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In external beam radiotherapy, one of the most common and reliable methods for 
patient geometrical setup and/or predicting the tumor location is use of external 
markers. In this study, the main challenging issue is increasing the accuracy of 
patient setup by investigating external markers location. Since the location of each 
external marker may yield different patient setup accuracy, it is important to assess 
different locations of external markers using appropriate selective algorithms. To 
do this, two commercially available algorithms entitled a) canonical correlation 
analysis (CCA) and b) principal component analysis (PCA) were proposed as input 
selection algorithms. They work on the basis of maximum correlation coefficient 
and minimum variance between given datasets. The proposed input selection 
algorithms work in combination with an adaptive neuro-fuzzy inference system 
(ANFIS) as a correlation model to give patient positioning information as output. 
Our proposed algorithms provide input file of ANFIS correlation model accurately. 
The required dataset for this study was prepared by means of a NURBS-based 
4D XCAT anthropomorphic phantom that can model the shape and structure of 
complex organs in human body along with motion information of dynamic organs. 
Moreover, a database of four real patients undergoing radiation therapy for lung 
cancers was utilized in this study for validation of proposed strategy. Final analyzed 
results demonstrate that input selection algorithms can reasonably select specific 
external markers from those areas of the thorax region where root mean square 
error (RMSE) of ANFIS model has minimum values at that given area. It is also 
found that the selected marker locations lie closely in those areas where surface 
point motion has a large amplitude and a high correlation.
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I. INTRODUCTION

In external beam radiotherapy, the final goal is to deliver 3D uniform dose to tumor volume  
while minimizing the dose to healthy surrounding tissues at the same time. In recent years, 
many efforts have been done on two substantial challenging issues to achieve a successful radio-
therapy: 1) tumor localization and delineation at treatment planning system and 2) dose delivery 
at beam irradiation system.(1) But degree of a success treatment is strongly depending on the 
accuracy of tumor localization as a major part of treatment planning process. Moreover, this 
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issue will be a serious concern for tumors located at thorax region due to semiregular motions 
caused by heartbeat, gastrointestinal, and especially breathing phenomena known as intrafrac-
tional organ motion error. Intrafractional organ motion error may lead to a significant uncertainty 
of tumor localization, which reduces treatment quality by increasing a great amount of dose 
received by surrounding tissues, which causes side effects at thoracic regions.(1) To compensate 
the effect of intrafraction motion error and to minimize target localization uncertainty, several 
studies have been performed, while some of them are now clinically available.(2-6) An older 
strategy associated with intrafractional motion error is defining a larger margin around gross 
target volume that includes tumor volume and its motion trajectory as internal target volume 
(ITV).(7) By this approach, a great amount of prescribed dose will be received by normal tis-
sues at near the ITV region that may produce serious side effects. Other clinically available 
strategies to compensate tumor motion errors are: 1) breath-holding,(8-11) 2) real-time tumor 
tracking,(12) and 3) respiratory gating.(13) Before treatment in external beam radiotherapy, target 
volume alignment in front of the therapeutic beam in the pretreatment step, known as patient 
geometrical setup, must be considered seriously.(14-24) In order to manage respiratory motion, 
several surrogates systems such as: spirometer,(5,25) strain gauge,(25) time-of-flight cameras,(26) 
and external markers(27) are utilized as a dataset providers for patient setup. It should be noted 
that these devices with synchronously captured internal dataset, based on correlation model, 
may also use during treatment for real-time tumor motion tracking.(12,13) In addition, the success 
of patient setup and then tumor motion tracking is strongly affected by the number and location 
of external markers. In most clinical applications while treating real patients, the location of 
external markers is chosen empirically; that is operator-dependent and can be a constraint due 
to missing optimum location. Moreover, few studies have been performed to mathematically 
investigate optimum location of external markers at the pretreatment step while patient position-
ing must be performed accurately. Dong et al.(15) performed a mathematical study to investigate 
optimum markers’ location during treatment using Bregman distance-based algorithm.

