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Immunity is mostly studied in a few model organisms, leaving the majority of

immune systems on the planet unexplored. To characterize the immune sys-

tems of non-model organisms alternative approaches are required. Viruses

manipulate host cell biology through the expression of proteins that modulate

the immune response. We hypothesized that metagenomic sequencing of viral

communities would be useful to identify both known and unknown host

immune proteins. To test this hypothesis, a mock human virome was gener-

ated and compared to the human proteome using tBLASTn, resulting in 36

proteins known to be involved in immunity. This same pipeline was then

applied to reef-building coral, a non-model organism that currently lacks

traditional molecular tools like transgenic animals, gene-editing capabilities,

and in vitro cell cultures. Viromes isolated from corals and compared with

the predicted coral proteome resulted in 2503 coral proteins, including many

proteins involved with pathogen sensing and apoptosis. There were also 159

coral proteins predicted to be involved with coral immunity but currently lack-

ing any functional annotation. The pipeline described here provides a novel

method to rapidly predict host immune components that can be applied to

virtually any system with the potential to discover novel immune proteins.
1. Introduction
Comparative immunology uses a variety of invertebrate and vertebrate species

to better understand the evolution and origin of immunity [1]. These model

organisms have provided fundamental insights into evolutionarily conserved

immune mechanisms. For example, the initial concept of self versus non-self

recognition was formed by experimentation with starfish, and studies in chick-

ens led to the identification of separate B and T cell lineages [2,3]. While these

discoveries have been invaluable in understanding immune mechanisms, the

majority of comparative immunology is based on data from only 3 of the 30

extant animal phyla [2]. A broader representation of phyla will help to fully

appreciate the complexity of immunity.

Currently, the establishment of molecular tools is infeasible in terms of time

and money for most of the metazoan tree of life. For example, continuous cell

lines have been a long-term goal of coral reef biologists for decades. While there

have been reports of primary cell cultures, standardized cell lines have yet to be

established and genetic manipulation of corals remains elusive [4–7]. To inves-

tigate the immune systems of corals, as well as the remaining twenty-seven

other animal phyla, a broad and rapid approach is required [2]. Here, we pro-

pose a comparative genomic approach in which host viral communities are

used to predict host immune proteins.
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Figure 1. Bioinformatic pipeline used to identify viral gene segments with
sequence similarity to host proteins: characterized viruses versus characterized
immune system (humans). Virus genomes were segmented into 200 base
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Viruses are dependent on a host cell to complete their life

cycle. Therefore, they must replicate and package their genomes

intracellularly while avoiding the host immune response. To

establish and maintain control of host cells, viruses mimic

host proteins [8–11]. For example, herpes viruses encode pro-

teins that possess sequence similarity to human cytokines and

can modulate cytokine signalling in host cells during infection

[12]. If a herpesvirus-encoded cytokine was compared with

the human proteome using BLAST, then the human-encoded

cytokine would be identified without any a priori knowledge

of the human immune system. Expanding this observation,

we hypothesized that an in silico comparison of all viral gene

products to the predicted host proteome would identify both

known and unknown immune-associated proteins.

As a proof of principle, in silico constructed viromes were

used to successfully identify known human immune proteins.

This method was then applied to reef-building corals to ident-

ify proteins potentially involved in coral immunity. Most of

these proteins were homologues to human proteins, but a

subset of 159 coral proteins were predicted to be involved in

novel coral immune functions. This method generates putative

host immune proteins to be further tested with the goal of

discovering new types of immunology.

pair sequences to create a mock viral metagenome and compared with
the human proteome using tBLASTn analysis with an e-value cutoff of
less than 1 � 1024. Viruses included human herpesviruses 1 – 3, 5, 6A,
6B, 7 – 8, human adenoviruses A-E, human circovirus, and human papilloma-
viruses 1, 2. See electronic supplementary material, table S1a, for description
of viruses used in the analysis, electronic supplementary material, table S1b,
for summary of human proteins identified, and electronic supplementary
material, file S1 for full tBLASTn results.
2. Results
(a) Known viruses versus the well-characterized human

immune system
As a test, the proposed method was applied to viruses known

to manipulate the human immune system (figure 1). A mock

virome was created by fragmenting 16 fully sequenced viral

genomes into 200 base pair segments. The resulting in silico
virome consisted of 8542 DNA segments (figure 1; electronic

supplementary material, table S1a). This mock human virome

was then compared with the human proteome using

tBLASTn, with an e-value of 1 � 1024 as a cutoff for signifi-

cance yielding 36 human proteins matching viral DNA

segments (electronic supplementary material, file S1). The

function of these proteins includes cell cycle control, cyto-

kines, cytokine receptors, chemokines, chemokine receptors,

apoptosis and complement activation (figure 2; electronic

supplementary material, table S1b).

