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ABSTRACT: Cannabis is the most prevalent abused substance after
alcohol, and its consumption severely harms human health and thus
adversely impacts society. The identification and quantification of
cannabis in urine play important roles in practical forensics.
Excitation−emission matrix (EEM) fluorescence spectroscopy coupled
with parallel factor (PARAFAC) analysis was developed to identify and
quantify the four main ingredients of cannabis in urine samples. The
main ingredients of cannabis including Δ-9-tetrahydrocannabinol
(THC), cannabidiol, cannabinol, and tetrahydrocannabinolic acid
(THC−COOH) exhibited diverse fluorescence characteristics, and the
concentrations of these compounds depicted a positive linear relationship
with the fluorescence intensity at the ng/mL level. The EEM/PARAFAC
method adequately characterized and discriminated the four ingredients
in calibration and prediction samples with a low root-mean-square error of prediction (RMSEP; 0.03−0.07 μg/mL) and limit of
quantitation (LOQ; 0.26−0.71 μg/mL). The prediction results of the EEM/PARAFAC method well correlated with that of GC−
MS with a low RMSEP range (0.01−0.05 μg/mL) and LOQ range (0.07−0.44 μg/mL) in urine samples. The EEM spectroscopic
investigation coupled with the PARAFAC algorithm results in an organic, solvent-less, fast, reliable tool to perform accurate and
rapid screening of cannabis abusers.

1. INTRODUCTION
With the recent trend regarding the legalization of cannabis,
cannabis has become one of the most widely used recreational
drugs.1 The prevalence of cannabis use is considered a social
threat, specifically for adolescents. Frequent cannabis users
may cause cognitive deficits and psychomotor disorders. There
is evidence that cannabis use is associated with an increased
risk of motor vehicle crashes.2 The cannabis plant (C. sativa)
contains at least 140 cannabinoids. Δ-9-tetrahydrocannabinol
(THC), cannabidiol (CBD), and cannabinol (CBN) are the
main psychoactive ingredients of cannabis (Figure 1), which
are particularly relevant for cannabis use.3 THC and CBD
engender markedly different pharmacological effects in humans
and animals. THC exhibits reinforcing effects when examined
under experimental conditions in primates or humans.
Moreover, it can precipitate psychosis and compromise
cognition and motor coordination in humans. The detection
of cannabis in the field of forensic science focuses on the
quantitative analysis of these three compounds.4 THC−
COOH as a biosynthetic precursor of THC and an
intermediate product of the THC metabolism is another
crucial detection target of cannabis in urine.5

Among the detection techniques of cannabis, chromatog-
raphy is considered to be a powerful method for determining

cannabis in biological samples (blood, urine, and hair) owing
to its high accuracy, precision, and good sensitivity. However,
it requires harmful organic solvents and large-scale expensive
instruments, consumes a long time, and incurs high cost. More
importantly, the use of organic solvents in this method is often
accused of being unsustainable and not environmentally
friendly.6 The bulk detection of suspicious illegal cannabis
samples in high-speed railway stations and streets is increasing
gradually.7 To support the extensive determination of cannabis,
a rapid and simple method instead of an environmentally
unfriendly and time-consuming chromatographic method is
required to identify biological samples and seized illegal drugs.
Fluorescence spectroscopy with chemometric algorithms,

e.g., excitation−emission matrix (EEM) and parallel factor
(PARAFAC), is a nondestructive, high-speed, low-cost method
with high selectivity.8 There is no need for any complicated
sample preparation before measuring the fluorescence of the
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sample, and the measured signal is 1000 times more sensitive
than those generated by absorption-based spectrophotometric
techniques. PARAFAC is a multiway method used for the
resolution of trilinear data and can mathematically decompose
the EEM complex fluorescence signal into individual
fluorescence spectra via overlapping.9