In the present study to find the best location of external markers for patient setup, two 
nonlinear strategies based on a) canonical correlation analysis (CCA),(28) and b) principal 
component analysis (PCA)(29) are proposed as an input selection algorithms. These algorithms 
were chosen due to their proven intrinsic robustness at data mining. The input selection con-
cept was introduced by  Samadi-Miyandoab et al.(30) as a dimensionality reduction strategy at 
data mining procedure. In this method, irrelevant features are detected and then removed to 
yield most effective reduced dataset for predictive model construction. Moreover, a compara-
tive study is done between two proposed algorithms taking into account the advantages and 
weakness points of each method that was comprehensively assessed in our recent study.(30) 
To implement of the proposed method, an adaptive neuro-fuzzy inference system (ANFIS) is 
utilized as responsible for aligning tumor volume in front of the therapeutic beam by giving 
tumor motion information. In fact, the proposed CCA and PCA input selection algorithms act 
as provider of ANFIS input and the best patient geometrical setup is estimated by means of an 
ANFIS model. Therefore, ANFIS is fed by motion information of those external markers that 
were already selected by proposed CCA and PCA input selection algorithms. In this study, the 
ANFIS model is proposed due to its robustness to combine the abilities of fuzzy systems with 
the numeric power of neural adaptive network systems. Moreover, since the degree of vari-
ability of our dataset is very high in different patients, ANFIS is optimal to estimate the best 
location of external markers with less error.

The required dataset used in this work has been extracted using the 4D XCAT anthropo-
morphic phantom developed by Dr. W.P. Segars and provided by NURBS. This validated 
phantom simulates the 3D anatomical shape of different organs of human body with accept-
able complexity and models motion of dynamic organs located in thorax region to mimic real 
respiratory and heart beat motion patterns.(31,32) In order to assess optimum location of exter-
nal markers, nine subregions have been defined uniformly on the thorax region of the patient 
body. Comprehensive studies were done during our recent studies, in which different aspects 
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of  six-degrees-of-freedom rototranslation of this phantom was investigated.(30,33) Furthermore, 
we utilized the database of four real patients with lung cancers undergoing radiation therapy 
to validate the simulated procedure.

In order to test the performance of proposed input selection algorithms at finding optimum 
markers location, root mean square error (RMSE) of ANFIS output was considered as a metric 
for quantitative evaluation. In this way, the RMSE of ANFIS model output for each segment 
that represent marker placement indicates the “importance degree” of that segment as optimum 
location. Moreover, the performance of the proposed strategy is compared with empirical meth-
ods that use clinically.(30) Final analyzed results represent that the implementing of these input 
selection algorithms can significantly improve patient geometrical setup errors in regard with 
to the conventional method performed empirically by operator. It is also found that the selected 
marker locations have a large amplitude and frequency, and a high correlation.

 
II. MATERIALS AND METHODS

A.  Database generation and its properties
In order to provide a validated dataset, a simulation study was performed using the NURBS-
based 4D XCAT anthropomorphic phantom that can model the shape and structure of complex 
organs in human body along with motion of dynamic organs such as are involved in breathing 
and heartbeat.(34) This phantom was chosen due to its validation and commercial availability.(31)  
XCAT is quite robust to simulate the human body with multiple resolutions and various anat-
omies due to combining the advantages of pixel-based and geometry-based analyses. This 
phantom enables user to change functional variables that control respiration, in order to gener-
ate deformable 4D CT models according to the real conditions of a typical patient that must be 
simulated. The main controllable parameters are: 1) motions of beating heart only, respiration 
only, or combined mode; 2) maximum diaphragm motion; and 3) maximum anterior–posterior 
expansion of the chest wall.(34) In this study, five different respiratory cycles were generated with 
reasonable breathing amplitude and frequency to mimic real respiratory patterns (Table 1). For 
instance, maximum anterior–posterior expansion of chest wall and time of respiratory period 
were determined using respiratory motion signals of real patients treated with the CyberKnife 
Synchrony system (Accuray Inc., Sunnyvale, CA ) at Georgetown University Medical Center 
(Washington, DC).

