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Abstract

Background: Recently, pioneering expression quantitative trait loci (eQTL) studies on single cell RNA sequencing
(scRNA-seq) data have revealed new and cell-specific regulatory single nucleotide variants (SNVs). Here, we present
an alternative QTL-related approach applicable to transcribed SNV loci from scRNA-seq data: scReQTL. ScReQTL uses
Variant Allele Fraction (VAFRNA) at expressed biallelic loci, and corelates it to gene expression from the
corresponding cell.

Results: Our approach employs the advantage that, when estimated from multiple cells, VAFRNA can be used to
assess effects of SNVs in a single sample or individual. In this setting scReQTL operates in the context of identical
genotypes, where it is likely to capture RNA-mediated genetic interactions with cell-specific and transient effects.
Applying scReQTL on scRNA-seq data generated on the 10 × Genomics Chromium platform using 26,640
mesenchymal cells derived from adipose tissue obtained from three healthy female donors, we identified 1272
unique scReQTLs. ScReQTLs common between individuals or cell types were consistent in terms of the
directionality of the relationship and the effect size. Comparative assessment with eQTLs from bulk sequencing data
showed that scReQTL analysis identifies a distinct set of SNV-gene correlations, that are substantially enriched in
known gene-gene interactions and significant genome-wide association studies (GWAS) loci.

Conclusion: ScReQTL is relevant to the rapidly growing source of scRNA-seq data and can be applied to outline
SNVs potentially contributing to cell type-specific and/or dynamic genetic interactions from an individual scRNA-seq
dataset.
Availability: https://github.com/HorvathLab/NGS/tree/master/scReQTL
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Background
In recent years, single cell RNA-seq (scRNA-seq) has be-
come an increasingly accessible platform for genomic
studies [1]. By enabling cell-level analyses, scRNA-seq
has major advantages for studying gene-regulatory rela-
tionships. Among others, the ability to distinguish cell
populations and to assess cell-type specific transcrip-
tome features, have shown great potential to identify
new regulatory networks [2–4]. Furthermore, scRNA-
seq enables the assessment of intracellular molecular re-
lationships, which can reveal cell-specific gene-gene in-
teractions and co-regulated genetic features [2, 5, 6].
These relationships can be reflected in mutually corre-
lated molecular traits, including gene expression (GE)
and expression of genetic variants, such as Single Nu-
cleotide Variants (SNVs).
A popular method to study SNVs effects on GE is eQTL

(Expressed Quantitative Trait Loci), which is based on
testing for a correlation between the number of alleles
bearing the variant nucleotide at the position of interest,
and the level of local (cis) or distant (trans) GE [7]. eQTLs
have been mapped by large-scale efforts such as
Genotype-tissue Expression Consortium (GTEx), Psy-
chENCODE, ImmVar BLUEPRINT, and CAGE [8–12].
Recently, pioneering eQTL studies on scRNA-seq data

have emerged. By utilizing the advantages of the single
cell resolution, these studies have revealed many new
regulatory SNVs, including those with cell-specific or
transient effects [2, 13–16]. To assess GE, these methods
employ approaches specific to single cell transcripto-
mics, including accounting for drop-outs, classification
of cells by type, and assessments of progressive cell
stages [2–4, 13–16]. SNV information is traditionally ob-
tained from the genotypes across multiple individuals
and encoded as the number of alleles (0, 1 or 2) bearing
the variant nucleotide. Accordingly, eQTL analyses are
confined to SNVs present in a sufficient number of indi-
viduals in the studied group, and frequently exclude var-
iants with low minor allele frequency in the population.
Here, we explore an alternative approach to assess the

correlation between GE and expression of SNVs located
within transcribed genes from scRNA-seq data. The ex-
pression of the SNVs is estimated as the proportion of
variant-bearing RNA molecules (Variant Allele Fraction,
VAFRNA) at biallelic SNV loci. To correlate VAFRNA to
GE from single cells, we estimate VAFRNA in the individ-
ual cell alignments, and correlate VAFRNA with GE from
the individual cells using a linear regression model [17].
To develop the pipeline, we used recent methodologies
for calling SNVs and VAFRNA estimation from RNA-seq
data [18–23], as well as scRNA-seq-specific methods to
estimate GE [24]. We also adopted a strategy from a
method recently developed in our lab to correlate
VAFRNA and GE from bulk RNA-sequencing data –
ReQTL (RNA-eQTL) [25]. We term the application of
this technique on single-cell RNA-sequencing data:
scReQTL.
We applied scReQTL on publicly available scRNA-seq

generated on the 10 × Genomics Chromium platform
using 3′-based protocol on 26,640 human adipose-
derived mesenchymal stem cells (ADSCs), obtained from
three healthy donors. This scReQTL analysis includes
approximately 4 billion scRNA-seq reads. ScReQTL ana-
lysis was performed after classification of the cells by cell
type, and only SNVs covered by a minimum of 10
unique sequencing reads per cell were included in the
analysis. Across the three samples, we identified 1272
unique scReQTLs. scReQTLs common between individ-
uals or cell types were consistent in terms of the direc-
tionality of the relationship and the effect size. In
addition, scReQTLs were substantially enriched in
known gene-gene interactions and significant genome-
wide association studies (GWAS) loci.

