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Inflammation is an a physiological response instead an essential response of the organism
to injury and its adequate resolution is essential to restore homeostasis. However,
defective resolution can be the precursor of severe forms of chronic inflammation and
fibrosis. Nowadays, it is known that an excessive inflammatory response underlies the
most prevalent human pathologies worldwide. Therefore, great biomedical research
efforts have been driven toward discovering new strategies to promote the resolution of
inflammation with fewer side-effects and more specificity than the available anti-
inflammatory treatments. In this line, the use of endogenous specialized pro-resolving
mediators (SPMs) has gained a prominent interest. Among the different SPMs described,
lipoxins stand out as one of the most studied and their deficiency has been widely
associated with a wide range of pathologies. In this review, we examined the current
knowledge on the therapeutic potential of lipoxins to treat diseases characterized by a
severe inflammatory background affecting main physiological systems, paying special
attention to the signaling pathways involved. Altogether, we provide an updated overview
of the evidence suggesting that increasing endogenously generated lipoxins may emerge
as a new therapeutic approach to prevent and treat many of the most prevalent diseases
underpinned by an increased inflammatory response.

Keywords: lipoxin, inflammation, oxidative stress, lipid mediators, pathology
INTRODUCTION

Inflammation can be defined as the physiological response initiated by cells and tissues that aims to
protect the organism against infections or injuries caused by exogenous or endogenous agents (1).
Interestingly, it also plays an important role in processes like ovulation (2) or physiological
interactions with microbiota (3). Acute inflammation entails two stages: an initial phase that
org April 2021 | Volume 12 | Article 6588401
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comprises the onset of the inflammatory reaction to eliminate
the danger signal, and a subsequent resolution phase wherein
inflammation is blunted to restore homeostasis (Figure 1).
Different immune cell populations (i.e., macrophages,
neutrophils, lymphocytes) and related mediators (cytokines,
eicosanoids, immunoglobulins, among other) establish an
orchestrated system that mediates these two phases as well as
the transition between them (1, 4).

Within the molecules that actively participate in the
resolution phase, special attention has been paid to specialized
pro-resolving mediators (SPMs) (4), which promote resolution
of inflammation by reducing the levels of pro-inflammatory
cytokines and reactive oxygen species (ROS) and by
modulating correct tissue repair (5–9), among other functions.
So far, four types of SPMs have been classified according to the
precursor molecule they originate from and the enzyme
implicated in their metabolism (Table 1). These include
lipoxins (LXs), which derivate from omega 6 arachidonic acid
and are the subject of this review, and other SPMs such as
resolvins, maresins and protectins, that are structurally distinct
and result from a different biosynthetic pathway derived from
omega 3 fatty acids. Despite having similar pro-resolving actions,
they can exert their function through different receptors driving
to alternative signaling pathways [for review (10)].

LXs were the first SPM to be described (11) and the most
studied to date since their role has been found to be essential in
various inflammatory diseases (5, 12). Generation of native LXA4

and LXB4 results from the sequential lipoxygenation of the
arachidonic acid present in the lipid membrane by the action
of 5, 12 and/or 15-lipoxygenases (13) (Figure 2). An alternative
biosynthetic route requiring aspirin-mediated acetylation or
statin-induced nitrosylation of COX-2 generates LX 15-R-
epimers called 15-epi-lipoxins or aspirin-triggered lipoxins
(ATLs) (14, 15). Both pathways of LX biosynthesis are driven
by the coordinate interaction of distinct cell types such as
neutrophils, eosinophils, macrophages, endothelial cells,
epithelial cells, parenchymal cells or platelets in a process
known as transcellular biosynthesis, which also occurs in the
Abbreviations: ACE2, Angiotensin-converting enzyme 2; AD, Alzheimer disease;
AIA, Aspirin-intolerant asthma; ALI, Acute lung injury; ALXR, Lipoxin receptor;
AMPK, AMP-activated protein kinase; AP-1, Activator protein 1; ARDS, Acute
respiratory distress syndrome; ATA, Aspirin-tolerant asthma; ATL, Aspirin
triggered lipoxin; ATLa, 15-epi-16-(p-fluoro)-phenoxy-lipoxin A4; CaMKK2,
Calcium/calmodulin dependent protein kinase kinase 2; CF, Cystic fibrosis;
CFTR, Cystic fibrosis transmembrane conductance regulator; ERK, Extracellular
signal-regulated kinases; GSK3b, Glycogen synthase kinase 3 beta; HO-1, Heme-
oxygenase 1; i.art., intra-articular; ICV, Intracerebroventricular; IFNg, Interferon
gamma; IL, Interleukin; i.p., Intraperitoneal; IPF, Idiopathic pulmonary fibrosis;
I/R, Ischemia/Reperfusion; i.t., Intratracheal; i.v., Intravenous; JNK, c-Jun N-
terminal kinase; LO, Lipoxygenase; LX(s), Lipoxin(s); LXA4, Lipoxin A4; LXA4-
ME, LXA4-methyl ester; MAPK, Mitogen-activated protein kinase; MMP, Matrix
metalloproteinase; NF-kB, Nuclear factor kB; NK, Natural killer cells; NRF2,
Nuclear factor erythroid 2-related factor 2; PD, Periodontal disease; PI3K,
Phosphatidylinositol 3-kinase; PMN, Polymorphonuclear cell; PPAR,
Peroxisome proliferator- activated receptors; s.c., Subcutaneous; SPM,
Specialized pro-resolving mediators; TGF-b, Transforming growth factor beta;
TIMP, Tissue inhibitor of metalloproteinase; TNFa, Tumor necrosis factor alpha;
RA, Rheumatoid arthritis; ROS, Reactive oxygen species.
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synthesis of pro-inflammatory eicosanoids (16). Transcellular
biosynthesis allows cells to rapidly switch the production of pro-
inflammatory mediators to anti-inflammatory based on the
distinct cell types present in their environment, thus adapting
eicosanoid synthesis to inflammatory or resolutive contexts (17).

