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A B S T R A C T

Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators.
These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H2O2-chloride system of acti-
vated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlori-
nated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic
acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial
cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we
synthesized a ‘clickable’ alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent
compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA
in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its
alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content,
and activated transcription and secretion of interleukin (IL)−6 as well as IL-8. 2-ClHA disrupted the mi-
tochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER
kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis
and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our
data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have im-
plications in inflammation-induced BBB dysfunction.

1. Introduction

The neurovascular unit separates most regions of the brain from the
peripheral circulation to maintain the specialized central nervous
system (CNS) micromilieu [1]. Brain microvascular endothelial cells
(BMVEC) form the morphological basis of the blood-brain barrier (BBB)

by the formation of tight junction (TJ) and adherens junction com-
plexes [2]. These junctional complexes inhibit paracellular leakage and
maintain CNS homeostasis via polarized expression of transporter sys-
tems taking a central biochemical gate-keeping function at the BBB
[3,4].

Under inflammatory conditions BBB function is compromised and
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can aggravate neuronal dysfunction [5]. Many of the pathways that
interfere with BBB and neuronal function converge on the formation of
reactive species [6]. This is of importance since TJ proteins are sensitive
to alterations of the intracellular redox status [7] and oxidative stress
induces a downregulation of the TJ protein occludin and disrupts the
cadherin-catenin complex in brain endothelial cells [8]. In cere-
brovascular diseases and stroke reactive oxygen species (ROS) can in-
hibit cerebral blood flow and impact barrier function [9–12]. Ad-
ditionally, oxidative stress-induced activation of matrix
metalloproteinases (MMPs) and fluid channel aquaporins promote
leakiness of the BBB and vascular edema [13].

During earlier work we could show pronounced BMVEC barrier
dysfunction in response to the chlorinated fatty aldehyde 2-chlor-
ohexadecanal (2-ClHDA) that is generated during endotoxemia [14,15].
2-ClHDA is formed through attack of plasmalogens (ether phospholi-
pids) by hypochlorous acid/hypochlorite (HOCl/OCl-) [16,17] gener-
ated via the myeloperoxidase (MPO)-H2O2-Cl- system of activated
phagocytes [18]. Under physiological conditions MPO is part of the
innate immune system [19], however, under chronic inflammatory
conditions MPO is considered a disease modifier [20]. MPO-derived

oxidants have been shown to contribute to atherosclerosis and plaque
instability [21–23], cardiac dysfunction [24], or diseases with a neu-
roinflammatory component [25]. The involvement of MPO in barrier
dysfunction was also demonstrated during bacterial meningitis [26,27].
MPO is expressed in demyelinated lesions in Multiple Sclerosis (MS) in
humans and rodents [28]. In line, pharmacological inhibition of MPO
reduced the severity of clinical symptoms in a murine MS model [29].
In response to systemic lipopolysaccharide (LPS) administration MPO
levels in mouse brain are elevated and accompanied by decreased brain
plasmalogen content and concomitant formation of 2-ClHDA [14]. In
line with deleterious effects of MPO-generated 2-ClHDA [15], the MPO
inhibitor N-acetyl lysyltyrosylcysteine amide ameliorates brain damage
in a murine model of stroke [30] and counteracts BBB damage in a
murine model of MS [31].

The electrophile 2-ClHDA impairs protein function by covalent
modification, thereby triggering cytotoxic and adaptive responses that
are typically associated with oxidative stress [32]. Consequently, con-
version of (reactive) aldehydes to their corresponding alcohol and/or
carboxylic acid analogues via the fatty alcohol cycle was considered as
a protective pathway [33]. The Ford group has first demonstrated that
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Fig. 1. NICI-GC-MS characterization of the PFB-ester derivatives of 2-ClHA and 2-ClHyA. 2-ClHA and 2-ClHyA were converted to the corresponding PFB ester derivatives in acetonitrile
containing N,N′-diisopropylethylamine. Structure and proposed fragmentation, elution profile, and NICI mass spectra of the (A) 2-ClHA and (B) 2-ClHyA PFB ester derivatives are shown
in the upper, middle, and lower panels, respectively.
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2-ClHDA is oxidized to 2-chlorohexadecanoic acid (2-ClHA) within this
metabolic pathway [34]. The same group has shown that 2-ClHA ac-
cumulates in activated monocytes and induces apoptosis through ROS
formation and endoplasmic reticulum (ER) stress pathways [35].