Results
Overview of scReQTL workflow
An example of scReQTL workflow using publicly avail-
able tools is presented in Fig. 1 and outlined in detail in
Methods. Below, we describe the workflow elements that
we identified as specific and essential for the scReQTL
analysis.
The scReQTL workflow includes three major compo-

nents: scRNA-seq data processing, VAFRNA assessment,
and SNV-GE correlation by cell type.
Processing includes barcode and UMI modeling, align-

ment, GE estimation and cell type classification, and can
employ a variety of publicly available tools. In the exempli-
fied workflow, we process the barcodes using UMItools,
and align using STAR the alignments are then dedupli-
cated based in UMIs [26, 27]. Because VAFRNA estima-
tions can be sensitive to allele mapping bias, SNV-aware
alignment recommended. We perform SNV-aware align-
ment for the list of positions of interest to be used as input
for scReQTL analyses. Here, we perform SNV-aware
alignment against the biallelic positions called by GATK
in the corresponding pooled alignments applying a two-
pass 2-pass STAR-WASP as previously described [18, 28,
29]. Alternatively, scReQTL can be applied on genomic
positions of interest from external sources, for example
sets of somatic mutations from the COSMIC database, or
known RNA-edited loci from the REDI portal [30, 31]; in
these cases, the selected sets of loci can be used as input
for STAR-WASP alignment for.
GE estimation is performed on the SNV-aware align-

ments, using FeatureCounts to assess the raw gene
counts [32], followed by Seurat for normalization and
GE variance stabilization [24, 33]. The generated GE ex-
pression values are then used to remove low quality



Fig. 1 ScReQTL workflow (a), with an example of a significant scReQTL correlation between the SNV at 10:4977767_G > A and the gene
AKR1C1 (b)
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data, batch effects and cell-cycle effects. The distribu-
tions of genes and RNA-seq reads, and the selected QC
threshold are shown on Fig. 2. The effects of batch-
correction and cell-cycle effects removal are shown on
Supplementary Figure 1. On the high-quality cell-set we
then apply Seurat [33], to normalize gene expression
Fig. 2 Density plots showing the distribution of cells based on proportion
(bottom) plotted against the counts of sequencing reads in the three samp
selected QC thresholds: mitochondrial gene expression above 6%, and num
also filtered out signals with more than 8000 genes and/or over 125,000 re
and to identify the most variable genes to be used in the
scReQTL analyses (See Methods).
Cell type identification is performed using SingleR

[34]. The expression profile of each single cell was corre-
lated to expression data from the BluePrint + ENCODE
dataset. Across the three study samples, four major cell
of transcripts of mitochondrial origin (top), and number of genes
les (from left to right: N8, N7, N5). The dotted line indicates the
ber of genes below 3000. To remove potential doublets/multiples we
ad counts



Fig. 3 a) Cell types identified in each donor using SingleR. Adipose cells and erythrocytes were found in all three donors, whereas naïve-B-cells
were seen in N5 and N7 and neutrophils only in N8. b) expression of genes associated with cell types: DCN (adipose cells, top), H2AFZ
(erythrocytes, middle), and H1F0 (neutrophils and naïve B cells)
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Fig. 4 Distribution of scVAFRNA values estimated at SNV sites (displayed on the y-axis) with minR> 10 before (a) and after (b) filtering of non-
variable SNV loci. The SNV sites are sorted by decreasing percentage of cells (x-axis) with scVAFRNA values < 0.2
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types were identified: adipose cells, erythrocytes, neutro-
phils, and naïve-B cells. Adipose cells and erythrocytes
were found in all three samples, whereas naïve-B cells
were seen in N5 and N7 and neutrophils – in N8 (Fig. 3
and Supplementary Figure 2).
VAFRNA is assessed from the individual cell alignments

at the positions of interest using SCReadCounts [35].
For each position, SCReadCounts estimates the number
of sequencing reads bearing the variant and the refer-
ence nucleotide (nvar and nref, respectively), calculates
VAFRNA (VAFRNA = nvar / (nvar + nref)) and outputs the
values in an SNV-barcode matrix. The SNV-barcode
matrices are in a format analogous to the GE-barcode
matrices and can be directly used in the ReQTL
Table 1 Input parameters for scReQTL analysis, and number of iden
analyses. To address stochasticity of sampling, estima-
tions of VAFRNA require a threshold of minimal number
of unique sequencing reads (minR). Our previous re-
search shows that current scRNA-seq datasets can con-
tain hundreds of SNV sites covered by minimum of 10
sequencing reads (minR > 10) and thousands of SNV
sites with minR > 5 [28]. In the herein presented ana-
lysis, we used VAFRNA estimated at sites with minR > 10;
from here on, we refer to these loci as informative. We
note that for minR we are referring to sequencing reads
with unique UMIs which are derived from unique
mRNA molecules. The VAFRNA distribution of the
qualifying SNVs is then examined to identify the most
variable VAFRNA loci (see Methods). VAFRNA distributions
tified scReQTLs per cell type
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before and after filtering of uninformative (minR< 10) and
non-variable VAFRNA are shown on Fig. 4a and b,
respectively.
SNV-GE correlations (scReQTLs) are then computed

for each donor, stratified by cell type (see Methods). To
qualify for scReQTLs analysis an SNV locus is required
to have informative and variable VAFRNA estimations
from at least 20 cells per analysis. The variable VAFRNA

were correlated to the normalized GE values of the vari-
able genes using linear regression model as implemented
in Matrix eQTL [17]; quantile-quantile plots (QQ-plots)
are presented on Supplementary Figure 3. Cis- and
trans-correlations were annotated as we have previously
described for the bulk ReQTLs [25]. Briefly, because
scReQTLs are assessed from transcripts, we assign cis-
correlation based on the co-location of the SNV locus
within the transcribed gene; all the remaining correla-
tions are annotated as trans-scReQTLs).