LXs mainly exert their functions by binding with high affinity
to a G-protein coupled receptor named N-formyl peptide
receptor 2 (FPR2), also called formyl peptide receptor-like 1
(FPRL1) or ALX receptor (ALXR) (18). ALXR is expressed in a
wide array of tissues, including bone marrow, brain, lung,
gastrointestinal tract and heart (18) and activates a plethora of
cell type-specific pathways (12). Consequently, LXs are able to
modulate a large variety of processes showing diverse actions
depending on the cell type they act on (8). Among their
functions, LXs are capable of blocking the arrival of excessive
PMNs to the inflammatory site (19–22) and switching
macrophage phenotype from pro-inflammatory (M1) to anti-
inflammatory (M2), stimulating efferocytosis and repair-
associated mechanisms (23–25). SPMs can also blunt the
cytotoxicity of NK cells (26) and decrease antibody production
and proliferation in memory B cells preventing maladaptive
immunity and autoimmune reactions (27). They also affect
non-immune cells; for example, they elicit anti-fibrotic
responses by repressing metalloproteinases (MMP) and
inducing tissue inhibitors of metalloproteinase (TIMPs)
expression in fibroblasts (28). In cardiomyocytes, they have
been described to induce the antioxidant NRF2 pathway, thus
reducing damage from hypoxia/reoxygenation (29). The recently
developed Atlas of Inflammation Resolution (AIR) is a web
resource that gathers updated data on the various processes
modulated by LXs and other SPMs with in-depth information
about the underlying molecular pathways and their
interactions (30).

The effect of LXs is destined to be local and transitory,
therefore they are rapidly metabolized and inactivated by
modifications at different carbons by distinct enzymes,
primarily 15-hydroxyprostaglandin dehydrogenase (PGDH)
(12, 31). Since this inactivation is stereospecific, ATL
degradation occurs at approximately 50% of the conversion
rate of native LXA4, resulting in an increased half-life (32).
However, to further prolong LX action, synthetic LX analogs,
such as LXA4-methyl ester (LXA4-ME), benzo-LXA4 and 15-epi-
16-(p-fluoro)-phenoxy-lipoxin A4 (ATLa), have been designed
by substitutions at different carbons (33). These analogs resisted
rapid conversion while retaining their intrinsic properties and
biological functions (31), resulting in a more potent
bioactivity (18).

It is now widely accepted that a defective resolution phase
may lead to chronic inflammation, a more persistent response
that eventually causes tissue fibrosis, necrosis and irreversible
damage, severely affecting appropriate functioning of organs (4).
Impaired resolution may be enhanced by reduced dietary intake
of fatty acids, by genetic polymorphisms affecting SPM
biosynthesis and SPM receptors functionality and expression,
and by abnormal downstream signaling upon receptor activation
(34). In recent years, chronic inflammation has been
April 2021 | Volume 12 | Article 658840
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demonstrated to underpin pathologies not previously thought to
be inflammatory, like atherosclerosis, Alzheimer’s disease,
cardiovascular diseases or even cancer (35, 36), which
underscores the importance of an effective and tightly
regulated resolution process. Indeed, current therapies for
these diseases include treatment with generic corticosteroids
and non-steroidal anti-inflammatory drugs (NSAIDs), however
Frontiers in Immunology | www.frontiersin.org 3
their main drawbacks are their potential side-effects, including
hyperglycemia, hypertension, osteoporosis, increased bleeding or
even neurological alterations and treatment resistance in certain
patients (37, 38). As an alternative, LXs and other SPMs arise as
an effective anti-inflammatory treatment with reduced side
effects (39). Furthermore, reduced circulating levels of LXs
which reach nanomolar concentrations under physiological
FIGURE 1 | Stages of inflammatory process. Release of pathogen and damage-associated molecular patterns (PAMPs and DAMPs) from injured tissue initiates
inflammation by promoting the recruitment of neutrophils followed by monocytes. These immune cells blunt the source of damage by exerting different functions like
degranulation to release toxic substances, phagocytosis, release of pro-inflammatory cytokines and initiating antigen recognition. At the end of this phase, immune
cells shift to a resolutive phenotype, generating LXs and other specialized pro-resolving mediators that support the end of the inflammatory response. During
resolution, these compounds prevent neutrophil recruitment and induce their apoptosis, polarize macrophages towards an anti-inflammatory phenotype, promote
efferocytosis and inhibit fibroblast proliferation, among other functions. As a result, tissue is appropriately repaired. If the resolution phase is defective or insufficient,
pro-inflammatory stimuli persist and end up damaging the tissue, causing chronic inflammation and subsequent fibrosis and organ dysfunction.
TABLE 1 | Classification of principal specialized pro-resolving lipid mediators.

