact the envelope CBFV signals and avoid any pre-processing

of these signals (e.g., [33]). Furthermore, we observed that females

had a higher spectral content as measured by the peak and central

frequency for the raw CBFV recordings from R-MCA, but not

from L-MCA. This resonates with [34], which found that females

had a slightly stronger flow in R-MCA than males. However, this

frequency shift was not observed for L-MCA or when using the

envelope CBFV signals from either sides.

The time-frequency analysis of the recorded signals showed that

the raw CBFV signals have significantly higher values for the

wavelet entropies than the envelope CBFV signals. This signifies

that the time-frequency structure of the envelope signals is simpler

and more ordered than the time-frequency structure of the raw

CBFV signals. This is clear from the energy concentration for

different bands shown in Table 4. The envelope signals have most

of their energy concentrated in the the low-frequency band,

whereas the raw signals have 99% of their energy concentrated

across several higher frequency bands. Furthermore, the sex-

differences observed in the frequency content of the raw

recordings from R-MCA can be also noticed in the several time-

frequency bands. These findings indicated that any changes in the

time-frequency content are actually due to the changes in the

spectral content of signals.

Lastly, the presented results demonstrated that the raw CBFV

signals should be considered in addition to the envelope CBFV

signals typically analyzed in many contributions (e.g., [3], [5], [6],

[7], [8], [9]) as these signals have completely different time,

frequency and time-frequency characteristics and provide a rich

source of information. Such information may be very valuable in

the further development of brain-to-computer interfaces or other

clinical applications of fTCD.

Conclusions
In this article, we characterized the resting-state fTCD using the

simultaneously acquired raw and envelope CBFV signals. Time,

frequency and time-frequency features were extracted from these

signals and compared. Specifically, the time structures of

recordings from L-MCA and R-MCA were strongly correlated

when considering the envelope signals, but had very low

correlation when considering the raw signals. On the other hand,

the raw signals had a higher level of mutual information in

comparison to the envelope signals. Frequency characteristics were

also different. We showed that the raw CBFV signals were

centered around 1000 Hz, while the envelope signals were

centered around 1 Hz. The raw signals also had their energy

concentration across several time-frequency bands, while the

envelope signals had strong energy concentration in the low-

frequency region (i.e., fully described by the approximation

coefficients of the wavelet transform). These results showed that

the raw CBFV signals have very different signal characteristics and

can contribute valuable information regarding cerebral blood flow.
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