Overall scReQTL findings
The number of variable genes and VAFRNA loci retained
for scReQTL analysis in the three donors (by cell type)
is shown in Table 1. We performed scReQTL analysis
Fig. 5 Examples of significant (FDR = 0.05) scReQTL correlations in donor N
types cis-scReQTL is shown between the SNV at 10:4977767_G > A and its
nearby positioned gene AKR1C2 (trans-scReQTL, d). Note that the displayed
using the R-package ggplot2 and do not represent the FDR—corrected va
separately for each individual and cell type; accordingly,
9 scReQTL analyses were run. Among the samples and
cell types, between 79 and 316 SNV loci, and between
2114 and 2442 genes were used as input for scReQTL
analysis. Across the 9 groups, a total of 644 distinct
SNVs and 2571 distinct genes were tested. This analysis
identified 1272 unique scReQTLs at false discovery rate
(FDR) of 0.05. All significant scReQTLs are listed in
Supplementary Table 1; examples are shown on Fig. 5.
Among the unique scReQTLs, 7 were identified in

more than one cell type or sample (Supplementary
Table 2). In all these cases, the correlations were in the
same direction, and the effect sizes were similar (See Fig.
5c and d). We note that the number of common input-
SNVs across the 3 samples was as low as 20 (numbers of
common input SNVs and genes, as well as the common
scReQTLs SNVs and genes are shown in Supplementary
Figure 4).
Next, we investigated the relationship between cis-

and trans-scReQTLs. Of the significant scReQTLs, only
6 represented cis-correlations, representing 4 distinct
SNV-gene pairs, (examples shown in Fig. 5c and Fig. 6).
This low proportion of cis-scReQTL correlations differs
5 (a), N7 (b) and N8 (c and d). In N8, consistent across the three cell
harboring gene AKR1C1 (c), and between the same SNV and the
P-values are calculated based on the input for the plots generated
lues from the scReQTL analysis performed with Matrix eQTL



Fig. 6 a Left: scReQTL between the SNV at 2:46858815_C > T and its harboring gene LINC01119 (cis-scReQTL) identified in adipose cells from
ADSC and compared to eQTLs from bulk adipose (middle) and bulk artery tibia (right) datasets; the bulk eQTLs are obtained from the GTEX
database. The graphs are generated at the GTEx portal (https://www.gtexportal.org/). The eQTLs and scReQTL agreed in terms of directionality
and effect sizes. b scReQTL between the SNV at position 10:4977776 and its harboring gene AKRIC1 in ADSC-derived erythrocytes from ADSC
(left-top) in a comparison with eQTLs from bulk RNA-seq data obtained from a panel of tissues (GTEX). The scReQTLs from the erythrocytes
agreed in terms of directionality and effect sizes with eQTLs from whole blood, adrenal gland, and colon

Liu et al. BMC Genomics           (2021) 22:40 Page 7 of 16
from eQTL analyses, which typically identify a high
number of significant cis-correlations and is attributed
to several factors. First, in contrast to the eQTL
distance-based cis/trans annotation, scReQTL employs
gene-based annotation, which results into a cis-to-trans
shift for SNVs in nearby genes. Second, cis-scReQTL

https://www.gtexportal.org
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estimations require a certain level of expression of the
SNV-harboring genes (as defined by minR) thereby con-
fining cis-scReQTL analyses to moderately-to-highly
expressed genes in the system. Third, the scReQTL in-
put SNVs are confined to expressed regions, and in the
herein employed system (10xGenomics Chromium 3′-
protocol) most of them are 3′-UTR-located. Indeed, two
of the cis-scReQTL SNVs were located in the 3’UTR of
their harboring genes, one was a synonymous substitu-
tion (G246G in TNNT3) and one was located in an exon
of the non-coding RNA LINC01119. In contrast, cis-
eQTLs are frequently located in the promoter and other
regulatory sequences, often transcriptionally silent and
therefore not detected by the ReQTL/scReQTL
approach.
To further investigate the connection between cis- and

trans-scReQTLs, we assessed if some scReQTLs are me-
diated by cis-effects that do not reach significance at an
FDR of 0.05. To do this, we computed the correlation of
all SNVs represented in significant trans scReQTLs with
their harboring gene. For 26% of the scReQTL SNVs, we
detected correlations with their harboring genes with
0.05 < FDR < 0.1 (Supplementary Figure 5). This analysis
suggests that a proportion of the SNVs may at least par-
tially exert their trans-effects via weak to moderate regu-
lation of the expression of their harboring gene.

scReQTL in known genetic networks
To assess to what extend scReQTL findings agree with
known SNV-gene, and gene-gene interactions, we inter-
sected the significant scReQTLs with: (a) eQTLs re-
ported in the GTEx database [8], (b) ReQTLs as
estimated from bulk adipose sequencing data [25], (c)
known gene-gene interaction from the STRING database
[36], and (d) significant GWAS loci [37].

scReQTLs and eQTLs from GTEx
To estimate the overlap between scReQTL and known
eQTLs, we used the data from 53 different tissues and cell
types from the GTEx database (https://www.gtexportal.org).
First, we identified the SNVs and genes used as an input for
scReQTLs, and participating in known eQTLs: a total of 111
input SNVs and 2024 input genes participated in at least one
eQTL reported in GTEx. Across the 49 tissues, scReQTL
identified 32 correlations (Supplementary Table 3), com-
prised of 6 unique SNV-gene pairs (5 SNVs and 6 genes).
These pairs included all 4 significant cis-scReQTLs, and two
trans-scReQTLs: chr10_4,977,767_G>A and AKR1C2 (see
Fig. 5d), and chr1:115337511_G_A and NGF. For each of the
6 SNV-gene pairs, we compared the scReQTLs and the
eQTLs in the different GTEx tissue types. For 3 of the 6
scReQTLs, the corresponding GTEx eQTLs were consistent
in terms of directionality and effect size (Fig. 6 and Supple-
mentary Figures 6 and 7).
The other 3 scReQTL were found as both positive and
negative eQTLs depending on the tissue type in GTEx.
The positive cis-scReQTL, chr6:31354105_G > A_HLA-
B, was a significant cis-eQTL in 4 GTEx tissues: positive
in three, but negative in the testis (Supplementary Figure
8). The last 2 scReQTLs comprised correlations of the
SNV at chr10:4977767_G > A with AKR1C1 (positive)
and AKR1C2 (negative); these scReQTLs were consistent
across cell types (see Fig. 5c and d). In GTEx, the corre-
sponding eQTLs were found in multiple tissues, and in
both positive and negative correlations, highlighting
tissue-specific effects (Supplementary Figures 9 and 10).
Overall, our analysis on the agreement between signifi-

