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Abstract

Temporal variability in ecosystems significantly impacts species diversity and ecosystem productivity and therefore the evolution of

organisms. Different levels of environmental perturbations such as seasonal fluctuations, natural disasters, and global change have

different impacts on organisms and therefore their ability to acclimatize and adapt. Thus, to understand how organisms evolve under

different perturbations is a key for predicting how environmental change will impact species diversity and ecosystem productivity.

Here, we developed a computer simulation utilizing the individual-based model approach to investigate genome size evolution of a

haploid, clonal and free-living prokaryotic population across different levels of environmental perturbations. Our results show that a

greater variability of the environment resulted in genomes with a larger number of genes. Environmental perturbations were more

effectively buffered by populations of individuals with relatively large genomes. Unpredictable changes of the environment led to a

series of population bottlenecks followed by adaptive radiations. Our model shows that the evolution of genome size is indirectly

driven by the temporal variability of the environment. This complements the effects of natural selection directly acting on genome

optimization. Furthermore, species that have evolved in relatively stable environments may face the greatest risk of extinction under

global change as genome streamlining genetically constrains their ability to acclimatize to the new environmental conditions, unless

mechanisms of genetic diversification such as horizontal gene transfer will enrich their gene pool and therefore their potential to

adapt.
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Introduction

The impact of temporal environmental variability on the pro-

cess of evolution has been an important issue in contemporary

ecology and genetics (Kashtan et al. 2007, 2009; Crombach

and Hogeweg 2008). As organisms adapt to environmental

variability by changing their genes and genomes, it is critical to

understand how environmental change impacts genome evo-

lution. Hutchinson addressed the importance of temporal var-

iability of the environment on the diversity of species by

studying phytoplankton diversity in relation to resource avail-

ability. His early work led to the concept of the “paradox of

the plankton” (Hutchinson 1961). This paradox is based on

the observation that many species of phytoplankton with sim-

ilar resource requirements (e.g., nitrate, phosphate) can coex-

ist in the same isotropic and apparently unstructured

environment (Hutchinson 1961; Huisman and Weissing

1999) although they are all competing for the same resources.

Based on the principle of competitive exclusion (Gause 1932;

Szabó and Meszéna 2006), at complete equilibrium the com-

munity of phytoplankton species with similar requirements

would be reduced to a single species that is optimally adapted

to the given conditions. However, Hutchinson (1961) solved

the paradox arguing that the equilibrium will never be reached

in nature due to temporal variability. Environmental variability

is also expected to impact genome evolution, and that natural

variation in genome size between organisms may reflect ad-

aptations to different levels of environmental variability.

One of the key elements of genome evolution is related to

the evolution of genetic networks, which enable a regulatory

response to cope with environmental change (Alon 2007).

The interactions between genes in these networks can have

many different characters: Genes may depend on common

regulatory factors, regulate each other’s expression, encode
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different peptides of the same enzyme, or different enzymes

of the same metabolic pathway. Genetic networks can be

divided into discreet functional units in some circumstances

facilitating network effectiveness. Here, we will refer to this

phenomenon as modularity (Wagner 1996). Parter et al.

(2007) classified 117 bacterial species according to the

degree of variability in their natural habitat. This study sug-

gested that the modularity of the metabolic network in-

creased with increasing environmental variability. Similarly,

also the number of transcription factors and the number of

nodes in the metabolic network increased with increasing en-

vironmental variation. Genome size was less well correlated

with modularity but with phylogenetic distance (Parter et al.

2007). Higher genome network modularity increases a cell’s

potential to tackle changing environmental condition and en-

ables it to evolve faster. Genetic regulatory networks are com-

plex and not fully known; hence, Boolean logic circuits are

used to approximate certain properties of the real genetic

networks (Kauffman 1969; Wynn et al. 2012). In these sim-

plified systems, only off/on states of a gene are permitted

without dwelling on parameterization of the expression

levels. The control of the regulatory cascades of genes is per-

formed with logic gates known from computer science. A

theoretical study of Boolean logic circuits with evolving archi-

tecture showed that forcing extinctions in a heterogeneous

environment triggered an increased modularity of circuits,

whereas the modular architecture did not develop in a homo-

geneous environment (Kashtan et al. 2009). Also, circuits

evolving in variable environments have beneficial mutations

arising more frequently than populations from a stable envi-

ronment. These mutations occur in hubs of the networks, or

are directly influencing the hubs, allowing for network-wide

rearrangements with minimized deleterious effects

(Crombach and Hogeweg 2008).