During the present study we synthesized and analytically char-
acterized an alkyne derivative of 2-ClHA, namely 2-chlorohexadec-15-
yn-1-oic acid (2-ClHyA) that is accessible to copper-catalyzed cy-
cloaddition reactions. We investigated subcellular distribution using
conventional confocal laser scanning microscopy and superresolution
structured illumination microscopy (SIM), followed by characterization
of ER- and mitochondria-specific cellular responses. Our data identify 2-
ClHA as an inflammatory lipid mediator that interferes with protein
palmitoylation and compromises ER- and mitochondrial functions in
the human brain endothelial cell line hCMEC/D3.

2. Material and methods

A detailed Materials and Methods section describing synthetic and
analytical procedures, cell culture, MTT and ECIS analyses, click-
chemistry and subcellular colocalization studies [32], ATP measure-
ments [36], metabolic labelling procedures, Western, FACS and qPCR
analyses, ELISA and statistical data analysis is provided in the SUP-
PLEMENT.

3. Results

As a first step we synthesized 2-ClHA and 2-ClHyA containing a
terminal alkyne group suitable as click-chemistry scaffold [32]. 2-ClHA
and the clickable orthologue 2-ClHyA were synthesized from 2-ClHDA
or 2-ClHDyA using oxone as the oxidant [37]. The resulting products
were characterized by NICI-GC-MS as PFB-ester derivatives (structures
given in Fig. 1A and B, upper panels). The PFB-esters eluted as single
peaks under the analytical conditions used (Fig. 1A and B, middle pa-
nels). The molecular ions (M-) at m/z 469.9 and 465.9 were un-
detectable under the chromatographic conditions employed (Fig. 1A
and B, lower panels). The intensity ratios of the diagnostic fragment
ions at m/z 289.2/291.2 and 285.2/287.2 (proposed structures are
shown in Fig. 1A and B, upper panels) of approx. 3:1 demonstrate the
presence of two chlorine isotopes (35Cl/37Cl) in the analyte. The addi-
tional fragments at m/z 255.2 and 251.2 result from chlorine abstrac-
tion at C2 of the acyl fragments.

To ensure that 2-ClHA and its alkyne analogue 2-ClHyA display si-
milar effects on hCMEC/D3 cell function MTT assays and impedance
measurements were performed (to avoid trapping of chlorinated fatty
acids by serum proteins all experiments were conducted with serum-
starved cells). These experiments revealed significantly decreased MTT
reduction at 8 and 24 h (Fig. S1A). Endothelial barrier function was
monitored in real time using the ECIS system. While DMSO (vehicle)
and HA (10 µM) was without effect, 2-ClHA and 2-ClHyA time depen-
dently compromised barrier function (4 kHz) and monolayer integrity
(64 kHz) in a comparable manner (Fig. S1B).

Following copper-dependent cycloaddition with N3-TAMRA sub-
cellular localization of 2-ClHyA was visualized by two approaches,
namely cLSM and superresolution SIM. During cLSM mainly peri-
nuclear colocalization of the 2-ClHyA-TAMRA adduct with Alexa488-
labelled anti-calnexin (used as ER membrane marker) was observed
(Fig. 2A). In more peripheral areas TAMRA fluorescence was also de-
tected as isolated red fluorescence. Using superresolution SIM (partial)
colocalization of the 2-ClHyA-TAMRA adduct with a genetically en-
coded ER-targeted fluorescent ATP sensor [36] (Fig. 2B). Also SIM data
suggested that 2-ClHyA is not exclusively detected together with the ER
marker. Indeed, cLSM revealed accumulation of 2-ClHyA in mi-
tochondria as shown by colocalization of 2-ClHyA-TAMRA and Alexa-
labelled anti COX IV (Fig. 2C). Superresolution SIM unveiled that 2-
ClHyA-TAMRA accumulates at the inner mitochondrial membrane and
within the matrix of mitochondria (Fig. 2D).