cant scReQTLs and eQTLs identified a narrow overlap,
within which most observations were consistent, and the
remaining were not contradictory. We note that this
analysis was limited by the relatively small number of in-
put scReQTL SNVs present in GTEx. Furthermore, the
majority of the significant scReQTLs were in trans,
which are known to be highly tissue-specific [8]. None
of the 4 cell types assessed in our study - adipose cells,
erythrocytes, neutrophils, and naïve-B cells obtained
from ADSCs - were a direct match to any of the 49 tis-
sues and cell types for which eQTLs were available from
the GTEx database. Finally, we expect that the strongest
contributor to the low overlap between scReQTL and
eQTLs is the detection power of scReQTL. Specifically,
depending on the sequencing depth per cell, many cells
do not pass the minR requirement for a given SNV (es-
pecially at minR> 10, which is the cutoff used here), and
are therefore excluded from the analysis. Indeed, while
the initial cell counts per scReQTL analysis (except for
N5 adipose cells) were over 1000, the majority of the
SNV loci were expressed in between 20 (the required
minimum) and 100 cells with minR> 10 per cell type
(Supplementary Figure 11a). In comparison, the GTEx
eQTLs are computed from a minimum of 100, and in
most of the tissues, from over 250 individuals (Supple-
mentary Figure 11b).

scReQTLs and ReQTLs from bulk adipose tissue
Next, we intersected the scReQTL findings with the
ReQTLs from bulk RNA-sequencing data. To do this,
we performed ReQTL on RNA-seq data from two adi-
pose tissues downloaded from GTEx – adipose subcuta-
neous (275 samples) and adipose visceral (215 samples)
- following the published protocol [25]. Using the same
SNVs and genes used as input for the scReQTL, with an
FDR = 0.05, ReQTL did not identify significant correla-
tions, whereas with an FDR = 0.1, ReQTL identified 84
(6.6%) and 48 (3.8%) of the significant scReQTLs, in adi-
pose subcutaneous and visceral tissue, respectively. The
majority of these ReQTLs had small effect sizes and
agreed in the direction with the corresponding scReQTL

https://www.gtexportal.org
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in 71% of the cases (Examples shown on Fig. 7a). Of
note, the above discussed chr10:4977767_G > A and
AKR1C1/AKR1C2 did not show any correlation when
examined from bulk RNA-seq data (Fig. 7b).
The different sets of SNV-gene pairs identified by

scReQTL and ReQTL (as well as eQTL) suggests differ-
ent regulatory relationships captured by scReQTLs. Bulk
ReQTLs and eQTLs show a high overlap between each
other and are both based on abundance of variant alleles
across multiple individuals with different genotypes. In
contrast, scReQTL operates in a setting of identical ge-
notypes, where it is likely to capture RNA-based genetic
interactions, possibly with transient and/or cell-specific
effects.

scReQTLs and known gene-gene interactions
Because the vast majority of the significant scReQTLs
were in trans (i.e. representing correlations between two
different genes, VAFRNA of an SNV located in one of the
genes and expression level of the other), we assessed if
these gene pairs were enriched in known gene-gene in-
teractions. We downloaded the known gene-gene (hu-
man) interactions from the STRING database [36] and
intersected these with the scReQTLs. From the 1234
unique gene-gene scReQTLs pairs, 203 (16.4%) were
previously annotated in STRING (Supplementary
Table 4, p < 10e-4, permutation test using 10,000
Fig. 7 scReQTLs and ReQTLs from bulk adipose tissue. a Examples of comp
at FDR = 0.1. The ReQTLs had generally weaker size effects and agreed in d
values are calculated based on the input for the plots generated using the
from the scReQTL analysis performed with Matrix eQTL. b ReQTL analysis b
which were found as significant scReQTLs, did not show significant correla
permutations, Fig. 8a). Examples include IFIT1 and IFIT
M2, AURKA and PLK, and CKS2 and CDC20 (Fig. 8b-
c). The strong enrichment of scReQTLs with known
genetic networks suggests that scReQTLs may be used
to identify allele contributions to gene-gene interactions.

scReQTLs and GWAS
Furthermore, we intersected the SNVs participating in
scReQTLs with SNVs significantly associated with phe-
notypes by GWAS [38]. This analysis showed that 18
(out of the 408 unique scReQTL SNVs, 4.4%) were
present in GWAS; these 18 SNVs participated in 84
scReQTL correlations (Supplementary Table 5). This
percentage is slightly higher than the overlap between
GWAS and GTEx eQTLs (3.7 and 3.6% in adipose vis-
ceral and adipose subcutaneous tissue respectively), and
significantly higher than the overlap with common SNVs
from DbSNPv.154, (0.34%, p < 10e-6). This analysis
shows that scReQTL SNVs are enriched in genetic vari-
ants associated with phenotype via large population-
based and case-control studies.