(b) Coral derived viromes versus predicted coral
proteomes

Fourteen viromes were generated from four species of coral;

Porites rus (four colonies), Acropora sp. (three colonies), A. yon-
geii (three colonies) and Pocillopora verrucosa (four colonies)

[13]. Sequence data quality control was performed using PRIN-

SEQ and DeconSeq, resulting in 1 048 627 good-quality

sequences with an average size of 315 base pairs (electronic

supplementary material, table S2) [14,15]. For this analysis,

the viromes were combined in silico into one coral virome

and compared with the predicted proteome of A. digitifera
using tBLASTn. An e-value of less than 1 � 1024 was used as

the cutoff for significance [16] (see electronic supplementary

material, file S2, for full tBLASTn results). This resulted

in a total of 60 191 virome-derived DNA sequences that signifi-

cantly matching 5 863 predicted coral protein sequences. To

reduce the complexity of this dataset, only coral proteins that
matched to at least five of the virome fragments were

considered for further analyses (2 503 proteins total; figure 3;

electronic supplementary material, table S3) [17]. The potential

functions of this group of proteins was predicted by comparing

to the human proteome using BLASTp (electronic supplemen-

tary material, file S3), as well as a functional domain analysis

using the conserved domain database (CDD) (electronic sup-

plementary material, file S4) [18]. This showed that 83

proteins related to PAMP sensing and apoptosis (figure 4;

electronic supplementary material, figure S1 and table S4a)

[18]. Electronic supplementary material, table S5, provides

descriptions of protein domains classified as PAMP sensing

[19–23] and apoptosis [24–30]. Compared with the remainder

of the coral proteome, this group of host proteins with hom-

ology to viral proteins was significantly enriched for PAMP

sensing and apoptosis-associated domains (figure 4b; electronic

supplementary material, table S4b; paired two-tailed t-test

p-values� 0.0001 and 0.001, respectively).
(c) Bioinformatic prediction of novel immune proteins
The pipeline described in figure 3 resulted in 159 coral proteins

that could not be annotated using either the human proteome

or the CDD. To determine the predicted cellular localization

(i.e. membrane bound or cytoplasmic) transmembrane regions

were predicted using the TMHMM server resulting in 25 pro-

teins possessing 1–14 transmembrane regions (electronic

supplementary material, figure S2 and file S5) [31]. Based on

the pipeline used in this study a general experimental approach

is proposed to identify novel immune components of non-model

organisms (figure 5). Viral nucleic acid is isolated from host
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tissue and compared with the host transcriptome to identify

protein candidates that are predicted targets of viral proteins

and therefore predicted to be involved with host immunity.

This candidate group of immune-associated proteins is then com-

pared with a protein domain database and the proteome of an

established model organism to remove proteins whose function

can already be predicted. Proteins that lack similarity to either

database represent the final group of candidate immune genes

with completely unknown function that can be further explored

using in vitro and in vivo experimentation (figure 5).
3. Discussion
(a) Summary
The pipeline described here combines domain-based protein

annotations with novel annotations generated by viral com-

munities to predict the host immune repertoire. In animals

domain-based methods are biased towards the three major

phyla investigated thus far (i.e. Chordata, Nematoda and

Arthropoda); therefore, we cannot exclusively rely on those

strategies to elucidate the immune systems of uncharacterized

phyla [2]. Viral communities provide a domain-independent

approach to predict host immune proteins that supplements

existing domain-based protein annotation methods.

(b) Viral manipulation of apoptosis and intracellular
pathogen sensing

The domain-based annotation of the coral proteome indicates

the coral immune system is highly complex and in some

instances more complex than humans [16,32,33]. As expected,

many of the components predicted to be involved with coral

immunity based on the presence of conserved domains are

also predicted targets of the viral community. With the rise

of metagenomics, it has become clear that many viruses are

persistent and do not cause any known pathologies. For

example, the virome of apparently healthy humans includes

members of Herpesviridae, Polymovaviridae, Papillomavirade,
Adenoviridae, Anelloviridae and Parvoviridae [34–37]. To main-

tain viral infection over time, persistent viruses will often

express multiple proteins that possess sequence similarity to

host proteins involved with programmed cell death (apop-

tosis) and PAMP sensing [9,38]. Figure 4 and electronic

supplementary material, figure S1 suggest that, similar to

humans, the viral communities associated with apparently

healthy coral interact with apoptosis and PAMP sensing.