PARAFAC applies a nonlinear optimization algorithm,
namely, alternating least-squares, to analyze complex data
systems considering constraints, e.g., non-negativity, which can
be considered as one of the advantages of PARAFAC.10 The
uniqueness of PARAFAC solutions under mild conditions
circumvents the rotational freedom problem. Thus, a
PARAFAC model can handle large volumes of three-way
data from fluorescent molecules regarding their relative
concentrations and pure spectral profiles in the analyzed
samples. EEM combined with the PARAFAC algorithm has
been successfully implemented in various fields, e.g., dissolved
organic matter in natural water, discrimination of photosystem
II with/without water-oxidizing complex, natural organic
matter in drinking water, and aromatic amino acids in plasma
and urine.11 Therefore, the EEM coupled with the PARAFAC
algorithm can help determine cannabis in biological samples,
which can create a new avenue for rapidly determining
adulterated illegal drugs.
Considering the aforementioned discussion and as an

extension of our previous study,12−14 herein, the fluorescence
signatures of the main psychoactive ingredients of cannabis
were examined using the fluorescence-based EEM, and the
linear regression parameters between fluorescence peak
intensity and the ingredient concentration were studied as
the basis of quantitative analysis. Moreover, the ability and
further applications of this method to discriminate fluorescence
signatures from the trace component were evaluated. Herein,
the fluorescence-based EEM coupled with a parallel factor
helped identify and quantify cannabis in urine.

2. MATERIALS AND METHODS
2.1. Chemicals and Instruments. With regard to the

methods, 1.0 mg/mL standard THC, CBD, and CBN and 0.1
mg/mL THC−COOH were purchased from Cerilliant
(Round Rock, TX, USA) for the methanol solution. The
Milli-Q advantage ultrapure water system (Millipore, Ger-
many), fluorescence spectrometer (F-4600 Hitachi, Japan)
equipped with a xenon lamp (150 W), quartz cell (1.0 cm),
and gas chromatography−mass spectrometry (GC−MS)
(2010 PLUS, Shimadzu) with an HP-1 column (30 m ×
0.25 mm × 0.33 mm) were used. Urine samples are divided
into two groups: reference urine samples, which were collected
from two nonconsumer volunteers and a certain amount of
psychoactive ingredients were added, and other samples, which
were donated by two anonymous frequent cannabis users.
2.2. Sample Preparation and Fluorescence EEM

Analysis. The standard solutions of THC, CBD, CBN, and
THC−COOH were used without further purification. All of

the individual solutions with different concentrations were
prepared by diluting the corresponding stock solution with
methanol and ultrapure water, respectively. Calibration
samples and prediction samples (three-component and four-
component, respectively) were prepared by diluting the
corresponding stock solution with methanol in the range
from 60 to 960 ng/mL, respectively. Urine samples (10 mL)
were collected from two nonconsumer and two consumer
volunteers. Unspecified amounts of THC, CBD, CBN, and
THC−COOH were added to the urine samples of non-
consumer volunteers, and the two types of urine samples were
treated using the same preprocessing method; 2.0 mL of the
urine sample was treated with 1.0 mL of sodium hydroxide
solution (2.0 mol/mL) in a boiling water bath for 20 min. The
mixture was cooled to room temperature and adjusted to a pH
of 3.5 using 0.5 mL of hydrochloric acid solution (2.0 mol/
mL) and 0.2 mL of acetic acid; then, it was further extracted
with n-heptane (3.5 mL) for 20 min using an ultrasonic
washer. Subsequently, the obtained mixture was centrifuged at
8000 rpm for 5 min, and the organic phase was obtained after
centrifugation, extracted twice, and combined with the organic
phase. The solvent was evaporated at 55 °C under reduced
pressure. For the GC−MS method, the obtained solid was
further treated with the derivatization reagent of N,O-
bis(trimethylsilyl)trifluoroacetamide (80 μL) at 70 °C for 40
min, and then, the liquid supernatant was analyzed. However,
the obtained solid was directly dissolved in methanol (0.2 mL)
for the EEM/PARAFAC analysis.
2.3. Fluorescence EEM Analysis and GC−MS. The

fluorescence EEM spectra were recorded using an F-4600
Hitachi luminescence spectrometer equipped with a quartz cell
(1.0 × 1.0 × 4.5 cm); the widths of the excitation and emission
slits were set as 5.0 nm, and increments of 5 nm were
considered for EX and EM sampling intervals. The emission
wavelength (λem) range was 250−550 nm, and the excitation
wavelengths (λex) ranged from 230 to 360 nm at a scan speed
of 1200 nm/min.
Confirmatory analyses were performed using a Shimadzu

GC−MS (2010 PLUS). A constant flow of helium at 1 mL/
min was used as the carrier gas. The injection was segregated at
a split ratio of 20:1. The oven temperature was set at 80 °C for
2 min and ramped to 280 °C at 30 °C/min; then, a postrun
was performed at 280 °C for 10 min. The mass spectrometer
parameters were set as follows: transfer line at 250 °C and ion
source at 230 °C. Mass spectral data were collected in the scan
mode at 40−450 m/z.
2.4. PARAFAC Modeling. For standard solutions and

multicomponent solutions, the PARAFAC modeling of EEMs
was conducted by using MATLAB 2010a with the N-way and
DOM-Fluor toolboxes. The procedure was performed
according to one of the reported studies.15 The fluorescence
EEM analysis helped generate a series of three-dimensional
data matrices including emission wavelength, excitation
wavelength, and fluorescence intensity data, which helped