Functional scReQTLs SNVs annotations
We assessed the SNVs participating in scReQTL in re-
gard to position in the harboring gene and the predicted
functional effects. As expected from scRNA-seq data
generated using a 3′-based protocol, the majority of the
arisons of scReQTLs (left) and ReQTLs from bulk adipose tissue (right)
irectionality in 71% of the correlations. Note that the displayed P-
R-package ggplot2 and do not represent the FDR—corrected values
etween the SNV at 10:4977767 and AKR1C1 (left), and AKR1C2 (right),
tion in bulk RNA-seq data



Fig. 8 a Permutation test for assessment of enrichment of trans scReQTLs in known gene-gene interactions obtained from the STRING database;
10,000 permutations were used. The p-value (p < 10e-4) was defined as the fraction of permutations in which the number of gene-gene pairs
found in the known interaction database was at least as great as the number found in the observed data. This analysis showed significant
enrichment of trans-scReQTLs with known gene-gene interactions. b and c) Examples of trans-scReQTLs and known gene-gene interactions: IFIT
M2 (11:309127_A > G) in and IFIT1 (b) and PLK1 (16_23690217_A > G) and AURKA, and CKS2 (9:89316518_T > C) and CDC20 (c). The interaction
graphs are generated using the STRING database visualization tools. Note that all the scReQTL highlighted gene-gene interactions are supported
by a minimum of three lines of evidence that include either experimental validation (purple line) or curated databases (light-blue line), or both
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SNVs resided in the 3’UTR of their harboring gene
(70.2%, Supplementary Figure 12); the 3′-UTR SNVs
participated in 69.6% of the scReQTLs. 3′-UTR variants
are known to strongly affect both GE levels and splicing
[39–42]; hence, scReQTLs can be applied to study these
aspects of genetic regulation. The second category was
exonic SNVs, comprising 16.2% of the unique SNVs and
participating in 14.9% of the scReQTLs. Exonic SNVs in-
cluded missense, nonsense, and near-splice variants,
many of which can potentially affect the protein struc-
ture and function. Of note, scReQTL captured a sub-
stantial number of intronic SNVs – 13%, participating in
11.2% of the scReQTLs. Intronic sequences are reported
in 15–25% of the RNA-sequencing reads from both bulk
and single-cell RNA-seq [4, 41, 42]. Intron quantitation
can be used to estimate the relative abundance of the
precursor and mature mRNA, thereby assessing the
RNA velocity and dynamic cellular processes [4]. In the
allele-specific setting provided by the scReQTLs, the
correlations of intronic SNVs with GE can identify SNVs
regulating the RNA splicing.
Next, we assessed if the scReQTLs SNVs are enriched

in specific clinical phenotypes obtained from the ClinVar
database [43]. Fifteen SNVs (3.7% of the total 408 dis-
tinct scReQTL SNVs) were associated with known
clinical phenotypes, including circulating phospholipid
trans fatty acids, cortisol levels, circadian rhythm, risk
for cardiovascular disease, blood pressure, schizophrenia,
neuroticism, osteoporosis, anthropometric traits, and
asthma (See Supplementary Table 1). This percentage is
similar to the overlap between ClinVar and GTEx
eQTLs (3.3 and 3.1% of the eQTLs in adipose visceral
and adipose subcutaneous tissue respectively), and sig-
nificantly higher than the overlap with common SNVs
from DbSNPv.154, (0.61%, p < 10e-6). Finally, we
assessed the predicted functional and/or pathogenic
scores of the scReQTL SNVs using 17 models including
SIFT, Polyphen2, LRT, MutationTaster, MutationAsses-
sor, FATHMM, PROVEAN, VEST3, CADD, DANN,
fathmm-MKL, MetaSVM, MetaLR, integratedFit,
GERP++, phyloP, and phastCons, as implemented in
ANNOVAR [44]; this data is summarized in Supplemen-
tary Table 6).

scReQTL application
Application of scReQTLs requires consideration of sev-
eral factors. First, because scReQTLs assess expressed
SNV loci, they cannot capture variants in transcription-
ally silent genomic regions. In addition, SNV loci with
expression levels below the required minimum number
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of RNA-seq reads (minR) are not included in the
scReQTL analyses. Furthermore, when assessed with the
platform used in this study - 10x Genomics Chromium
v3 chemistry – the analyzed SNVs are confined to those
located within the length of the sequencing read (here,
150 nt) from the 3′ end of the transcript. For the above
reasons, scReQTLs accessible SNVs represent a subset
of the expressed SNVs and are not designed to cover the
full set of SNVs in the genome/transcriptome.
Second, when a genetically regulated gene is captured

by scReQTL analysis, the scReQTLs may highlight SNVs
that are co-allelic to the actual causative SNV(s). This is
the case for SNVs positioned outside the transcribed re-
gions or outside the coverage of the sequencing library.
Third, scReQTLs are based on VAFRNA estimation,

which can be affected by technical parameters, including al-
lele mapping bias [45, 46]. Therefore, we perform the
scReQTL using SNV-aware alignments. Specifically, we
apply STAR-alignment with WASP, which removes am-
biguously mapped reads after checking for consistency with
the reads containing the alternative nucleotide [27, 29].
Another important parameter for VAFRNA estimation