We then moved on to establish consequences of 2-ClHA on ER- and
mitochondrial function using hCMEC/D3 cells. Since 2-ClHA accumu-
lates in the ER, we reasoned that 2-ClHA could affect protein-S-palmi-
toylation in a similar way as shown for 2-bromopalmitate (2-BrHA), a
commonly used chemical inhibitor of protein palmitoylation [38]. To
test this hypothesis cells were metabolically labelled with HyA (25 µM;
Fig. 3A; upper panel). In the absence of 2-ClHA several protein bands of
different molecular mass were labelled. Coomassie stained gels (to ac-
count for equal loading) are shown in the middle panels. Quantitation
of fluorescence intensities (Fig. 3A; lower panel) indicates that in the
presence of equimolar 2-ClHA concentrations protein acylation with
HyA was reduced by 60% indicating that 2-ClHA interferes with protein
palmitoylation. In a reverse experimental approach cells were labelled
with 2-ClHyA (25 µM) and incorporation was competed with HA (5, 15,
and 25 µM; Fig. 3B; upper panel). The Coomassie-stained gel is shown
in the middle panel as loading control. In these experiments target
protein labelling by 2-ClHyA was efficient but competition by HA was
low (approx. 20% at 15 and 25 µM; Fig. 3B lower panel). This indicates
covalent alkylation rather than formation of a labile thioester bond.

Aberrant protein palmitoylation induces ER stress, a pathway det-
rimental for brain endothelial barrier function [39]. Incubation of
hCMEC/D3 cells with 2-ClHA resulted in phosphorylation of eIF2α
starting 4 h post treatment, while total eIF2α levels remained un-
changed (Fig. 4A). In line, expression of ATF4, a target gene of eIF2α,
was increased by 2-ClHA when compared with untreated or vehicle-
treated cells. In concert with eIF2α phosphorylation and upregulated
ATF4 expression, 2-ClHA induced expression of the cell death executor
CHOP. In parallel, expression of a central ER stress modulator and
major chaperon, BiP (also termed GRP78) was upregulated after 24 h of
cell treatment with 2-ClHA. Densitometric evaluation is shown in Fig.
S2. Taken together, these results demonstrate that ER stress-related
proteins are increased in response to 2-ClHA.

BiP contributes to protein folding by binding unfolded proteins in an
ATP-dependent manner [40]. As 2-ClHA induced ER stress, we hy-
pothesized that it also alters the ATP concentration within the ER lumen
([ATP]ER). To determine effects of 2-ClHA on [ATP]ER in single cells we
used a genetically encoded ER targeted, Förster resonance energy
transfer (FRET)-based ATP probe (ERAT), which was developed re-
cently [36]. These measurements revealed that 2-ClHA (but not HA)
induced a decrease in the FRET ratio signal of ERAT by 40%, indicating
significantly diminished [ATP]ER in cells that were treated with 2-ClHA
(Fig. 4B).

Inflammatory pathways in the CNS are linked to the ER stress re-
sponse [41]. A previous study demonstrated the involvement of the pro-
apoptotic transcription factor CHOP (an ATF4 target gene) in the reg-
ulation of pro-inflammatory cytokine secretion through intermediate
NF-kB activation [42]. In line with this study, we found that treatment
of hCMEC/D3 cells with 2-ClHA increased gene expression of IL-6 and
IL-8 four- and forty-fold over baseline levels, respectively (Fig. 5A,B).
Maximum upregulation of IL-6 was observed at 8 h while IL-8 was al-
ready fully induced at 4 h. Cytokine analysis in the cellular super-
natants by ELISA confirmed the upregulation of IL-6 and IL-8 on protein
level (Fig. 5C,D).

Unmitigated ER stress can induce mitochondrial dysfunction and
culminate in apoptosis to eliminate irreversibly damaged cells via
apoptotic pathways [43]. These pathways are linked to a disturbed
mitochondrial Ca2+ homeostasis, disruption of the mitochondrial
membrane potential, and activation of pro-apoptotic caspases [44].
Analysis of the mitochondrial membrane potential (Ψm) by cLSM using
TMRM demonstrated that 2-ClHA caused a depolarization of Ψm in-
dicating the induction of mitochondrial dysfunction (Fig. 6A).