SPM Main enzymes Main precursor molecule References

Lipoxins 5-, 12- and 15-lipoxygenases Arachidonic Acid (AA) (1)
Aspirin-Triggered Lipoxins Acetylated COX-2

Cytochrome P450 enzymes
D-Series Resolvins Acetylated COX-2

5- and 15-lipooxygenases
Docosahexaenoic acid (DHA) (2)

E-Series Resolvins Acetylated COX-2
Cytochrome P450 enzymes
5- and 15-lipoxygenases

Eicosapentaenoic Acid (EPA) (2, 3)

Protectins Acetylated COX-2
15-lipooxygenase

Docosahexaenoic acid (DHA) (4)

Maresins 12-lipoxygenase (5)
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conditions- have been related to worsened prognosis and disease
progression, suggesting that LXs can serve as predictive
biomarkers as observed in sputum from severe asthma patients
(40), urine from lupus patients (41) or plasma from tuberculosis
patients (42). In the following sections, we will provide an up-to-
date analysis in relation to the current research on the role of LXs
in pathologies affecting the main physiological organ systems.
NEUROLOGICAL DISEASES

Alzheimer’s Disease
Alzheimer’s disease (AD) is a neurodegenerative disorder
representing the most common cause of dementia in the
elderly. It is characterized by the loss of cognitive functioning
(thinking, remembering, and reasoning) and behavioral skills to
such an extent that it interferes with a person’s life and daily
activities. Although its causes are not fully understood, the
deposition of toxic b-amyloid and P-Tau aggregates in the
brain has been reported to interfere with neuronal circuits and
Frontiers in Immunology | www.frontiersin.org 4
activate pro-inflammatory signaling in microglia, thus initiating
brain damage (43, 44).

Since both neurons and glia express ALXR (45), increasing
LXs production in the brain may blunt inflammation and
ameliorate the outcome of AD patients. Interestingly, LXA4

levels in brains from AD patients are reduced in contrast to
healthy controls (n=10), suggesting that AD-associated
neuroinflammation may be worsened by defective resolution
mechanisms (45). In fact, treatment with LXs and their
derivatives exerted beneficial effects in a human microglial cell
line (46) and protected against the harmful accumulation of both
b-amyloid and P-Tau aggregates by improving their phagocytic
elimination via upregulation of IL-10 and TGF-b anti-
inflammatory pathways in different mouse models of AD by
either s.c. or intracerebroventricular (ICV) injection (47–50).
These beneficial effect observed upon LX treatment can be
partially explained by the decreased activity of the NF-kB/IL-
1b pathway, which in turn downregulates p38, ERK, JNK and
GSK3b kinases responsible for neuroinflammation and Tau
phosphorylation (49, 51–53).
FIGURE 2 | Overview of the main lipoxin biosynthetic pathways. In the PMN cell, Arachidonic Acid (AA) can be converted into either 15S-HpETE or Leukotriene A4