According to extracted database from the XCAT phantom, due to negligible displacement 
in left-right (LR) direction, this dimension was eliminated from total database and remaining 
motion data included both anterior–posterior (AP) and superior–inferior (SI) directions. Time 
interval between data acquisition steps required for each frame was assumed to be 25 ms. The 
proposed strategies were validated through simulated procedures by using the 4D CT database 
acquired from four patients as reference (Table 2).

Table 1. Characteristics of five different respiratory cycles created by XCAT phantom.

 Maximum  
 Anterior–Posterior Maximum Time of 
 Expansion of Chest Wall Diaphragm Motion Respiratory Period Breathing Cycle
 (cm) (cm) (sec) Number

 1.2 2 5 1
 0.7 1.7 5 2
 0.5 1.2 4 3
 1.3 2.2 6 4
 1 1.8 5.5 5
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In order to assess optimum location of external markers, nine subregions have been defined 
uniformly on the thorax region of patient body (Fig. 1). In other words, nine typical points 
from nine sub-regions were chosen onto the surface of the chest and abdominal regions, each 
of them representing external surrogates. The scheme of depicted points started from abdomi-
nal region with averagely 5 cm distance in vertical and horizontal direction (Fig. 1). As seen 
in this figure, the proposed spatial scheme of given points was divided into three areas: upper 
region, middle region, and lower region, respectively. It should be noted that the performance 
of the proposed strategy is compared with empirical methods, which are clinically available 
and suggested by prior studies.(30,33)

B.  The methodology of CCA, PCA selective algorithms, and the ANFIS model
The CCA and PCA input selection methods are introduced as useful available tools required at 
the data preprocessing stage of each data mining, in which the number of data points belong-
ing to the input dataset is reduced by removing irrelevant, redundant, or noisy data points. 
Therefore, most effective and remarkable data points obtained in this strategy can improve 
mining performance such as predictive accuracy and final results may obtained in a better 
assessment condition. In order to find the best location of external markers, two properties 
of the data set, 1) the maximum correlation coefficient and 2) minimum variance of external 
markers’ location, are considered among total available markers that are selected by CCA and 
PCA algorithms. To do this, the MATLAB software package (The MathWorks Inc., Natick, 
MA) was utilized. When optimum locations were chosen from among total markers locations, 
the motion information of selected markers are used as an input file of the ANFIS model for 

Table 2. Patients’ 4D CT data.

   Pixel Dimension   
 Patient Image Dimension (mm)

 Patient #1 512×512×169 0.97×0.97×2
 Patient #2 512×512×170 0.87×0.87×2
 Patient #3 512×512×187 0.78×0.78×2
 Patient #4 512×512×161 1.17×1.17×2

Fig. 1. The location of each external marker on the surface of phantom body. M1 = right upper lobe, M2 = middle upper 
lobe, M3 = left upper lobe, M4 = right middle lobe, M5 = xiphoid, M6 = left middle lobe, M7 = right lower lobe, M8 = 
navel upper, M9 = left lower lobe.
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verification of patient geometrical setup. On the other hand, the output of the ANFIS model can 
be used to discover two important factors: 1) the performance of each input selection algorithm, 
and 2) the importance degree of each marker location. 