Figure 1. Chemical structures of THC, CBD, CBN, and THC−COOH.
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Figure 2. EEM of THC (a, 8 μg/mL), THC−COOH (b, 4 μg/mL), CBN (c, 1.56 μg/mL), and CBD (d, 2.1 μg/mL) after correcting for Raman
scattering.

Table 1. Main Fluorescence Peaks of the Individual Psychoactive Ingredients of Cannabis in Methanol, and the Linear
Regression Parameters between the Concentration and Fluorescence Peak Intensity are Also Presenteda

compounds λex/λem (nm) Stokes shift (nm) r2 DL (ng/mL) QL (ng/mL) LR (μg/mL)
THC 255/310 55 0.998 1.8 6.0 0.05−1.5
CBD 235/300 65 0.999 0.9 2.9 0.06−0.9
THC−COOH 265/285 20 0.994 6.8 22.6 0.1−1.0
CBN 255/310 55 0.999 2.3 3.4 0.06−1.5

310/360 40 0.998 4.2 7.9
aDetermination coefficient (r2), detection limit (DL), quantification limit (QL), and linear range (LR) of the compounds were calculated from the
equation of the linear regression between the contaminant concentration and the fluorescence peak intensity as following: DL = 3σ/a, QL = 10σ/a,
where a is the slope and σ is the standard deviation of the y-intercept. σ values were calculated according to the formula:

y y

n
x

n x x

( )

2 ( )
i i i

i

2 2

2= × , where n is the number of samples and xi and yi are the compound concentrations and the measured fluorescence

intensities, respectively. yi′ is the fluorescence intensities calculated from the linear regression equation, and x is the mean concentration.

Figure 3. Fluorescence spectra of THC (a) and CBN (b) at different concentrations. Inset: the linear relationship between fluorescence emission
peak intensity and concentration of THC (a) and CBN (b).
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develop a data cube, i.e., X, for individual standards and
multiple samples. PARAFAC helped derive a promising tool to
examine the data matrices, which resulted in a three-way array
of size i × j × k.

x a b c e i I

j J k K

, 1, , ;

1, , ; 1, ,

ijk
n

N

in jn kn ijk
1

= + = ···

= ··· = ···
=

(1)

where xijk is the fluorescence intensity of the sample. J is the
number of emission wavelengths, K is the number of excitation
wavelengths, i is the number of samples, and N is the number
of the components. ain, bjn, and ckn are elements of A, B, and C
matrices, respectively.
Raman and Rayleigh scattering in the solution were

corrected according to the reported studies. In the calibration
step, A scores were regressed against the real concentrations of
each ingredient of cannabis in the mixtures to obtain a linear
regression equation. In the prediction step, the obtained
regression line was used to calculate the concentration of each
compound in the prediction samples. The validation of the
PARAFAC model and the determination of the correct
number of components were achieved via the examination of
the percentage of the explained variance, the shape of residuals,
and the split-half analysis.16

3. RESULTS AND DISCUSSION
3.1. Fluorescence EEM of Individual Standards. The

main ingredients of cannabis, including THC, CBN, CBD, and
THC−COOH, exhibit diverse fluorescence characteristics
owing to their conjugate structures (Figure 2). The
fluorescence characteristics of the fluorescence maxima of the
standards in methanol, including spectral position (λex/λem),
Stokes shift (λemλex), and linear regression parameters between
the fluorescence peak intensity and standards concentration,
are summarized in Table 1.
THC exhibits a fluorescence peak around λex/λem = 255/310

nm, and the excitation wavelength at 290 nm exhibits an
emission peak at 310 nm. As shown in Figure 3, the
concentration of THC demonstrates a positive linear relation-
ship with fluorescence peak intensity at the nanogram level (n
= 5, p < 0.01). Compared with THC, THC−COOH exhibits a
weaker peak around λex/λem = 265/285 nm because of the