(LTA4) by 15-LO and 5-LO, respectively. Then, these metabolites are transformed into native lipoxin A4 or B4. Moreover, platelets can use LTA4 from PMNs to
produce LXA4/B4 in a process known as transcellular biosynthesis. Likewise, in epithelial cells AA is transformed by 15-LO into 15-HETE, which is transferred to
PMNs to produce LXA4/B4. Endothelial cells can use AA to yield the intermediate 15R-HETE by COX-2, step that is promoted by aspirin. This transitional molecule is
metabolized by PMNs to generate the “aspirin-triggered” 15-epi-lipoxins A4 and B4. Finally, both native and aspirin-triggered LXs can be rapidly inactivated by 15-
PGDH, stopping the downstream signaling.
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Stroke
Stroke is one of the leading causes of death worldwide and of
disability in adults. Ischemic stroke is the most prevalent and
occurs when a brain artery is totally or partially blocked by a clot
or burst, prompting ischemia and preventing the brain from
receiving oxygen and nutrients and triggering an inflammatory
response that causes severe brain damage (54). Within the most
common symptoms, patients exhibit trouble with speaking and
understanding, paralysis in the face, arms or legs, partial blindness,
loss of coordination and headache (54). Current therapies are
limited, have side effects and their efficiency depends on a narrow
time window, therefore research on alternative treatments is
mandatory (54, 55). In addition, within the first five years after
stroke, a high percentage of patients develop depressive symptoms,
worsening their prognosis (56). Interestingly, it has been shown that
circulating LX levels are lower in patients with ischemic stroke (n=
75 patients vs. 35 healthy) (57) and with depression compared to
controls (n=143patients vs. 44 healthy) (58). Concordantly, LXs and
their analogs have been extensively demonstrated to play an
important protective role in animal models of stroke (55). Thus,
ICV inoculation of LXA4-ME immediately after occlusion reduced
neurological dysfunction, infarct volume and histological damage in
a rat model (59, 60). LXA4-ME treatment managed to decrease the
number of apoptotic neurons (59) and to inhibit neutrophil
infiltration and microglia activation, overall reducing pro-
inflammatory cytokine levels mainly by downregulating NF-kB
pathway (60). Both LXA4-ME (ICV) and BML-111 –ALXR
analog- (i.v.) treatment allowed for the maintenance of blood-
brain barrier, since MMP-9 and MMP-3 expression and activity
were decreased whereas TIMP-1 was increased, further protecting
against cerebral ischemia (55, 61, 62). Similar results were observed
withATL(i.v.),whichalsoprevented leukocyte-platelet aggregations
within cerebral microvasculature, therefore reducing the risk of
cerebral atherothrombosis (63). Interestingly, treatment with
rosiglitazone, a PPARg agonist, promoted neuroprotection in a
murine model of stroke in part by inducing 5-LO synthesis, thus
increasing LXA4 (64). Other molecular pathways implicated in LX-
associated neuroprotection are NRF2/HO-1 and autophagy, both
involved in the antioxidant response (65, 66).

Generally, all these data support the idea that LX treatment
emerge as a new therapeutic tool for brain diseases since these
compounds can control increased inflammation and oxidative
stress associated with brain damage. More clinical and
experimental approaches are needed to elucidate the potential and
the specific mechanism behind LX-mediated neuroprotection.
Thus, additional data on the anti-apoptotic and pro-survival
actions of LX in neurons or their role in the maintenance of the
blood-brain barrier can reveal the mechanisms supporting
LX-dependent neuroprotection.
CARDIOVASCULAR DISEASES

Atherosclerosis
Atherosclerosis, the formation of fibro-fatty lesions in the artery
wall, causes much morbidity and mortality worldwide as it is
Frontiers in Immunology | www.frontiersin.org 5
commonly associated with myocardial infarction or stroke, as
well as peripheral artery disease. The main risk factors include
hypercholesterolemia and blood lipid dysregulation but also
hypertension, cigarette smoking and diabetes mellitus.
Increasing evidence points to a role for the immune system,
being increased pro-inflammatory mediators emerging factors
for the prognosis of patients (36, 67).

Current research has revealed that deficient LX levels are
tightly related to atheroma development. In fact, LX precursors
profile was found reduced in unstable atherosclerotic plaques
compared to stable plaques, suggesting that changes on pro-
resolving lipids may promote plaque inflammation and rupture
(68). Studies in rabbit atherosclerotic arteries showed reduced
levels of LXs along with exacerbated levels of pro-inflammatory
cytokines associated to a defective resolution process during
atherogenesis (69, 70). Interestingly, statins, the most prevalent
atherosclerosis medication, can upregulate the lipoxygenase
pathway (71), and simvastatin, atorvastatin and lovastatin
treatments were found to promote 15-epi-LXA4 formation
independently of aspirin, indicating that synthesis of 15-epi-
LXA4 could also be statin-triggered (15).

Although the molecular mechanism of LX-associated
atheroprotection is not completely known, evidence suggests
that LXs modulate the inflammatory process within
atherosclerotic plaques (foam cells, ROS, cytokines) as well as
elements interacting with them, such as vascular smooth muscle
and immune cells, resulting in reduced necrosis and increased
plaque stability (72). LXs treatment has been demonstrated to
inhibit foam cell formation and apoptosis in macrophages
mainly by blunting both the expression and signaling of CD36,
the main receptor involved in oxLDL uptake (69). In addition,
i.p. administration of LXA4 and benzo-LXA4 reduced aortic
expression of pro-inflammatory cytokines (IL-1b and IL-6)
and adhesion molecules (MCP-1, VCAM-1 and ICAM-1) in a
mouse model of atherosclerosis (73). ATL was also found to
inhibit vascular smooth muscle cell migration, preventing
atherosclerotic lesions (74).

Therefore, the atheroprotective mechanisms elicited by LXs
include reduced infiltration of inflammatory cells that can
modulate the promotion of pro-resolution phenotypes inside
the plaque. The evidence of statin-triggered LXs may explain
some of the anti-inflammatory effects of statin therapy (75) and
represents an interesting approach to increase LX levels and
promote resolution in atherosclerotic patients especially by
inducing plaque stabilization and preventing the appearance of
acute cardiovascular events. However, additional studies are
required to completely understand their synthesis mechanism
as well as the resolution potential of statin treatment. Lastly, LXs
role in plaque stabilization by preventing rupture and adverse
thrombotic events is of paramount relevance in the context of
atherosclerosis and it will undoubtedly be addressed in
future research.