is the selection of cutoff for minimal number of reads,
minR. When selecting minR for an analysis, a major fac-
tor is the balance between the confidence of VAFRNA es-
timation (high minR) and the inclusivity of SNVs (lower
minR values include more loci for scReQTL). Our previ-
ous research shows that for current 10× Genomics
scRNA-seq datasets, minR > 5 provides a reasonable bal-
ance between VAFRNA confidence and SNV inclusivity,
while at lower cutoffs (i.e. minR = 3) stochasticity of
sampling can affect the VAFRNA estimation [28]. In the
present study, we have included SNV loci with minR >
10. In addition, to assess the scReQTL at lower minR
cut-offs, for a subset of the dataset (N7) we performed
repeated analyses varying the value of minR in one-step
increments between 5 and 9 and analyzed the outputs.
The first observation is that, as expected, minR inversely
correlates with the number of input SNV loci and the
number of significant scReQTLs (Supplementary Figure
13a). Second, the outputs of the scReQTLs show only
partial overlap across different minR cut-offs, which is
due to the partial overlap between the input SNVs (Sup-
plementary Figure 13b-d). We reason that the partial
overlap in the input SNVs loci is largely due to the very
stringent filtering criteria applied to retain the loci with
the most variable VAFRNA. Specifically, we filter out loci
for which over 75% of the VAFRNA values are in the
range of 0.5 ± 0.1 (corresponding to stable biallelic ex-
pression; this removed more than 50% of all loci), as well
as loci with over 75% of the VAFRNA values in the ranges
0–0.25 or 0.75–1 (corresponding to predominantly
monoallelic or skewed allelic expression). As we show in
our previous research [28], the VAFRNA distribution
changes substantially with different minR, which affects
the subset of variants retained after filtering. Import-
antly, each of the distinct sets of significant SNV-gene
pairs obtained at different minR showed very strong en-
richment in known gene-gene interactions, which sup-
ports confident scReQTL observations with VAFRNA

cutoffs of 5 and above (Supplementary Figure 14).
Another threshold to consider is the minimal number

of cells to be used for scReQTL, in this study set to 20.
Using a minimum of 20 cells for assessing SNV-GE cor-
relations is a result of setting a threshold for filtering loci
with non-variable VAFRNA. Specifically, the locus is con-
sidered to be variable if in at least 15 (75%) out of the 20
cells VAFRNA is in the range 0.25–0.4 or 0.6–0.75 (i.e we
exclude stable biallelic, monoallelic, and skewed allelic
expression). From the binomial distribution we compute
that this gives 0.0206 probability of observing variable
loci by chance assuming a 50% probability of success on
each of at least 15 out of 20 trials. This probability de-
creases with increasing number of cells. We consider the
maximal 0.02 chance threshold for wrongly assigning
variability of the loci to be reasonably conservative and
acceptable. In addition, we showed in our recent study
[23] that 20 VAF values are sufficient to model the char-
acteristics of VAF distributions and that higher numbers
will improve the estimates (see Fig. 4 in [23]). For 10
cells, the probability of observing a single variable locus
by chance would increase to 0.054 (scReQTLs from 10
to 19 cells are shown on Supplementary Figure 15).
Furthermore, scReQTLs can be affected by the accur-

acy of the variant call, including assessment of presence
or absence of an SNV, and assignment of a biallelic state.
The presented pipeline uses scRNA-seq data only, where
we call SNVs from pooled scRNA-seq data and select
for scReQTL analysis highly confident heterozygous sites
based on mapping and Phred quality, genomic position
(genic, non-repetitive regions), and previously validated
rsIDs. To confidently assign biallelic state, we select
SNVs with a minimum of 50 unique reads supporting
each allele from the pooled scRNA-seq. By default, this
selection excludes heterozygous SNVs with strong non-
random monoallelic expression. Therefore, while the
above approach is suitable for datasets with no matched
DNA, when available, DNA-estimated genotypes can be
helpful to interpret the context of the scReQTL findings.
Importantly, scReQTLs do not necessarily require vari-

ant calls and can be run on custom pre-defined lists of
genomic positions such as a database of somatic muta-
tions or RNA-editing sites. In this case the VAFRNA is
estimated for all the input sites, and SNVs not present
in the assessed sample (i.e. SNVs with VAFRNA = 0
across all cells) are removed during the VAFRNA filtering
step (see Fig. 4), while the remaining VAFRNA estima-
tions are used in the scReQTL analysis.
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Finally, VAFRNA varies between different cell types,
often due to cell-specific regulatory mechanisms [47].
Due to the dynamic nature of RNA transcription, it is
expected that VAFRNA (similarly to GE) will vary de-
pending on conditions, disease states and stochastic fac-
tors. Therefore, scReQTLs are expected to be transient
and their interpretation requires consideration of the dy-
namics of the variables underlying the correlation.

Discussion
Single-cell RNA-seq eQTL analyses define an emerging
research niche that brings major benefits for the under-
standing of functional genetic variation including the
identification of cell-type and condition-specific correla-
tions [2, 13–16, 48]. In this paper, we present a new
eQTL-based analysis in a scRNA-seq setting - scReQTL
– which uses the VAFRNA at expressed heterozygous
SNVs in place of the genotypes, to correlate allele preva-
lence to gene-expression levels. By using VAFRNA across
multiple cells of the same sample, scReQTLs introduce
several new analytical aspects.
First, and perhaps most importantly, as scReQTL is

implemented on multiple single cells from the same
sample, it can be applied to assess the effects of SNVs in
a single sample or individual. This is particularly applic-
able for rare SNVs which are challenging to study via
population-based approaches. We envision that this
scReQTL feature can benefit studies on functionality of
infrequent and de novo mutations causing rare pheno-
types, as well as somatic mutations in cancer. Second,
scReQTLs increase the dynamicity of the SNV-gene cor-
relations, as VAFRNA, similarly to GE, is both dynamic
and cell-type-specific [47]. In particular, in each cell
type, scReQTL correlates the most variable VAFRNA to
the most variable genes. Third, as compared to the
discrete genotype values (0,1,2), VAFRNA can obtain con-
tinuous values spread along the entire VAFRNA range
([0,1]), allowing for more precise computation of the
proportion of each allele represented in the RNA in a
given cell. Fourth, scReQTL operates in the context of
(largely) identical genotypes, which narrows the ob-
served effects to RNA-mediated interactions. Finally,
scReQTL does not necessarily require matched DNA (al-
though we recommend it for genotyping of heterozygous
SNVs, if available), and therefore can be applied on
scRNA-seq data alone. Related to that, scReQTL ana-
lyses can be performed using pre-defined SNVs of inter-
est, such as RNA-editing sites and sets of dbSNP.
At the same time, compared to single cell and bulk