electron-withdrawing group of the carboxyl group on the
benzene ring. A good positive linear relationship between the
concentration of THC−COOH and the fluorescence intensity
over the range of 0.1−1.0 μg/mL (n = 5; p < 0.01.) is
observed. The fluorescence characteristic of CBD is similar to
THC. CBD with the lowest λex value, among these
compounds, displays a strong peak around λex/λem = 235/
300 nm. The concentration of CBD (Figure 3) demonstrates a
good positive linear relationship with the fluorescence intensity
over the range of 0.06−0.9 μg/mL (n = 5, p < 0.01). CBN with
rich electronic properties exhibits two strong peaks around λex/
λem = 255/310 and 310/360 nm. The result indicates a good
positive linear relationship between the concentration of CBN
and fluorescence intensity at 0.06−1.5 μg/mL. When the
concentration of CBN is ≥ 2.0 μg/mL, the fluorescence peak
intensity decreases with an increase in the CBN concentration
probably because of the self-quenching effect, and the
concentration of CBN has a nonlinear relationship with the
fluorescence peak intensity. As mentioned above, the
fluorescence signatures of these four psychoactive ingredients
of cannabis are mainly influenced by their conjugated π-
electron systems. The increase in the number of conjugated π-
electrons in a fluorophore causes expend of intrinsic
fluorescence capacity by increasing the molar absorption
coefficient and fluorescence quantum yield.
In addition, the polarity of the solvent considerably affected

the fluorescence spectra of the main psychoactive ingredients
of cannabis. The methanol solvent possesses a stronger ability
to dissolve THC, CBD, CBN, and THC−COOH, which is
important for the fluorescence quantum yield. The high
polarity and relatively weak dissolving capacity of ultrapure
water decreased the fluorescence quantum yield due to
changes in the nonradiative decay rate or the conformational
structure of the fluorophore. The fluorescence maxima of the
four compounds were stronger and more sensitive in the
methanol solvent compared to that in ultrapure water, which
can help obtain better linear regression parameters between
the contaminant concentration and fluorescence peak inten-
sity, including detection limit (DL) and quantification limit
(QL).
3.2. Discrimination of Fluorescence Signatures in

Mixtures. Herein, the compositions of the calibration and
prediction samples were set based on the statistical results of
the primary ingredients of cannabis in urine.17 The complex

Table 2. Concentrations of Main Ingredients of Cannabis in the Simulated Mixtures (ng/mL)

mixture 1 (ng/mL) mixture 2 (ng/mL)

samples no CBN CBD THC−COOH no CBN CBD THC−COOH THC

calibration samples 1 60 60 100 9 60 60 100 60
2 60 90 150 10 90 60 100 60
3 90 150 200 11 90 150 200 60
4 150 150 250 12 210 150 200 90
5 180 210 250 13 270 210 300 150
6 270 210 300 14 360 210 400 150
7 300 270 300 15 360 330 400 210
8 300 300 400 16 450 300 400 210

prediction samples 17 65 70 90 23 70 62 75 65
18 85 90 120 24 88 95 140 85
19 125 130 160 25 132 155 195 120
20 340 320 330 26 325 305 340 210
21 750 710 800 27 650 629 800 480
22 950 900 950 28 980 920 1000 500
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samples were divided into two groups: mixture 1, which
included three components (CBD, CBN, and THC−COOH)
and mixture 2, which included four components (THC, CBD,
CBN, and THC−COOH). For each mixture type, 25
calibration samples and 10 predicted samples were designed
herein, and their EEM data sets were processed using the
PARAFAC algorithm. The data of mixtures 1 and 2 are listed
in Table 2 and for other samples, refer to the Supporting
Information.
The components in the PARAFAC model represented the

number of fluorophores in the mixture after the inner-filter
effect correction.18 The number of components in the
PARAFAC model should be determined for application of
the PARAFAC algorithm. Core consistency diagnostics in
combination with other model parameters, such as residuals,
loadings, and split-half analysis, were used to determine the
number of components to avoid overestimation or under-
estimation for the PARAFAC model herein. The results of the
PARAFAC models indicated that a four-component PARAF-
AC model was present in mixture 2, and a three-component
PARAFAC model was selected in mixture 1. Based on the
results obtained from the PARAFAC models, the true and
estimated models can coincide when the appropriate number
of components is considered.
Mixture 1 validated a three-component model, which