Myocardial Ischemia/Reperfusion Injury
Myocardial ischemia/reperfusion (I/R) injury occurs due to
blood restoration after a critical period of coronary artery
obstruction, which is associated with clinical interventions
April 2021 | Volume 12 | Article 658840
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such as thrombolysis, angioplasty, and coronary bypass surgery.
This reperfusion injury involves the activation of an
inflammatory cascade and is manifested as functional
impairment, arrhythmia, and accelerated progression of cell
death in certain critically injured myocytes. Among the main
mediators of reperfusion injury are oxygen radicals, calcium
mishandling, and excessive inflammation (76). The primary
therapeutic approach consists of improving the blood flow to
the cardiac muscle and establishing a medical treatment for the
main symptoms caused after damage. However, it is still
necessary to find specific and more effective alternatives aimed
at recovering lost cardiac functionality. Experimental evidence
suggests that LX treatment may ameliorate myocardial injury
outcome. Chen et al. were the first to describe a protective role
for LXA4 in a rabbit model of myocardial I/R following cardiac
arrest. I.v. administration of this SPM inhibited the expression of
pro-inflammatory cytokines, reducing the apoptosis of cardiac
cells (77). In addition, Zhao et al. demonstrated that LXA4

preconditioning and post-conditioning (i.v.) in myocardial I/R
injury attenuated myocardial metabolic disturbance, inhibiting
the inflammatory reaction and oxidative stress (78). This
protective mechanism appears to occur by a downregulation of
caspase 12 and GRP-78, both implicated in apoptosis (79).

Myocarditis
Myocarditis is a pathology caused by the inflammation of the
cardiac muscle that can be associated to viral infections, toxic
substances, or autoimmune processes. It is also considered one of
the main precursors of dilated cardiomyopathy and one of the
main causes of cardiac transplant in young adults (80).

LXs exhibited a protective effect in murine models of
myocarditis. Part of this effect is achieved by cardiac inhibition
of PI3K/Akt and NF-kB pro-inflammatory pathways (81), whose
deleterious roles in cardiac pathology have been widely described
(82, 83). Furthermore, the activation of NRF2 antioxidant
response represents one of the main effects of LX-mediated
protection as observed in a myocarditis model. We recently
described that in cardiomyocytes, this activation occurs via
CaMKK2-AMPKa pathway (84). Interestingly, patients with
severe heart failure also exhibit decreased plasma levels of LXs,
indicating deficient resolution of inflammation (n = 18 mild-to-
moderate vs. 16 severe chronic heart failure) (85).

Altogether, current evidence demonstrates that LXs are able
to efficiently coordinate the pro-resolutive response in the heart,
suggesting that LX-based therapy could be a more effective
alternative to treat cardiac diseases preventing cardiac
inflammation, remodeling and dysfunction.
RESPIRATORY DISEASES

Acute Lung Injury
Acute lung injury (ALI), and its most severe form, acute
respiratory distress syndrome (ARDS) are manifestations of
the lung to an inflammatory response and have high morbidity
and mortality in the present (86). They are characterized by
Frontiers in Immunology | www.frontiersin.org 6
severe hypoxemia, hypercapnia, diffuse infiltration in the chest
X-ray and a substantial reduction in pulmonary compliance
ultimately leading to respiratory failure (86).

Inflammation and activation of immune cells are critical for
ALI and ARDS development, since the release of pro-
inflammatory cytokines and proteases increases alveolar-
capillary barrier permeability, disrupting the appropriate
clearance of alveolar fluid and leading to pulmonary edema
(87, 88). In this context, research in animal models of ALI
revealed that i.v. LXA4 treatment diminished the production of
pro-inflammatory cytokines and ROS, thus improving alveolar
fluid clearance (89–91). BML-111 (i.p.) and ATL (i.v.) exhibited
similar results including preventing neutrophil infiltration,
promoting its clearance (92, 93) and inhibiting the formation
of neutrophil-platelet aggregates (87).

LXs and analogs also modulate pulmonary cells by preventing
apoptosis and promoting proliferation of alveolar type II cells
(94), reducing inflammatory signaling in microvascular
endothelial cells (95, 96) and promoting autophagy in alveolar
macrophages (97). In addition, they diminish fibrosis and
support appropriate alveolar epithelial repair by inhibiting
collagen production and proliferation of lung fibroblasts (94).
LXs regulate these processes by antagonizing TLR4/NF-kB and
MAPK/AP-1 signaling (95, 96, 98) and by activating both the
anti-inflammatory and anti-fibrotic ACE2-Ang- (1–7)-Mas axis,
mainly through an upregulation of levels and activity of ACE2
(90, 99) and the antioxidant NRF2/HO-1 pathway (96, 100).
Altogether, the ability of LXs to maintain the integrity of
pulmonary epithelia and to prevent infiltration of immune
cells accentuates their therapeutic potential in relation to ALI
and ARDS, especially by blunting neutrophilia, the hallmark of
these pathologies.