To detect potential pro-apoptotic effects vehicle and 2-ClHA-treated
cells were stained with Annexin V/PI and analyzed by flow cytometry.
DMSO was without effect on early and late apoptosis, while 2-ClHA
increased the percentage of early apoptotic cells from 24.7% to 47.6%;
in parallel late apoptotic cells increased from 14% to 23% (scatter plots
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Fig. 2. 2-ClHyA is detected in the ER and mitochondria of hCMEC/D3 cells. (A) Cells were treated with 2-ClHyA (25 µM, 30 min), fixed with para-formaldehyde, permeabilized with
Triton X-100 and clicked with N3-TAMRA. ER-labelling was performed with anti-calnexin antibody (1:100 in antibody diluent; 4 °C over night). Alexa 488-labelled goat anti-rabbit (1:300
in antibody diluent) was used as secondary antibody. Cells were visualized by cLSM. (B) Cells were transfected with a FRET-based ER-targeted ATP sensor plasmid (ERAT4.01) and then
treated with 2-ClHyA as described in (A). Cells were fixed, permeabilized, clicked with N3-TAMRA and visualized by SIM. (C, D) Cells were treated with 2-ClHyA as described in (A) and
then incubated with anti-COX IV antibody (1:100 in antibody diluent, 4 °C overnight). Alexa 488-labelled goat anti-rabbit (1:300 in antibody diluent) was used as secondary antibody.
Cells were visualized by cLSM (C) or SIM (D).
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are shown in Fig. S3; statistical evaluation in Fig. 6B). In line, 2-ClHA
activated caspase-3 (Fig. 6C), the convergence point of the extrinsic and
intrinsic apoptotic machinery [45] and induced PARP cleavage
(Fig. 6D; densitometric evaluations and statistical analyses are shown in
Fig. S4).

The final set of experiments aimed to test whether pharmacological
antagonism of PERK could suppress the inflammatory response and
inhibit the induction of apoptosis. Therefore, hCMEC/D3 cells were pre-
incubated with increasing GSK2606414 concentrations (0.01, 0.1, and
1 µM) and then received vehicle or 2-ClHA. Expression of ATF4 (which
is downstream of PERK and induces pro-apoptotic CHOP) was followed
by Western blot analysis. 2-ClHA-mediated ATF4 induction was atte-
nuated by 1 µM GSK2606414 (Fig. 7A, densitometric evaluation in
right bar graph). Real-time qPCR analyses demonstrated that
GSK2606414 attenuated 2-ClHA-induced gene expression of IL-6 and
IL-8 (Fig. 7B). GSK2606414 treatment also reduced IL-6 and IL-8 pro-
tein levels in the cellular supernatants (Fig. 7C). Finally, we addressed
the question whether PERK inhibition can restore 2-ClHA-induced cell
monolayer disintegration. Surprisingly, GSK2606414 did neither

mitigate barrier dysfunction (Fig. 7D) nor pro-caspase-3 processing
(Fig. 7E).

4. Discussion

MPO-mediated plasmalogen modification at the cerebrovascular
interface results in the generation of reactive species including chlori-
nated fatty aldehydes and -acids that compromise cell [15,32,35,46]
and organ [22,24] homeostasis. In the present study we have identified
uptake of 2-ClHyA into the ER and mitochondria of brain endothelial
cells. 2-ClHA interfered with palmitoylation, induced unresolved ER
stress and mitochondrial dysfunction, culminating in apoptosis. Our
data are in line with the fact that fatty acids are potent inducers of cell
stress in the inflamed endothelium [47].