Canonical correlation analysis (CCA) is a means to measure a linear relationship between 
two multidimensional variables. In statistics, CCA is a way of making sense of cross covariance 
matrices. If we have two vectors X = (X1, ..., Xn) and Y = (Y1, ..., Ym) of random variables, 
and there are correlations among the variables, then canonical correlation analysis will find 
linear combinations of the Xi and Yj which have maximum correlation with each other. The 
CCA is optimal way to respect correlations and at the same time to find a corresponding cor-
relation, in which the correlation matrix between the variables is diagonal and the correlations 
on the diagonal are maximized. In fact, the dimensionality of these new bases is equal to or 
less than the smallest dimensionality of the two variables.(35) By applying CCA algorithm, a 
small amount of data will be lost when more than 90% of canonical correlation of all markers 
is covered. Principal component analysis (PCA) is a statistical procedure that uses an orthogo-
nal transformation to convert a set of observations of possibly correlated variables into a set 
of values of linearly uncorrelated variables called principal components. PCA can be thought 
of as fitting N-dimensional ellipsoid to the data, where each axis of the ellipsoid represents a 
principal component. The number of principal components is less than or equal to the number 
of original variables. This transformation is defined in such a way that the first principal com-
ponent has the largest possible variance; that is, accounts for as much of the variability in the 
data as possible, and each succeeding component in turn has the highest variance possible under 
the constraint that it is orthogonal to the preceding components. The resulting vectors are an 
uncorrelated orthogonal basis set. The principal components are orthogonal because they are 
the eigenvectors of the covariance matrix, which is symmetric. PCA is sensitive to the relative 
scaling of the original variables. In other hand, PCA was implemented for three X, Y, and Z 
variables in order to reduce the number of inputs, and then the first principal component was 
utilized. After transformation, this transformation is defined in such a way that the first principal 
component has the largest possible variance, and each succeeding component in turn has the high-
est variance possible under the constraint that it is orthogonal to the preceding components.(36)  
Moreover, in order to reduce the numbers of inputs to select markers, PCA was implemented 
and then the first principal component was utilized. By applying PCA algorithm, a small amount 
of data will be lost when the first component of all markers covers more than 90% of variance. 
PCA transforms the 3D motion data of external markers into a mono-dimensional signal, by 
projecting the three-dimensional coordinates in the principal component space.(29)

We developed the ANFIS model by implementing the fuzzy logic toolbox of the MATLAB.(37)  
ANFIS is presented as a powerful tool in modeling numerous processes by combining the abili-
ties of a fuzzy system with the numeric power of a neural network system. The fuzzy inference 
system of the ANFIS is based on Sugeno-type and membership functions generated by FCM 
data clustering algorithm in Gaussian form. In this study, we used the robustness of the ANFIS 
particularly as a correlation model for verification of patient geometrical setup where similar 
calculations with normal mathematical methods would be difficult or with less accurate. More 
information about the ANFIS model is shown in Table 3. Our ANFIS correlation model must 
be trained using dataset at synchronized form in training step. After configuration, the model 
is able to realign patient position in front of the therapeutic beam.

Figure 2 shows a schematic layout of 1) the PCA and CCA in data processing as an input 
selection algorithm, and 2) ANFIS correlation model configuration at pretreatment step and 
model performance during treatment. As depicted, when optimum external makers were 
 chosen automatically, their motion data was synchronized with patient position for verification 
of patient setup at the pretreatment step. In fact, the proposed CCA and PCA input selection 
algorithms provide the ANFIS input dataset and the best patient geometrical setup is estimated 
from ANFIS model output.
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III. RESULTS 

In order to test and evaluating the performance of proposed strategies for improving patient 
setup, the results were expressed by computing the root mean square error (RMSE) between 
benchmark data points and ANFIS model output as follows:

  (1)
 

where N is the number of predicted samples, Ai is ith data point representing real position infor-
mation and Pi is the ith predicted value of position given by ANFIS.

Table 3. The structure of the adaptive neuro-fuzzy interference system (ANFIS) model.

 Parameter Type

 And Method Product of Elements
 OR Method Probabilistic OR
 Implication Method Product of Elements
 Aggregation Method Sum of Elements
 Defuzzification Method Weighted Average
 Input Membership Function Gaussian

Fig. 2. Workflow of required process on input selection algorithms by CCA and PCA with ANFIS correlation model to 
verification of geometrical setup.
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Generally, each subregion of thorax and abdomen (Fig. 2) 
has its own degree of importance due to two major factors: 1) 
correlation of belonged external markers with corresponding 
reference configuration, and 2) its motion amplitude during 
breathing amplitude. This importance degree is increased when 
a large number of external markers from a typical subregion 
are selected by our proposed CCA and PCA input selection 
algorithms. Table 4 demonstrates the average amplitude and 
frequency between the external markers and reference data points 
over all four given patients. The amplitude varies from 2,200 to 
3,100 for all sessions. In addition, the maximum and minimum 
signal at each subregion of patient number 2 is observed in Fig. 3.