included CBD, CBN, and THC−COOH fluorophores.
These three compounds were identified from mixture 1
using the PARAFAC model. The excitation and emission
spectra of these compounds in the mixtures validated by the
PARAFAC models are consistent with those of the individual
compounds obtained from the EEM measurements (Figure 4).
The best overlap between the measured and modeled spectra
was observed for CBN among the compounds. As previously
mentioned, the λex/λem values of these psychoactive ingredients
of cannabis were quite different in their three-dimensional
fluorescence spectra. Hence, the PARAFAC analysis helped
easily separate these compounds from the mixtures of
psychoactive ingredients of cannabis.
Mixture 2 validated a four-component model, which

included THC, CBD, CBN, and THC−COOH fluorophores.
To identify these fluorophores, the Ex and Em spectra of the
components resolved from the PARAFAC algorithm were
compared to the corresponding actual spectra of individual

compounds obtained from the EEM measurements, respec-
tively. As shown in Figure 5, the comparison results indicate
that PARAFAC can identify the four compounds in mixture 2
and exhibit a good correspondence between the actual spectral
profiles and loadings based on the decomposition of the EEM
data array. In particular, the loading scores and peak locations
of the modeled spectra are identical to those of the measured
spectra. Despite the presence of the compound with higher
fluorescence intensity as potential interference, PARAFAC can
generate a good predictive model for all of the analytes. The
λex/λem values of THC and CBN are 255/310 nm; however,
λex/λem values of CBN are 310/360 nm. Therefore, CBN and
THC can be validated using the PARAFAC method in the
mixtures.
With regard to the EEM/PARAFAC quantification of the

four primary ingredients of cannabis in the mixture samples,
the concentrations of the four compounds were calculated by
using linear regression parameters between the individual
compound concentrations and their corresponding resolved
concentration scores. Representative prediction results are
shown in Figure 6, and the regression between the nominal
and predicted values related to the samples is shown in Figure
7. Regardless of the actual amount of these psychoactive
ingredients in the solutions, PARAFAC models correctly
calculated the concentrations of the compounds. In addition,
Table 3, which includes statistical parameters, such as limit of
quantitation (LOQ), root-mean-square error of prediction
(RMSEP), and average recovery (AR suggested), indicates the
good performance of the proposed PARAFAC model with
regard to the determination of the main psychoactive
ingredients of cannabis. Moreover, the predicted concen-
trations of PARAFAC could be as low as the nanogram level.
For CBN, in the low-concentration group, the mean

concentrations resolved using the three-component model
(64.5 ± 4.8 and 84.3 ± 5.7 ng/mL) are almost identical to the
corresponding actual concentrations (65 and 85 ng/mL).
Similar modeled results are observed in the four-component
model, and the modeled concentrations of CBN (70.3 ± 3.3
and 90.3 ± 5.5 ng/mL) are close to the corresponding actual
concentrations (70 and 88 ng/mL). The prediction results of
CBD in the high concentration group were similar to those in
the low-concentration group regardless of the component
number of the PARAFAC model. For THC−COOH, the

Figure 4. Comparison of emission spectra (a) and excitation spectra (b) between that validated by the three-component model (solid line) and
that obtained from the EEM measurements of individual compounds (black dotted line).
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Figure 5. Loadings were validated using the PARAFAC models (dotted line) and the actual spectra obtained from the individual compounds (solid
line).
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modeled results of PARAFAC can fit with the actual
concentrations but with a large standard deviation. In the
low-concentration group, the mean concentrations of THC−
COOH resolved from the three-component model (92.2 ± 5.6
and 122.5 ± 17.1 ng/mL) are relatively close to the real
corresponding concentrations (90 and 120 ng/mL), and the
standard deviation of THC−COOH is larger than that of other

psychoactive ingredients. However, the prediction concen-
trations of THC−COOH resolved from the four-component
model are 72.0 ± 4.1 and 140.3 ± 4.5 ng/mL, respectively (the
actual corresponding concentrations are 75 and 140 ng/mL),
which is much better than that from the three-component
model. In the high-concentration group, the prediction results
of THC−COOH were similar to those in the low-
concentration group. For THC, the PARAFAC-based four-
component model can correctly calculate the concentrations in
prediction samples, and the mean concentrations of THC
derived from PARAFAC analysis are close to their true
corresponding concentrations with small standard deviations in
mixture 2. Consequently, these results indicate that the EEM/
PARAFAC identification and quantification of psychoactive
ingredients of cannabis are efficient at the nanogram level,
which might be applied to the analysis of cannabis in urine.
3.3. Application to Urine Samples. Two urine samples