Although ample evidence indicates that MPO-derived oxidants play
an important role in endothelial dysfunction [48] physiological re-
levance of 2-ClHA-induced BMVEC dysfunction is a major question
arising from our in vitro study. The Ford group has shown that 2-
chlorofatty acid levels in plasma of patients suffering from sepsis-
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Fig. 3. 2-ClHA interferes with protein palmitoylation in hCMEC/D3 cells. Cells were metabolically labelled with (A) hexadec-15-yn-1-oic acid (HyA; 25 µM, 37 °C, 4 h; 2-ClHA was used
as competitor) or (B) 2-ClHyA (25 µM, 37 °C, 4 h; HA was used as competitor). Cells were lysed and protein aliquots were subjected to click chemistry with N3-TAMRA, separated by SDS-
PAGE, and visualized using a Typhoon 9400 scanner (upper panels). Coomassie Brilliant Blue staining was used to validate equal lane loading (middle panels). Metabolic labelling
efficacy as a function of the corresponding competitor (fluorescence intensities are normalized to protein loading) is shown in the lower panels. Values are expressed as mean + SD.
(**,p<0.01; one-way ANOVA with Bonferroni correction).
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associated acute respiratory distress syndrome are higher as compared
to the control group (median concentrations 1.12 vs. 0.43 nM) [49]. At
higher concentrations (up to 10 µM as used during the present study) 2-
ClHA reduced pulmonary endothelial cell barrier function in vitro by
approx. 25%. This observation was accompanied by enhanced cell ad-
hesion molecule expression and increased neutrophil and platelet ad-
herence [49]. However, it is important to note that the experiments
described in [49] were performed in serum-containing medium (5%).
Therefore the serum-free conditions used during the present study
could generate a more ‘cytotoxic’ milieu since no 2-ClHA is bound by
serum constituents via e.g. S-alkylation reactions.

Septic encephalopathy is a multifactorial syndrome, which is char-
acterized as diffuse brain dysfunction in humans [50] and associated
with neutrophil accumulation and BBB dysfunction in mice [51]. Our
group could demonstrate that LPS-induced BBB dysfunction is accom-
panied by a decrease in plasmalogens while the corresponding MPO-
derived oxidation product 2-ClHDA accumulated in brains of LPS-in-
jected mice at a concentration up to 10 µM [14]. This is most probably a
result of neutrophil accumulation and MPO release in the cere-
brovasculature of mice in response to a systemic LPS injection [15].
Within this pathophysiological setting, BMVEC-adhering leukocytes
could affect endothelial function via 2-ClHA production since both
neutrophils and monocytes are able to produce high concentrations (in
vitro up to 20 µM) of 2-ClHA [34,35]. Finally, primary BMVEC and the

hCMEC/D3 cell line used during the present study are able to convert
exogenous 2-ClHDA to 2-ClHA [32,52].

To determine intracellular localization of 2-ClHA we synthesized an
alkyne-containing 2-ClHA analogue that allows covalent attachment of
N3-containing reporter fluorophores by copper-catalyzed Huisgen 1.3-
dipolar cycloaddition. During the synthesis of 2-ClHA or 2-ClHyA we
utilized oxone, an oxidant offering several advantages (one step-one pot
reaction, non-toxic, low cost reagent) over hazardous chromium(VI)-
based systems like the highly toxic pyridinium dichromate [37,53].
This synthetic route (starting from the corresponding aldehyde pre-
cursors 2-ClHDA or 2-ClHDyA, respectively) is straightforward, pro-
ceeds at moderate conditions (RT, 3 h) and the reaction yield and purity
of the product is feasible (both>95%).

Subcellular localization of 2-ClHyA was determined by N3-TAMRA
click-chemistry and subsequent visualization of compartment-specific
markers by cLSM and SIM. These experiments revealed uptake of 2-
ClHyA in the ER and mitochondria, raising the question of intracellular
trafficking routes for this chlorinated fatty acid. Fatty acid transport
proteins (FATP) are members of the Slc27 protein family with intrinsic
acyl CoA synthase activity [54]. In the brain endothelium several
membrane-associated FATPs were identified with highest expression
reported for FATP-1, −4, and fatty acid translocase/CD36 [55]. In
human carcinoma and canine kidney cells a major fraction of FATP4
was detected at the ER [56,57]. In terms of mitochondrial 2-ClHA
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transport carnitine palmitoyltransferase 1 (CPT-1) and carnitine acyl-
carnitine translocase could facilitate mitochondrial import. Only re-
cently the Ford group has shown that 2-ClHyA is localized to Weibel-

Palade bodies and promotes the release of P-selectin, van Willebrand
factor, and angiopoietin in human aortic endothelial cells [53].