However, the results by Parter et al. (2007) and Kashtan

et al. (2009) can be explained also by nonadaptive processes,

such as genetic drift and genetic draft, both of which can

shape the architecture of prokaryotic genomes in a nonselec-

tive manner (Lynch 2007; Koonin 2011). Prokaryotes are

under constant pressure to perfect their metabolic efficiency

(Lane and Martin 2010). The ultimate reason for higher mod-

ularity of metabolic networks in variable environments is that

before the fitness optimum has been reached, the environ-

mental conditions affecting the fitness landscape will have

changed again. In other words, in a fluctuating environment,

the adaptive fitness-landscape is dynamic and an ever-

changing property, which results in continuously changing

directions of selection pressure and prevents the species

from achieving its maximum metabolic efficiency in any par-

ticular environment. The everlasting disequilibrium state might

be ecologically more relevant than the theoretical equilibrium

states, and as such, transient dynamics are likely to play an

important role in ecology and genome evolution (Hastings and

Higgins 1994; Hastings 2004; Olszewski 2011). This insight is

broadly similar to that of Hutchinson (1961), which allowed to

solve the “plankton paradox” (Huisman and Weissing 1999),

and which we will explore in this study in more detail using

computer simulations.

Here, we developed a population genomics model to in-

vestigate genome size evolution in prokaryotes with the focus

on how gene number is impacted by resource limitation in

both stable and variable environments. Populations of pro-

karyotic cells feeding on an abstract resource were allowed

to evolve in a well-mixed environment, adapting to a single

abiotic factor with a given amount of environmental variability

denoted by ‘T’ (turbulence). Our model assumed a rising reg-

ulation burden with an increased number of metabolic genes,

and that evolutionary novelty arose only by mutations. Novel

genes were acquired through neofunctionalization after gene

duplication. Metabolic genes were represented by their phe-

notypic effect and were responsible for the efficiency of re-

source uptake under specific abiotic conditions. The efficiency

of resource uptake and the costs of gene regulation ultimately

determined the fitness of each cell. We furthermore assumed

that these metabolic genes were regulated by regulatory

genes that carried a fitness cost. Assuming n metabolic

genes, the fitness cost of regulatory genes is proportional to

n2. With an increasing bacterial genome size, the number of

regulatory genes (e.g., transcription factors) scales with the

power of approximately 2 when the number of metabolic

genes grows linearly (Van Nimwegen 2003; Molina and van

Nimwegen 2008, 2009; Koonin 2011). Finally, given that

noncoding DNA tends to account for less than 15% of the

total DNA of prokaryotes (Mira et al. 2001; Lynch 2006), we

ignored noncoding DNA in our model. To keep our model

simple, we have neither included horizontal gene transfer

(HGT) nor genomic islands which, however, are important

mechanisms of genome diversification (Coleman et al. 2006;

Isambert and Stein 2009; Avrani et al. 2011; Koonin 2011;

Fernández-Gómez et al. 2012). The output of the model in-

cluded the number of genes and their individual contribution

to fitness were both physical properties (trait values) resulting

from adaptive evolution. In addition, we examined the evol-

vability of populations in both stable and fluctuating environ-

ments expressed as their ability to adapt and resist extinction.

Materials and Methods

Model

The model represents a resource-limited population of free-

living haploid prokaryotic cells. Each cell is an independent

agent (Grimm 1999) that can take up resources and has a

cost of living. A cell can die because of starvation or random

causes. The fitness of each cell depends on the match be-

tween the environmental value to which its genes are adapted

and its environment. The fitness of a cell determines the

amount of resources it can acquire (or lose) in each time
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step. Depending on its fitness value, a cell either can continue

to live and acquire (or lose) resources, or it can die. Once a cell

has acquired sufficient resources, it is able to reproduce asex-

ually through clonal reproduction and produce offspring that

are identical to its own genotype baring mutations.