eQTLs, scReQTL analyses have certain limitations. First,
the scReQTL accessible SNVs are restricted by depth of
coverage per cell (minR) and, in the case of 3′-based
scRNA-seq protocols, by the length of the sequencing
read. Therefore, scReQTLs can analyze only a
proportion of the transcribed SNVs. This limitation is
expected to be gradually reduced with the progress of
the sequencing technologies. Additional attenuation of
this constraint is possible through reducing the value of
minR used in the analysis. Indeed, while in this study we
apply minR > 10, which retained between 308 and 721
input SNVs per sample, in our prior research we show
that at minR > 5 the number of SNVs is higher by an
order of magnitude [28]. Second, scReQTL appears to
have relatively low power to detect cis-acting (on the
same gene) SNVs (See Supplementary Figure 3). Specif-
ically, the vast majority of the correlations identified in
this study are trans-scReQTLs. Several factors may ac-
count for this observation. As mentioned earlier, the def-
inition of “cis”-scReQTLs is based on residing of the
SNV within the same gene; hence SNVs that would be
classified as “cis” using the eQTL distance-based defin-
ition are “trans” for the scReQTLs, increasing the pro-
portion of trans-correlations in the same SNV-gene
dataset. Additional possible explanation is that in the ex-
plored setting of minR> 10, cis-acting SNVs are located
in genes with high expression, which likely contain a
high proportion of stably expressed genes, including
with house-keeping functions. Notably, the identified
trans-scReQTLs are significantly enriched in known
gene-gene correlations (See Fig. 7), therefore we inter-
pret them as indictive of an allelic contribution to these
gene-gene interactions. The above factors at least par-
tially account for the narrow overlap between scReQTLs
and eQTLs/ReQTLs. At the same time, scReQTLs are
able to capture correlations that are masked in the bulk
eQTL and ReQTL analyses (See Fig. 8).
Finally, at present, a direct comparison between

scReQTLs and single cell eQTLs is limited, to a large ex-
tend due to a narrow overlap between the sets of SNVs
matching the requirements for scReQTL inputs; these
SNVs are located mostly in the expressed 3′-end of the
gene, as compared to the genome-wide DNA-genotyped
loci used in the sc-eQTLs. Additional contributing fac-
tors are the different cell sources as well as the different
capturing protocols (i.e. SmartSeq vs 10xGenomics).
With the advances of the scRNA-seq technologies, and
the extension of single-cell QTL-based approaches to
more tissues and cell types, comparisons between sc-
eQTLs and scReQTLs are expected to provide meaning-
ful information on underlying mechanisms in a cell-type
specififc context.
Our scReQTL analysis includes approximately 4 bil-

lion RNA-seq reads from 26,640 human ADSCs, ob-
tained from three healthy donors. We chose the
10xGenomics platform due to its growing popularity,
high throughput, and the support for unique molecular
identifiers (UMI) for the removal of PCR-related sequen-
cing bias. Using stringent cutoff for SNV coverage
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(minR> 10) we identified 1272 distinct scReQTLs. These
scReQTLs include a considerable number of correlations
which involve SNVs previously highlighted by GWAS
and are significantly enriched in known gene-gene inter-
actions. These results demonstrate that scReQTLs can
be used to identify novel genetic interactions, including
those which are specific to a given cell-type.

Conclusion
We present a new approach – scReQTL – that corre-
lates SNVs to gene expression from scRNA-seq data.
ScReQTL is relevant to the rapidly growing source of
scRNA-seq data and can be applied to outline SNVs po-
tentially contributing to cell type-specific and/or dy-
namic genetic interactions from an individual scRNA-
seq dataset.

Methods
Data
We used publicly available scRNA-seq data [49] from
26,640 human cells from three healthy donors: N5, N7
and N8. The scRNA-seq data was generated on 10x
Genomics Chromium v2 platform; the library prepar-
ation and sequencing are described in detail elsewhere
[49]. Briefly, cells were partitioned using 10x Genomics
Single Cell 3′ Chips, and barcodes to index cells (16 bp)
and transcripts (10 bp UMI) were incorporated. The
constructed libraries were sequenced on an Illumina
NovaSeq 6000 System in 2 × 150 bp paired-end mode.