ER and mitochondrial function play a critical role in
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neurodegenerative diseases. Although the crosstalk underlying ER
stress-induced apoptosis is not completely understood, evidence sug-
gests that cell survival vs. cell death decisions depend on mitochondrial
Ca2+ handling [43]. Aberrant protein palmitoylation is implicated in
the pathogenesis of neurodegenerative diseases, including Alzheimer's
disease, Huntington's disease, or schizophrenia [58], and induces un-
resolved ER stress that culminates in cell death [59]. Pharmacological
interference with S-palmitoylation is routinely performed with 2-BrHA,
a chemical tool that inhibits palmitoyl acyl transferases but targets also
other proteins by covalent alkylation [38,60]. This is reminiscent of
findings obtained during the present study: Using 2-ClHyA as activity-
based probe, efficient protein labelling and only weak competition by
HA was observed, findings that are compatible with non-specific
covalent modification of target proteins (Fig. 3). This reaction most
likely proceeds via chlorine abstraction at C2 and results in the for-
mation of an irreversible and stable thioether adduct as described for 2-
BrHyA [60]. Among 2-BrHA-modified proteins Davda and colleagues
identified CPT-1 supporting mitochondrial accumulation of haloge-
nated fatty acids [38] as also observed during the present study.

The ER depends on continuous supply of ATP to fulfill its biological
functions [61]. Among these is the unfolded protein response that,
under conditions of unresolved ER stress, represses an adaptive re-
sponse and triggers apoptosis through activation of CHOP. Here, 2-
ClHA upregulated the canonical PERK axis, namely eIF2α, ATF4, and
CHOP, and decreased [ATP]ER. These findings were accompanied by
Ψm dissipation. Altered Ca2+ homeostasis and dissipation of Ψm con-
tributes to the opening of the mitochondrial permeability transition
pore, which facilitates cytochrome c efflux-driven assembly of the
apoptosome [45]. In line we observed increased pro-caspase-3 and
PARP processing. This is reminiscent of what was reported for phor-
bolester-stimulated monocytes: In these cells 2-ClHA accumulates in
response to activation and elicits apoptosis through generation of re-
active oxygen species and ER stress [35].

In addition to ER stress 2-ClHA increased IL-6 and IL-8 on the mRNA
and protein level. In vitro, IL-6 induces barrier dysfunction and in-
creases IL-8 synthesis in human brain endothelial cells [62] as observed
here in 2-ClHA-treated hCMEC/D3 cells. ER stress may contribute to
sustained production of inflammatory mediators obstructing resolution
of inflammation, a condition relevant to infectious, metabolic, and
neurodegenerative diseases [63]. Human aortic endothelial cells upre-
gulate synthesis of IL-6 and IL-8 in response to oxidized phospholipids
in a PERK-dependent manner [64]. Of note, this class of oxidized lipids
is not only detectable in atherosclerotic lesions [65] but also in brain of
MS patients [66] and other settings of neurodegeneration [67]. Thus,
blocking the inflammatory response through PERK inhibition could
have pharmacological relevance in neurodegenerative diseases where
ER stress is prevalent [43]. During the present study we used
GSK2606414 (that also inhibits RIPK1; Ref. [68]) as PERK antagonist to
reveal whether this compound would rescue 2-ClHA-induced brain
endothelial dysfunction. We observed decreased ATF4 expression in
response to GSK2606414 that also blunted the inflammatory response
of BMVEC. However, GSK2606414 was without effect on pro-caspase-3
processing and associated barrier leakiness. This is reminiscent of what
was reported for a panel of other ER stress inhibitors in Aβ1–40 treated

rat brain endothelial cells [39].
In summary we identified 2-ClHA as an MPO-generated in-

flammatory trigger that induces ER stress and apoptosis in BMVEC. Our
findings suggest that 2-chlorofatty acid generation during cere-
brovascular inflammation holds potential to induce BBB dysfunction
probably due to the local accumulation of these cytotoxic lipids in
cellular organelles.
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