Specifically, the tumour necrosis factor (TNF) signalling

pathway and nod-like receptors (NLRs) are predicted targets

of coral-associated viruses.

The TNF signalling pathway acts as a central mediator of

apoptosis and appears to be functionally conserved from

corals to humans [33,39]. TNF-receptor-associated factors

(TRAFs) are critical adaptor proteins that bind to the intracellu-

lar portion of TNF receptors regulating cell survival and

cytokine production [40]. Based on the total number of viral

sequences matching to coral proteins homologues of TRAF6,

TRAF4 and multiple TNFs were in the top 10% of all host pro-

teins, suggesting that the TNF-signalling pathway is a major

target of the coral virome (figure 4; electronic supplemen-

tary material, figure S1). In humans, viruses belonging to

Herpesviridae, Adenoviridae, Reoviridae and Retroviridae have

been shown to interact with TNF-mediated apoptosis [8].

Metagenomic evidence in corals indicates that similar to

humans, the abundance of herpes viruses changes in response

to physiological stress and is associated with bleaching

events [41–45]. Future work should focus on which families

of viruses interact with the coral TNF-signalling pathway and

whether related viral manipulation strategies exist in corals

and humans.

NLRs are intracellular signalling molecules that play a

central role in the detection of PAMPs [46]. The genome of

the reef-building coral A. digitifera encodes 500 predicted

NLRs compared with only 22 found within the human reper-

toire [32]. In total, 398 viral hits were distributed across

25 NLRs including many containing a glycosyl transferase

domains (electronic supplementary material, figure S1).

Corals are the first metazoans described thus far to contain
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the NLR-glycosyl transferase domain combination; however,

the function any coral NLR has yet to be determined. The

pipeline described here provides a starting point in the selec-

tion of specific NLRs that warrant additional investigation.

Taken together, domain-based protein annotation provides a

predicted framework of the coral immune system and, based

on those annotations, coral-associated viruses are modulating

pathogen sensing and the host apoptotic response.
(c) Beyond conserved domains-novel predictions
from viral communities

Domain-based annotation allows for the rapid prediction of

host immune proteins. However, the databases used to generate
those annotations are largely based on experimental evidence

from only three animal phyla (i.e. Chordata, Nematoda and

Arthropoda) [2]. While many protein domains are expected to

be conserved across phyla, relying exclusively on domain-

based annotations will fail to identify immune proteins that

lack previously characterized domains. The pipeline described

here identified 159 predicted coral immune proteins that could

not be annotated using the CDD and lack homology to any

human protein. In addition to missing completely novel

immune domains, comparing the host proteome to the CDD

will also fail to identify proteins involved with immunity that

lack canonical immune domains (electronic supplementary

material, table S5). In total, 275 coral proteins could be anno-

tated with the CDD but did not contain any PAMP sensing or

apoptotic domains or possess any similarity to human proteins

(electronic supplementary material, file S5). This group of pro-

teins, as well as the 159 proteins that do not match any domain

in the CDD, may be involved in coral-specific immunological

processes. The pipeline described here provides a more compre-

hensive prediction of the host immune repertoire by combining

the power of existing databases with new predictions generated

from resident viral communities.

(d) Caveats and future work
One limitation of the proposed bioinformatic pipeline is its

reliance upon amino acid alignments long enough to produce

a significant e-value using tBLASTn. For example, some viruses

hijack cell regulation using short elements termed eukaryotic

linear motifs (ELMs) that are only two to eight residues in

length [47,48]. Therefore, the short alignments between viral

ELMs and their target host proteins would probably not pro-

duce significant e-values and fail to be identified. It is also

important to remember that this method generates hypotheses

that require direct biological and biochemical validation. This

validation would ideally be performed within the organism

of interest; however, if molecular techniques remain unavail-

able then a hybrid approach may be taken to provide a more

rapid turnaround of hypothesis testing. For example, the estab-

lished model organism Nematostella vectensis (sea anemone), a

fellow anthozoan related to corals, has well-developed molecu-

lar methods that could be used to test the function of predicted

coral immune proteins [16,49]. While this study has focused on

characterizing metazoan immunity, the pipeline proposed here

could also elucidate interactions between bacteria and their

resident bacteriophage communities to identify novel bacterial

immune proteins. Combining these data with metazoan-

virus predictions would provide a broad understanding of

immune processes occurring within the entire holobiont. The

pipeline presented here predicts immune system structure by

combining model organism-based databases with a domain-

independent approach based on resident viral communities.