donated by frequent cannabis users and two reference urine
samples were artificially added to the main ingredients of
cannabis to test the EEM/PARAFAC method using the blind
test. At the same time, GC−MS was used as a control test to
analyze these samples. The experimental results (Figure 8)

indicate that there are good correlations between the EEM/
PARAFAC method and GC−MS with a low RMSEP range of
0.01−0.05 μg/mL and a good LOQ range of 0.07−0.44 μg/
mL (Supporting Information). The methods could not detect
THC in urine samples due to a minor amount after the
metabolic process. However, the PARAFAC algorithm helped
determine THC in the reference urine samples compared to
the results of GC−MS. The mean value (65 ± 4.4 ng/mL)
obtained using PARAFAC was very close to the results of
GC−MS (68 ng/mL), which indicates that the EEM/

Figure 6. Prediction results of the low concentrations of the
prediction samples (nos. 17, 18, 23, and 24 μg/mL) resolved using
the PARAFAC method. A1 and A2: CBN in mixture 1 (nos. 17 and
18), B1 and B2: CBD in mixture 1 (nos. 17 and 18), C1 and C2:
THC−COOH in mixture 1 (nos. 17 and 18); D1 and D2: CBN in
mixture 2 (nos. 23 and 24), E1 and E2: CBD in mixture 2 (nos. 23
and 24), F1 and F2: THC−COOH in mixture 2 (nos. 23 and 24),
and G1 and G2: THC in mixture 2 (nos. 23 and 24).

Figure 7. Predicted concentrations decomposed using the PARAFAC
method and actual concentrations for CBN, CBD, and THC−
COOH.

Table 3. Statistic Parameters Obtained from the PARAFAC Model (Calibration and Prediction Samples)

mixture 1 mixture 2

statistic parameters CBD CBN THC−COOH CBD CBN THC−COOH THC

AR (%) 103 ± 4.2 99 ± 5.5 106 ± 3.6 104 ± 5.2 99 ± 6.1 95 ± 3.7 107 ± 2.9
RMSEP (μg/mL) 0.005 0.003 0.014 0.027 0.020 0.053 0.070
LOQ (μg/mL) 0.46 0.48 0.32 0.71 0.32 0.43 0.26

Figure 8. Concentrations of the main psychoactive ingredients of
cannabis in the urine samples (ng/mL) from the EEM/PARAFAC
method and GC−MS analysis, n = 5, p < 0.01.
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PARAFAC method can be applied to various extracts of
cannabis. The prediction results of CBD and CBN
decomposed by the PARAFAC model agree well with the
analysis results of GC−MS. The relative errors of the mean
values of CBD and CBN were obtained from the PARAFAC
range of −2.3 to 2.9%, and the standard deviations of these
mean values ranged from 2.2 to 3.9. The good correlations
between these two techniques implied that the EEM/
PARAFAC method could substitute chromatographic analysis
for CBD and CBN in urine. The identification and
quantification of THC−COOH, among the main psychoactive
ingredients of cannabis, in urine are being mainly considered,
which is the analytics target in the cases of cannabis abuse in
China. The EEM/PARAFAC method can accurately obtain
the concentrations of THC−COOH in both urine samples and
reference urine samples. The mean values obtained from
PARAFAC analysis are very close to the results of GC−MS
with small standard deviations.

4. CONCLUSIONS
Herein, the EEM coupled with the PARAFAC method was
developed to identify and quantify the four main psychoactive
ingredients of cannabis in urine samples at the ng/mL level,
and the prediction ability of the models was validated by
comparing results with those obtained from the parallel GC−
MS analysis. Moreover, the fluorescence characteristics of
THC, THC−COOH, CBN, and CBD were investigated.
Fluorescence results suggested that the four main psychoactive
ingredients of cannabis, including THC, THC−COOH, CBN,
and CBD, exhibited strong fluorescence intensity due to their
conjugate structures and different fluorescence characteristics
at the ng/mL level. The concentrations of the main
psychoactive ingredients of cannabis exhibited a good positive
linear relationship with the fluorescence intensity. Both of
them are the basis of qualitative and quantitative analyses using
EEM coupled with the PARAFAC method. The study results
indicated that the mean values obtained by EEM/PARAFAC
correlated well with the results of GC−MS in the urine
samples of abusers and reference urine samples with small
standard deviations. The EEM spectroscopic investigation
coupled with the PARAFAC algorithm helped provide an
organic, solvent-less, fast, reliable tool to perform the accurate
timely screening of cannabis abusers.
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