Asthma
Asthma is characterized by acute episodes of shortness of breath,
coughing and chest tightness due to an underlying chronic
inflammatory process sustained by a combined action of
immune cells and bronchial epithelial cells (101). It affects 300
million people worldwide, being one of the most common
chronic diseases in children and adults (102). Corticosteroid
treatment is the most common medication for asthma, however,
a small percentage of patients develop a more severe form that is
unresponsive to this treatment, demanding more effective
alternative therapies (103).

The potential of LXs to serve not only as a treatment but also
as a biomarker for asthma has been extensively examined, as LXs
concentration can be easily evaluated in sputum or exhaled
breath. Decreased LXA4 levels have been correlated with
increased asthma severity in both adults (n = 12 mild asthma,
15 moderate, 24 severe and 10 healthy) (40, 104) and
children (n=36 mild asthma, 42 moderate, 28 severe vs. 40
healthy) (105–107). In fact, alveolar macrophages obtained
from patients with severe asthma synthesize less LXs per se
and in response to LPS treatment (n=11 severe asthma, 12 non-
severe and 14 healthy) (103). In severe asthmatic children,
alveolar macrophages were also found to be apoptotic and less
April 2021 | Volume 12 | Article 658840
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functional (n=28 severe vs. 10 healthy) (108). This impaired LX
synthesis explains in part the neutrophilia and eosinophilia
observed in asthma, especially in severe cases (103). Indeed,
LXs and analogs have been observed to attenuate eosinophil
function as well as T lymphocyte and mast cell activity, both in
vitro and in vivo (109–111). In relation to this, LXs managed to
enhance NK cells functions in patients with asthma (112),
including NK-induced apoptosis in eosinophils preventing
enhanced inflammation (113).

Notably, 5-10% of asthmatic patients suffer from aspirin-
intolerant asthma (AIA), developing exacerbated inflammation
and asthmatic attacks upon aspirin treatment in contrast to
aspirin-tolerant asthmatics (ATA) (114). LXs may play a major
role in this syndrome since Sanak et al. proved that aspirin-
treated blood from AIA patients produced less LXA4 and ATL
than blood from ATA patients (n= 14 AIA vs. 11 ATA) (114).
Similarly, urinary ATL levels were lower in AIA patients when
compared to ATA patients (n=15 AIA vs. 16 ATA) (115). An
interesting approach would be evaluating whether exogenous LX
administration could ameliorate symptoms in AIA patients by
balancing LX deficiency.

In light of the encouraging results obtained, recent advances
in asthma treatment include a pilot application based on the
inhalation of two LX analogs to treat children with acute episodes
of asthma, which turned out to be a safer and more efficient
alternative than some of the current asthma medications (116).
Idiopathic Pulmonary Fibrosis
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung
disease characterized by a progressive fibrotic process in the
lungs that severely obstructs gas exchange, eventually causing
respiratory failure and death, with mean survival ranging
between 3-5 years (117, 118). The only treatment available is
lung transplantation, with alternative therapies focusing on
delaying fibrosis development and improving patients’ quality
of life.

LXs have been reported to exert anti-fibrotic actions in the lung,
mainly by inhibiting TGF-b signaling and collagen I production in
fibroblasts (94, 119, 120), and by preventing fibroblasts proliferation
and differentiation into myofibroblasts (94). These effects have also
been observed in human lung myofibroblasts obtained from IPF
patients, together with a reduction of a-smoothmuscle actin (SMA)
expression and actin stress fibers formation and contraction (121).
Likewise, mice subjected to bleomycin-induced lung fibrosis and
treated i.t. with ATL exhibited reduced inflammation and fibrosis,
resulting in amelioration of pulmonary performance and mouse
survival (122, 123).
Cystic Fibrosis
Cystic fibrosis (CF) is an autosomal recessive disorder caused by
a mutation in the gene encoding for cystic fibrosis
transmembrane conductance regulator (CFTR) (124). It is one
of the most common genetic diseases, with a prevalence of 1:2500
in Caucasians and a median life expectancy under 50 years of age
(124, 125). Defects on CFTR lead to mucus accumulation,
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bacterial infection and exacerbated inflammation, eventually
causing respiratory failure (124). In this sense, LXA4 treatment
in both in vitro and in vivo (i.v.) CF models was found to reduce
bacterial and neutrophil counts (126), as well as prevent
epithelial barrier disruption upon pathogen infection (127).

Interestingly, CFTR and LXs appear to be profoundly
interrelated. Mattoscio et al. found that inhibition of CFTR in
platelets decreased LXA4 synthesis (128). In fact, platelets from
CF patients produce 40% less LXA4 than healthy controls (n = 6
homozygous, n = 8 heterozygous and n = 4 healthy). CFTR-
mutated animals also exhibit reduced LXA4 levels, whereas
restoring CFTR activity augmented them (129).