SNV-aware alignment
The cell barcodes and UMIs were extracted using UMI-
tools from the pooled (per donor) raw sequencing reads
[26]. The pooled sequencing reads were aligned to the
latest version of the human genome reference (GRCh38,
Dec 2013) using STAR v.2.7.3.c in 2-pass mode with
transcript annotations from the assembly GRCh38.79
[27]. The alignments were deduplicated retaining the
reads with the highest alignment scores [26]. SNVs were
called in the pooled deduplicated alignments using
GATK v.4.1.4.1 [18]. To identify heterozygous SNV posi-
tions qualified for VAFRNA analysis, we applied a series
of filtering steps. Specifically, heterozygous SNVs were
selected based on the presence of minimum of 50 high-
quality reads supporting both (reference and alternative)
nucleotides in the pooled alignments. SNV loci were an-
notated using SeattleSeq v.13.00 (dbSNP build 153), and
loci positioned in repetitive or intergenic regions were
removed. The SNV lists were further filtered based on
the following requirements: QUAL (Phred-scaled prob-
ability) > 100, MQ (mapping quality) > 60, QD (quality
by depth) > 2, and FS (Fisher’s exact test estimated
strand bias) = 0.000. The filtered SNV lists (per donor)
were then used as an input for a second, SNV-aware
alignment using STAR-WASP [29].
Gene expression estimation
To estimate gene expression, we first apply Feature-
Count on the individual alignments to assess the row
gene counts per cell [32]. We then normalize and scale
the expression data using the sctransform function as
implemented in Seurat v.3.0 [24, 33], which stabilizes
the GE variance using regularized negative binomial re-
gression, and outlines the most variable genes. The
sctransform function integrates the previous Seurat func-
tions NormalizeData, ScaleData, and FindVariableFea-
tures. The cell-feature distributions were than plotted to
identify and filter out outliers and low-quality cells,
which we defined as [1] cells with mitochondrial gene
expression over 6%, cells with less than 3000 genes, and
3) cells with more than 8000 detected genes or > 12,500
UMI counts, (to remove potential doublets), as well as
cells with mitochondrial genes’ expression higher than
6% of the total gene expression, and to correct for batch-
and cell-cycle effects (See Fig. 2). We then integrate the
datasets and use the function FindIntegrationAnchors to
identify ‘anchors’ between pairs of datasets. This analysis
resulted in 4099 common genes across the three sam-
ples, which we used to correct for batch effects. Next,
we split the individual matrices by cell type, and for each
cell type, genes which expression in 80% or more of the
cells was within 20% or less from the top or bottom of
the GE range, were filtered out. This retained between
2114 and 2442 per sample for scReQTL analyses. In
addition, after examining the GE distribution across the
cells (per cell type), the retained most variable genes
were then used for scReQTL analyses (See Table 1).
Cell type identification
To define individual cell types from the ADSCs, we used
SingleR version 1.0.5 [34]. SingleR assigns cellular iden-
tity by comparison to reference whole transcriptome ex-
pression data sets of pure cell types. SingleR correlates
the expression profile of each single cell to whole-
transcriptome expression data from established cell
types (BluePrint + ENCODE datasets). To select the ex-
pression profile most similar to the tested cells, the ana-
lysis is rerun iteratively, using only the top cell types
from the previous step until only one cell type is
retained. Comparing our datasets against 259 bulk RNA-
seq profiles representing 24 main cell types and 43 sub-
types, SingleR identified four major cell types: adipose
cells and erythrocytes were found in all three samples,
naïve-B-cells found in N5 and N7, and neutrophils, in
N8 (See Fig. 3 and Table 1).
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VAFRNA estimation
VAFRNA is assessed from the individual alignments as
we have previously described [28], using the high quality
heterozygous SNV sites as inputs for ReadCounts [22].
At each position of interest, ReadCounts estimates the
number of sequencing reads harboring the variant and
the reference nucleotide (nvar and nref, respectively), cal-
culates VAFRNA (VAFRNA = nvar / (nvar + nref), and filters
out positions not covered by the user-defined minimum
number of reads (minR); minR is constant across the
genome [22]. For the herein presented analysis, we used
minR> 10. To qualify for scReQTL, a variant is required
to have variable VAFRNA from a minimum of 20 cells
from the same cell type (per donor). The VAFRNA distri-
bution is then examined and loci with non-variable
VAFRNA are filtered out. Loci were considered non-
variable if: (1) over 75% of the VAFRNA values are in the
range of 0.5 ± 0.1 (corresponding to stable biallelic ex-
pression), and (2) over 75% of the VAFRNA values are in
the ranges 0–0.25 or 0.75–1 (corresponding to predom-
inantly monoallelic or skewed allelic expression).

ScReQTL computations
SNV-GE correlations (scReQTLs) were computed for
each donor, across the cells of each type separately. To
qualify for scReQTLs analysis, an SNV locus is required
to have informative and variable VAFRNA estimations
(minR> 10) from at least 20 cells per analysis. The vari-
able VAFRNA were correlated to the normalized GE
values of the most variable genes using a linear regres-
sion model as implemented in Matrix eQTL [17]. The
top 15 principal components of the GE were used as co-
variates (Supplementary Figure 16). Cis and trans corre-
lations were annotated as previously described for the
bulk ReQTLs [25]. Briefly, because scReQTLs are
assessed from transcripts, we assign cis-correlation based
on the co-location of the SNV locus within the tran-
scribed gene, using the gene coordinates [50]. All the
scReQTLs including SNVs residing in genes different
from the expression-correlated genes are annotated as
trans-scReQTLs.

Statistical analyses
Throughout the analysis we used the default statistical
tests (with built-in multiple testing corrections) imple-
mented in the used software packages (Seurat, SingleR,
Matrix eQTL), where p-value of 0.05 was considered sig-
nificant, unless otherwise stated. For estimation of sig-
nificant scReQTL, we applied FDR as implemented in
the Matrix eQTL package. Specifically, once Matrix
eQTL discovers a set of significant gene-SNP pairs, it es-
timates a corresponding q-value (FDR) for each of them
using Benjamini–Hochberg procedure under the as-
sumption that the tests are independent or positively
correlated [17, 51]. For estimation of differences in over-
lap between scReQTL SNVs, GWAS and ClinVar, chi-
square test was used. For assessment of enrichment of
scReQTLs in known gene-gene interactions, a permuta-
tion test with 10,000 permutations was applied on the
findings at minR = 10, and with 1000 permutations for
the scReQTL analyses at minR< 10. For each permuta-
tion, a random set of gene-gene pairs of the same size as
the observed data was selected. The p-value was defined
as the fraction of permutations in which the number of
gene-gene pairs found in the known interaction database
was at least as great as the number found in the ob-
served data.
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