This method can be applied to any holobiont with the potential

to discover novel immunological processes.
4. Material and methods
(a) Isolation of virus-like particles from coral tissue

and sequencing of viral DNA
Virus-like particles (VLPs) were isolated from individual colonies

of Po. rus, Acropora sp. and P. verrucosa taken from two locations

on the island of Mo’orea, French Polynesia while aquarium
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samples of A. yongeii were generously donated by the Birch

Aquarium, San Diego, CA. Sampling locations included the back

reef of the Richard Gump Research Station (LT) and Tema’e

beach (TA). Briefly, coral tissue was homogenized in the field

with a mortar and pestle and 12 ml of 0.02 mm filtered seawater

was added until all coral tissue was removed from the skeleton.

Next, the coral-tissue slurry was placed in a 15 ml falcon tube fol-

lowed by the addition of 1 ml of chloroform and stored at 48C for

three weeks. To isolate VLPs from coral tissue, established ultra-

centrifugation protocols were used [13,50]. Briefly, 600 ml of

50 nmol l21 dithiothreitol was mixed with 8 ml of coral slurry by

vortexing, incubated at 378C for 1 h and centrifuged for 15 min
at 3000 r.p.m. In total, 7 ml of the supernatant was then transferred

to the top of a CsCl step gradient containing 1.0 ml of each CsCl

solution at densities of 1.7 g ml21, 1.5 g ml21 and 1.35 g ml21.

The step gradient containing the coral slurry was then spun for

2 h at 22 000 r.p.m. using an SW-41 Ti rotor (Beckman Coulter)

and 1.5 ml was extracted from the 1.35–1.5 interface using a 24-

gauge needle with an upward-facing tip. Next, the sample was

treated with DNase at a final concentration of 100 units ml21 and

incubated at 378C for 1 h. Finally, DNA was extracted from the

VLPs using standard CTAB/formamide methods [13]. Two qual-

ity control approaches were taken to ensure viral purity of the

final DNA product. First, VLPs were visualized before and after

ultracentrifugation using standard SYBR-gold staining techniques,

followed by a 16S and 18S PCR to ensure the isolated DNA was not

contaminated with cellular genetic material [13].

To obtain sufficient nucleic acid for library preparation viral

DNA was amplified using a modified linker amplified shotgun

library (LASL) method [51]. Briefly, initial DNA concentrations

were determined using the Qubit Fluorometric Assay (Life Tech-

nologies) and 5 ng of total DNA was combined with PCR-grade

water to a final volume of 50 ml. Diluted DNA samples were briefly

vortexed and transferred into 50ml Covaris tubes for shearing using
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the Covaris M220 Focused Ultrasonicator (40 s at 9 W). Sheared

DNA was then end-repaired and ligated to LASL Linker A

(Linker A FWD: 50-P-GTATGCTTCGTGATCTGTGTGGGTGT-30,

Linker A REV: 50-CCACACAGATCACGAAGCATAC-30) followed

by size selection with a target size of 500 base pairs using Pippin

Prep (Sage Science) [51]. For each biological sample, four PCR reac-

tions were prepared using a barcoded primer and 17 cycles of PCR

were performed (PfuTurbo Cx Hotstart DNA Polymerase, Agilent).

Replicates of the same samples were combined, purified and

separated into four aliquots for further amplification with three

cycles of reconditioning PCR. Finally, all barcoded samples were

quantified and pooled for library preparation and sequencing

on MisSeq platform using the MiSeq Reagent Kit v3 600 cycles

chemistry (Illumina).

(b) Quality control of sequence data
Preceding downstream analysis quality control of sequence data

was performed using a variety of bioinformatic tools. Paired end

reads were first joined using COPE [52], low-quality sequences

(less than 100 base pairs in length, mean quality score less than

25, or containing more than 10% N’s) were removed using PRIN-

SEQ and any remaining bacterial or human sequences were

removed with DeconSeq [14,15] (see electronic supplementary

material, table S1 for the number of sequences removed at each

pre-processing step).

(c) Bioinformatic pipeline used to analyse viromes
Viromes were compared with the predicted coral proteome [53]

using standalone tBLASTn analysis with computational-based

statistics turned on (D) and low complexity regions of proteins

masked (seq) [17]. Predicted coral proteins were classified as

‘hits’ if five or more viral sequence fragments matched a coral

protein with an e-value less than 1 � 1024. Predicted coral

protein hits were then compared with the human proteome
using BLASTp analysis with an e-value cutoff of less than 1 �
1025 and the CDD with an e-value cutoff of 0.01 [18].
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