Environment

The state of the environmental condition is represented by

only one single variable x which is a real number with a

range between [�1, +1]. The boundaries of x are limited as

boundaries of many abiotic conditions can also be considered

finite, such as, for example, pH. Other, similar types of envi-

ronmental variables are temperature, irradiance, and nutri-

ents. These types of abiotic variables have one particular

value at a time, but the range and rate of their change in

time define the environment. In our model, the state of envi-

ronmental conditions changes in time: x(t). Mode of change of

x(t)!x(t + 1) is dictated by a bounded random walk within the

interval [�1, +1]:

x t0ð Þ ¼ 0 ^ x t þ 1ð Þ ¼ x tð Þ þ RND �T ; T½ � ^ jx t þ 1ð Þj � 1;

ð1Þ

where RND[�T, T] randomly generates a real number from

the interval [�T, T]. Random walk allows to control the rate of

change without the need to control other factors, for exam-

ple, periodicity of a more regular function. The value of T

varies between 0 and 0.5 and it is the turbulence level

which controls the variability of the environment. A large

value of T represents an unpredictable/variable environment.

Also, the environment has a constant pool of resources that

represent available nutrients (R). A fraction of R is allocated to

cells, whereas the remainder represents the pool of free re-

sources. Cells can utilize these free resources for growth and

reproduction, they return all their accumulated resources

when they die and a portion in each time step to account

for living expenses.

Genes and Genotypes

Genes are represented directly by their resource uptake func-

tion, that is, the function that describes the efficiency with

which a gene can uptake resources in different values of the

environment x. The efficiency of resource uptake is given by a

Gaussian function:

u x; c;s;Að Þ ¼ A � exp
� x � cð Þ

2

2s2

 !
; ð2Þ

where x is the space of environmental conditions within

the interval [�1, +1], c is the location of the maximum

value of u (x, c, �, A) in the space of environmental conditions

(c 2 [�1, +1]), and A is the maximum value of u (A 2 [0, 1])

which represents the maximum efficiency of resource uptake

of a gene. Parameter � is the dispersion controlling the width

of the Gaussian curve and it is obtained from the following

equation:

s ¼
a

A
ffiffiffiffiffiffi
2p
p ; ð3Þ

where � is a constant factor which scales the surface under

the Gaussian curve allowing to control the fraction of the total

environmental space one single gene can cover. Figure 1

shows an example of a genotype. Note that setting this sur-

face as fixed entity adds a constrained for � being dependent

on A (eq. 3). If the cell i has more than one gene, the value of

efficiency of resource uptake Ui (x) for a given value of x is

taken from the gene that has the highest value for that x (see

shaded area on fig. 1):

Ui xð Þ ¼ MAX u1 xð Þ;u2 xð Þ; :::; un xð Þð Þ: ð4Þ

A cell can have n number of genes that generate a cost grow-

ing with gnome size as:

K ¼ g nþ n2
� �

þ k; ð5Þ

where � is a constant “cost of living” and � is a scaling factor

for gene-associated costs. This is dictated by the “genome

scaling laws,” observations which showed that the number

of metabolic genes grows linearly and the number of regula-

tory genes grows in a square proportion to the genome size

(Van Nimwegen 2003; Molina and van Nimwegen 2009;

Koonin 2011).

Life Cycle of Cells

The census population size (i.e., the total number of cells in the

population) is determined by the amount of total resources in

the environment Renv. In each time step, a cell i can either

return to the population Ki (eq. 5) of its internal resource, or

it is randomly selected to die with fixed probability �. The

uptake of resources Ui(x) (eq. 4) of the ith cell depends on

the availability of the free resource and the cell’s genotype.

Cells are picked one-by-one at random and allocated the

amount of resource according to their Ui(x) value for current

value of x(t). When the free resource in depleted, the feeding

procedure is terminated and the model moves to the next step

leaving the remaining cells in the queue unfed. If a cell’s in-

ternal resource falls below a minimum threshold (rmin) the cell

dies, and its internal resources are reallocated to the free pool.

When the resources gathered by the cell exceed rrep, the cell

reproduces clonally, and it reallocates half of its resources to

each copy. At the reproduction, three kinds of mutations can

happen to each of two new cells: Deletions (removal of a gene

from the cell’s genotype), duplications (duplication of an ex-

isting gene in the cell’s genome which results in a cell having

two copies of the same gene), and modifications (change of

shape of the Gaussian form of an existing gene). All three

happen randomly and independently with equal probabilities

m. Gene duplication increases the cost of operating a genome,
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but it does not increase Ui(x) given that both orthologous

genes will initially have an identical uptake function (see

shaded area on fig. 1 and eq. 4) (see the supplementary ma-

terial and the source code of the simulation program,

Supplementary Material online, for further details).