Based on the information emerging from Fig. 3, the impor-
tance degree belongs to the right lower lobe (M7) and left lower 
lobe (M9), where the maximum signals are extracted. At the same 
time, the minimum signal belongs to XIPHOID (M5) and navel 
upper (M8) that represent the negligible degree of importance. 
According to the results shown in Fig. 3 and Table 4, the i) maxi-
mum, ii) minimum, iii) average, and iv) frequency parameters 
obtained from each subregion (provided by each external marker) 
are different for each patient, uniquely. Moreover, these four 
parameters are highly affected by marker location. The maximum 
and minimum signal belongs to M7 and M5 markers, respectively. 

As seen from Table 4 and Fig. 3, the number of optimum 
external markers for a given region is selected by input selection 
algorithms. The selection process is repeated using CCA and PCA 
methods and then the summation of all chosen external markers 
at each subregion is calculated (Table 5). This summation value 
represents the importance degree of each region. At the CCA and 
PCA algorithms, which the high accuracy of high correlation 
coefficient and minimum standard deviations were taken into 
account. As seen in Table 5, M1, M3, M7, and M9 were selected. 
Furthermore, among four real patients, the averages of correlation 
coefficients and standard deviations are as: 0.98 ± 0.18 (M1), 
0.67 ± 0.23 (M2), 0.97 ± 0.20 (M3), 0.97 ± 0.32 (M4), 0.67 ± 
0.21 (M5), 0.96 ± 0.30 (M6), 0.98 ± 0.21 (M7), 0.67 ± 0.21 (M8), 
and 0.97 ± 0.19 (M9). Correlation coefficients calculated for 
M4 and M6 are closer to M1, M3, M7, and M9, but with larger 
fluctuation. Moreover, correlation coefficients of M2, M5, and 
M8 are relatively small, but in an acceptable range. Therefore, 
it’s worth mentioning that the amount of correlation coefficient is 
affected by breathing patterns and external markers location. The 
other results can be observed in pretreatment step from Table 4; 
that is, maximum amplitude and frequency in the right middle 
lobe (M4), left middle lobe (M6), right lower lobe (M7), and left 
lower lobe (M9) respectively, but, based on Table 5, represented 
by using CCA and PCA methods, the selected markers are M1, 
M3, M7, and M9 — high accuracy of high correlation coefficient 
and minimum standard deviations. In other words, the average 
of the correlation coefficients calculated and standard deviations 
for four real patients indicated the markers selected (M1, M3, 
M7, and M9) monitors accuracy of input selection algorithms. Ta
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Moreover, we compared our proposed strategy with currently used empirical methods and 
investigated interfraction motion error.

The result of CCA and PCA input selection algorithms used to select optimum external mark-
ers (Fig. 4). The motion dataset of selected markers was utilized as an input file for the ANFIS 
model automatically, for real-time verification of the geometrical setup. Figure 4 illustrates 
RMSE calculated between ANFIS model output and corresponding reference data points.(30) As 
shown, a comparison was done in different modes: 1) implementing input selection models in 
combination with ANFIS model, 2) ANFIS model by using all markers dataset, and 3) ANFIS 
model by using motion information of given external markers at each upper, lower, and middle 
regions, respectively.

 

Fig. 3. The maximum and minimum signal in each region of Patient 2 of the skin surface during the respiratory cycle.

Table 5. Result of input selection algorithms (CCA and PCA model) and selected external markers.

	 Average	Correlation	Coefficient
 Number of Markers CCA Model PCA Model Selected Markers

 M 1 0.99 0.99 a

 M 2 0.57 0.67 b

 M 3 0.99 0.99 a

 M 4 0.72 0.96 b

 M 5 0.46 0.67 b

 M 6 0.72 0.96 b

 M 7 0.99 0.99 a

 M 8 0.57 0.67 b

 M 9 0.99 0.99 a

a Selected external markers.
b Unselected external markers.
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IV. DISCUSSION