LXs were also found to affect the function of other pulmonary
ion transport channels inducing Cl- secretion through calcium-
dependent chloride channels, inhibiting Na+ absorption
by epithelial sodium channels and activating KATP channel
(130–132). As a result, LXs promote mucus clearance and
airway epithelial repair, preserving airway surface liquid layer
and protecting against bacterial infection and lung inflammation,
which underscores their therapeutic potential to ameliorate
respiratory diseases.
RENAL DISEASES

Renal Ischemia/Reperfusion Injury
Renal ischemia/reperfusion injury is caused by a sudden
temporary impairment of kidney´s blood flow. It is usually
associated with a robust inflammatory and oxidative stress
response to hypoxia and reperfusion which impairs organ
function (133). Although its pathophysiology is not completely
understood, oxygen radicals generated at reperfusion phase
initiates a cascade of deleterious cellular responses leading to
inflammation, cell death, and acute kidney failure.

Treatment with ATLa (i.v.) was found to restore renal
function and morphology and to diminish pro-inflammatory
cytokine production and neutrophil infiltration in a mouse
model of acute renal failure (134). Transcriptomic analysis
performed in this model revealed that pre-treatment with this
analog also managed to downregulate pro-fibrotic and pro-
apoptotic genes, including collagen, transgelin and Fos-like
proteins, while upregulating genes implicated in the
antioxidant defense, cell growth and transport proteins, like
glutathione, angiogenin and aquaporin (135). At the molecular
level it has been proposed that this protective effect is mediated
by MAPKs, mainly p38 and ERK, and PPAR/NRF2 pathways
(136, 137).
Renal Fibrosis
Renal fibrosis is mainly mediated by excessive proliferation of
mesangial cells, which plays an important role in glomerular
inflammation. Both i.v. administration of LXA4 and benzo-LXA4

improved renal fibrosis in rats by diminishing renal apoptosis,
TNFa and IFNg expression, TGF-b and PAI-1 activation, and
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collagen deposition (138). Attenuation of MAPK, Akt and Smads
signaling pathways are responsible for these effects. Interestingly,
Brennan et al. observed that LX upregulates the expression of let-
7c miRNA to promote the anti-fibrotic response, manifesting the
existence of LX-activated miRNA pathways (139). Due to their
ability to inhibit adverse remodeling in the kidney, LX treatment
represents a great alternative to prevent the development of renal
fibrosis and subsequent chronic kidney disease.
Diabetic Kidney Disease
Diabetic kidney disease occurs in >30% of patients with type 2
diabetes mellitus and is characterized by a maladaptive response of
the renal parenchyma, which is intensified by the development of a
chronic inflammatory response, finally leading to renal failure.
Results from a clinical trial in chronic kidney disease patients
revealed that aspirin treatment increased ATL levels in diabetic
patients, however the effects of this increase were not evaluated
(140). Studies in diabetic kidney disease animal models concluded
that i.p. injection of LXA4 and benzo-LXA4 attenuated the
development of the disease, including pro-inflammatory and pro-
fibrotic signaling (141). Transcriptomic profile of this model
found enrichment of classical pro-inflammatory pathways (TNFa,
NF-kB, TGF-b) and identified activation of early growth response-1
(EGR-1) network to be involved in diabetic pathology as well (141).
LXs managed to downregulate the transcriptional network of these
mediators, thus representing an effective treatment to prevent renal
inflammation and fibrosis developed in diabetic pathology.
PERIODONTAL DISEASES

Periodontal diseases (PD) represent a broad group of diseases
characterized by chronic inflammation in the supporting structures
of the teeth, in particular gingivae, bones and ligaments. It is typically
initiated by bacterial infection, which induces an inflammatory
reaction in the gingivae –termed gingivitis– that subsequently
progresses into PD when untreated (142). PD can evolve into
periodontitis, a much more severe form of the disease that can
ultimately cause loss of teeth. The global prevalence of PD has been
estimated to range between 10-15% of the population (142).

PD has been described to be initiated mainly by the
inflammation of the periodontium, which consequently induces
PMN recruitment since they represent the first line of defense
against bacterial infection (143). An exacerbated recruitment of
these immune cells to the periodontium weakens periodontal tissue
leading to PD. LXs have been widely described to ameliorate PD
outcome (144) showing that in animal models are able to reduce the
release of pro-inflammatory mediators as well as PMN recruitment
to the affected area (145). Studies in patients have proposed that
reduced serum or salivary levels of LXA4 in patients can be useful as
PD marker (n >65) (146–148).