Statistics

The purpose of the model was to evaluate the evolution of

genome size under different environmental scenarios (stable

and fluctuating environment). For this purpose, the following

statistics have been introduced: 1) The grand mean number of

genes, which is the mean number of genes averaged over all

cells at the time when gene numbers have stabilized; and (2)

the rate of adaptive evolution, which is the mean number of

mutations that became fixed in each clonal lineage (see sup-

plementary material, Supplementary Material online, for fur-

ther details).

Results

Genome size increases with increased level of environmental

instability (i.e., turbulence, T) (fig. 2). The genome size expands

rapidly from two genes in a constant environment (T = 0) to

around 15–16 genes per genome at T = 0.05. A further in-

crease in environmental turbulence has no effect on the

number of genes (fig. 2). Furthermore, when faced with

changing environmental conditions, the genome size evolves,

attaining a gene number that is optimum for the contempo-

rary environment and level of turbulence (fig. 3). Going from

an environment with low to high turbulence, the population

crashed (fig. 3, after t = 2� 105), whereas the population

remained stable when going from high to low turbulence

(fig. 3, after t = 4�105). Unexpectedly, however, if the

level of turbulence remained stable over time, the frequency

of crashes of simulated populations was highest in environ-

ments with low to medium turbulence T 2 [0.005, 0.05],

whereas the populations were more stable in constant envi-

ronments (T = 0) and environments with high turbulence

T>0.1.

The speed of evolution expressed as the number of fixed

mutations per 105 steps of the simulation was lowest in a

constant environment. However, the highest rate of evolution

was observed in moderately turbulent environments T 2

[0.005, 0.05] and not in highly turbulent environments

(fig. 4A–C ). High level of environmental turbulence resulted

in a moderate rate of evolution. Gene modifications (e.g.,

single nucleotide polymorphisms) are the most frequent type

of mutations, and they are about twice as frequent as dupli-

cations or deletions.

Finally, a high rate of evolution does not appear to be ac-

companied by the rise in the number of clonal strains (fig. 4D).

This suggests that the high genomic diversity of clones in the

high turbulence environment was not the result of an accel-

erated rate of evolution. Rather, clonal diversity was main-

tained in the unpredictable environment because of the

relatively low extinction risk of lineages, resulting in a pheno-

typically diverse population. Under these conditions, selection

favors the evolution of generalist “multipurpose” genotypes

with large genome sizes adapted to a range of environmental

conditions (compare upper and lower panels on fig. 5).

Discussion

We built an individual-based model to simulate genome size

evolution (i.e., the number of genes in a genome) in response

to environmental perturbations and variation. The model sim-

ulated a single environmental parameter that affected the ef-

ficiency with which gene products could utilize a limited

resource. Individuals could acquire multiple gene copies only

through duplication. Each paralogous gene was able to evolve

FIG. 2.—The mean number of genes as the function of the turbulence

level T. Ten simulations set to the standard parameter values show con-

sistent results regarding the gene number. Uncertainty has been omitted

for the sake of simplicity of the graphs. Each series of runs was initialized

with a different seed of the pseudorandom number generator.

FIG. 1.—A genotype consisting of three genes in the environmental

condition space. Surfaces under all the Gaussian curves are equal and

scaled by factor � (eq. 3). The total shaded area represents the uptake

efficiency function U(x) of this particular genotype.

Genome Size Evolution for Prokaryotes GBE

Genome Biol. Evol. 7(8):2344–2351. doi:10.1093/gbe/evv148 Advance Access publication August 4, 2015 2347

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv148/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv148/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv148/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv148/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv148/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evv148/-/DC1


FIG. 3.—Optimization of genome sizes in an environment with modulated turbulence level. Simulation was initialized with genome ranges of �0 2

[40, 60] of genes per genome. Turbulence level was T = 0.005 at the beginning, T = 0.2 in the middle of simulation, and again T = 0.005 at the end (see the

upper panel).