In radiation treatments, tumors located in thorax region of a patient body move mainly due 
to respiration. This motion is problematic during therapeutic beam irradiation, and may result 
in undesirable dose distribution in tumor volume and also deliver high doses to healthy non-
target tissues. The motion error is due to 1) breathing phenomena (known as intrafractional 
error), and 2) patient positioning (known as interfractional error) while aligning tumor volume 
against the therapeutic beam. To compensate intrafractional motion error, several strategies may  
be implemented, such as 1) breath-holding, 2) real-time target tracking, and 3) respiratory 
gating.(30) At the pretreatment step, serious concerns arise due to interfractional motion error 
between each fraction of the treatment process that reduce the accuracy of patient setup. In 
modern radiotherapy, the success of a treatment strongly depends on the accuracy of patient 
geometrical setup. One strategy for patient positioning is using external markers on the thorax 
region of the patient body. Therefore, the markers’ location in external radiotherapy is impor-
tant and challenging during patient setup. In most clinical applications, the location of external 
markers is chosen empirically; that is, operator-dependent.

In this study to find the optimum spatial pattern of external markers onto thorax skin, two 
common available nonlinear strategies were proposed to select the best location of external mark-
ers, intelligently. These strategies are on the basis of CCA and PCA input selection algorithms 
that work by means of maximum correlation coefficient and minimum variance parameters 
over total number of available locations for external markers. The proposed methods were 
tested through simulation studies using the verified NURBS-based 4D XCAT anthropomorphic 
virtual phantom to provide the required dataset as if from the breathing pattern of a real patient. 
Moreover, the proposed strategy was validated using the reference 4D CT dataset from four real 
patients. Nine external markers on the thorax surface were taken into account by this phantom 
and real patient to simulate external motions along with a corresponding reference configuration 
(Fig. 1). The motion dataset of selected markers were utilized for feeding an ANFIS model to 
estimate patient geometrical setup, accordingly.

Based on the results emerged from Fig. 3 and Table 4, the most important subregions as 
optimum marker placement are right upper lobe, left upper lobe, right lower lobe, and left 

Fig. 4. The results illustrates RMSE calculated between implementing input selection models in combination with ANFIS 
model, ANFIS model using all-markers dataset and ANFIS model, by using motion information of given external markers 
at each upper, lower, and middle region and corresponding reference configuration.
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lower lobe, chosen by the proposed input selection algorithms. In other words, these chosen 
subregions have the highest importance degree, whereas middle areas with negligible values are 
far away from participation as external markers location. Also, based on the results reported by 
Ehrhardt et al.(38) and Werner et al.,(39) the maximum displacement of the skin surface during 
the respiratory cycle of patient occurs in the border areas.

Correlation between the motion of external markers and reference point may be affected 
by several factors, including patient characteristics, marker locations, and breathing pattern. It 
should be noted that a single external marker cannot provide sufficient and reliable information 
for patient setup, while a composite signal generated from the motion information of multiple 
external makers may provide an excellent and reliable setup with less error as demonstrated 
in this work. Furthermore, the importance degree of each subregion is increased when a large 
number of external markers from a typical area are selected by our proposed input selection 
algorithms. As shown in Table 4 and Fig. 3, the selected M4, M6, M7, and M9 markers move 
with high amplitudes and frequency. But based on results of the CCA and PCA algorithms 
reported at Table 5, the external markers M1, M3, M7, and M9 are in the most important sub-
regions with high correlation and minimum variance. Moreover, it’s worth mentioning that the 
border areas have the highest degree of importance, whereas middle areas with lower values 
are far away from participation as external markers. The performance accuracy of the ANFIS 
model configured by different external markers chosen by different input selection algorithms 
represents the best opportunity for finding optimum external markers. Therefore, it is concluded 
that the input selection algorithms work reasonably well for finding the best location of external 
markers, and may be preferred to the conventional clinical method that is done empirically, 
leading to minimization of interfraction motion errors in real patients.

 
V. CONCLUSION

In this study, we used a 4D XCAT phantom and real patients to investigate input selection 
algorithms to find optimum external marker locations that have the best correlation with cor-
responding reference configuration. In addition, the results of the model were compared with 
our previous reports concerning patient positioning at external beam radiotherapy.(30) Based on 
Table 5, we found that the input selection algorithms selected best locations of external markers 
(M1, M3, M7, and M9) during patient setup using ANFIS algorithm. Also, the technique was 
validated through simulated activities by using reference 4D CT data acquired from four subjects.
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