The protective mechanism appears to lie in the inhibition of
pro-inflammatory cytokines that modulate PMNs, hampering
their recruitment and pro-inflammatory signaling thus
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preventing the onset of periodontal inflammation (149). In this
sense, LXA4 treatment has also been found to abolish NF-kB and
TNFa signaling in periodontal ligament cells, which play a
pivotal role exacerbating the inflammatory response (150).
Furthermore, increased circulating ROS levels and blood
aggregation caused by P. gingivalis infection were successfully
reduced upon LXA4 treatment, and this effect appears to be
dependent on platelet-PMN interaction (151). In a different
context, this SPM has also been shown to stimulate
proliferation and migration of stem cells of the apical papilla
-the main source of dentin-like structures- as well as inhibiting
their pro-inflammatory activation, which may indicate LXs have
also regenerative potential besides their anti-inflammatory
properties (152). In fact, currently, targeting PD with LX-based
treatment has reached clinical trial in the form of oral rinse
(https://clinicaltrials.gov/ct2/show/NCT02342691).
ARTHRITIS AND RHEUMATIC DISEASES

Rheumatoid arthritis (RA), an autoimmune disease causing
severe destructive inflammation of the joints with associated
systemic complications, is one of the most prevalent rheumatic
disease to date (153). Current treatments are based on
corticosteroids, potent anti-inflammatory drugs that are also
well known to have adverse effects (154).

Studies in animal models of RA have reported that
administration of either LXA4 (i.art.) or BML-111 (i.p.) attenuates
arthritis in mice by diminishing joint erosion, pro-inflammatory
cytokines release and immune cell infiltration (155, 156). In the
same line, it was demonstrated that 12-LO/15-LO deficiency
exacerbates the development of arthritis in mice partly due to a
reduction in LXA4 levels (157). In this context, LXA4 treatment has
been shown to prevent pro-inflammatory activation of fibroblast-
like synoviocytes, the main cell type responsible for immune
activation and inflammation in RA (158). Regarding the
molecular pathways underlying this beneficial effect, it is known
that LXA4 abrogates IL-6 expression (158), counteracts MMP/
TIMPs imbalance in tissue degradation and fibrosis (159), and
opposes IL-1b and TGF-b pro-inflammatory and pro-fibrotic
actions in human fibroblast-like synoviocytes (158, 159). These
effects occur in part by inhibition of p38 MAPK signaling pathway
(PMID 33221976).

Besides RA, LXA4 treatment (i.p.) has been found to alleviate
osteoarthritis in rodent models (160, 161) and its deficiency appears
to be partly responsible for the onset of systemic lupus
erythematosus (162). Indeed, it has been described that
corticosteroids can inhibit LX production in the long term, which
could explain the negative effects of the prolonged use of these drugs
(163). Altogether, this evidence exhibits the crucial role that LXs and
other SPMs play in rheumatic disorders as modulators of
immunosuppressive and anti-inflammatory processes.
Nonetheless, additional research should be conducted to strongly
determine the specific effects of SPMs in rheumatic pathologies to
appropriately evaluate their benefits.
April 2021 | Volume 12 | Article 658840

https://clinicaltrials.gov/ct2/show/NCT02342691
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Jaén et al. Lipoxins as New Therapeutic Tools
CONCLUDING REMARKS

Persistent inflammation underpins many of the most prevalent
pathologies at the present. Thus, a chronic inflammatory
scenario is present in many cardiovascular, pulmonary, or
neurological diseases as well as metabolic disorders and even
cancer. LXs are endogenous pro-resolving lipid mediators whose
levels are significantly reduced in a wide range of pathologies
affecting the main systems we have reviewed. These mediators
can play a decisive role in many of these pathologies, mainly due
to their capacity to both halt the inflammatory signaling and
reduce oxidative stress (Figure 3). Exogenous administration of
LXs or stimulation of their endogenous synthesis represent
interesting alternative therapies that have provided successful
results in animal models. LXs exert beneficial effects at different
routes of administration, and synthetic analogs with more potent
and prolonged actions are commercially available. Moreover,
Frontiers in Immunology | www.frontiersin.org 9
these SPMs have more reduced side-effects than most current
treatments due to their endogenous nature. All these factors
make them attractive targets from a pharmacological point of
view. Nonetheless, additional evaluation of pharmacokinetics as
well as potential side-effects is necessary to fully determine their
safety and effective dose. Altogether, LX-based therapies emerge
as a promising approach to kick off resolution pharmacology,
which has exhibited great potential and could provide
alternatives to treat current health problems with high
incidence worldwide in the near future.
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FIGURE 3 | Schematic overview of the main signaling pathways modulated by lipoxins and their effects in the pathologies addressed in this review. LXs have been
described to coordinate a wide range of signaling pathways depending on cell context, allowing for a fine-tune regulation of the resolution process. For example,
they induce apoptosis in neutrophils to promote their clearance while they prevent apoptosis in cardiomyocytes thus exhibiting cardioprotective actions. By
modulating different pathways, LXs can exert protective effects on different cell types and environments, as observed by their effects on the brain, heart, lung, liver,
periodontium and joints. Mediators highlighted in red indicate downregulation or inhibition by LX action whereas green indicates upregulation or activation.
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