FIG. 4.—Mean number of mutations per clonal strain as a function of the turbulence level T. Each dot represents the mean number of mutations of one

of the three kinds (panel A—gene modifications, B—duplications, and C—deletions) calculated for the last 105 time steps (out of total 2�105), after the

system has stabilized; shaded area is SD, calculated in a similar manner. Panel (D) presents the number of clonal strains at the end of the run.
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FIG. 5.—Genome shapes evolve in time and depend on the turbulence level. Each pair of panels represents one simulation with different turbulence level

T values (number above the panels on the left). Left panels present the change of environmental conditions x in time during the whole simulation. Right

panels show heat maps of the mean uptake efficiency U(x) averaged for the whole population evolving in time. The intensity of black is proportional to the

value of mean uptake efficiency U(x) for the given environmental conditions x in time step t (see the bar below panels). Standard deviation of U(x) has been

omitted due to the clarity of the presentation.
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through mutations and adapt to function in a novel environ-

mental space. However, individuals incurred a regulatory cost

for each additional gene copy. The population evolved until a

dynamic equilibrium was reached in which individuals carried

an optimum number of genes, that is, “genome streamlining”

(Giovannoni et al. 2005, 2014; Swan et al. 2013). The four

principal findings are that 1) genome size increased with in-

creased level of environmental turbulence, 2) the rate of evo-

lution was highest in moderately turbulent environments, (3)

clonal diversity was highest in the most turbulent environ-

ments, and (4) population extinction rates were highest in

populations that had evolved in relatively stable environments.

Computational modelling of evolutionary process has no-

tably advanced in the last two decades (Adami 2006; Hindré

et al. 2012; Mozhayskiy and Tagkopoulos 2013; Pigliucci

2013). A number of theoretical publications have shown

that varying or unstable environments produce genetic net-

works that are modular (Kashtan and Alon 2005; Kashtan

et al. 2009). Furthermore, unstable conditions influence

simulated genetic network architecture, which allows for

network-wide rearrangement by altering only a few specific

genes (Crombach and Hogeweg 2008). Thus, genomic

re-engineering caused by environmental fluctuations might

accelerate the rate of evolution (Kashtan et al. 2007).

Variations in nutrient supply forced simulated metabolic net-

works to develop more multifunctional enzymes, making

these genotypes more robust to cope with gene deletion

(Soyer and Pfeiffer 2010). Correspondingly, opportunistic mi-

crobes such as Escherichia coli and Saccharomyces cerevisiae

might lose 37–47% of their metabolic reactions without

blocking the production of any biomass component under

any nutritional conditions (Wang and Zhang 2009). This dem-

onstrates the biological significance of redundancy of gene

networks. Although Pelagibacter (Proteobacteria) and

Prochlorococcus (Cyanobacteria), two phyla of marine bacte-

ria, are known for extreme genome streamlining (Giovannoni

et al. 2005, 2014), their genomes contain islands of genomic

variability acquired through HGT (Coleman et al. 2006; Avrani

et al. 2011; Grote et al. 2012) giving them metabolic advan-

tage to adapt to local environments and to defend viral attacks

(Coleman et al. 2006; Avrani et al. 2011; Grote et al. 2012).

Nonetheless, even with the presence of genomic islands,

Pelagibacter ubique has the smallest genome among free-

living bacteria known to date with only obligate parasites or

symbionts having smaller ones (Giovannoni et al. 2005).

Our study indicates that a fluctuating environment produ-

ces large genomes that are more robust to variable conditions,

and consequently, that such populations suffer fewer extinc-

tions. This conclusion is entirely unremarkable until one rea-

lizes how this has been accomplished, as well as its wider

implications. Rather than evolution directly selecting for

genes that encode for a more plastic phenotype, these

larger genomes evolve in response to a relaxed selection

pressures on metabolic efficiency. Fierce resource competition

between genotypes in stable environments results in overly

optimized and highly streamlined genomes (Giovannoni

et al. 2014). In reference to Hutchinson’s (1961) solution of

the plankton paradox, we argue that variation in gene

number and genome size reflects adaptations to different

levels of environmental variability and nutrient supply

(Konstantinidis and Tiedje 2004). Our study furthermore

implies that species evolved in relatively stable environments

would face the greatest extinction risk in a globally changing

environment as the result of genome streamlining unless

other mechanisms of gaining and maintaining genetic diver-

sity come into play such as HGT.

Data Availability

Animation 1: Evolution in low-turbulence environment https://

dl.dropboxusercontent.com/u/834906/anim_T_low_0.01.

mp4

Animation 2: Evolution in high-turbulence environment

https://dl.dropboxusercontent.com/u/834906/anim_T_high_

0.25.mp4

Code and documentation of the programme: https://dl.

dropboxusercontent.com/u/834906/Bentkowski_et_al_2015_

Code.zip

Supplementary Material

Supplementary material is available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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