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Abstract: A hybrid domain image encryption algorithm is developed by integrating with improved
Henon map, integer wavelet transform (IWT), bit-plane decomposition, and deoxyribonucleic acid
(DNA) sequence operations. First, we improve the classical two-dimensional Henon map. The
improved Henon map is called 2D-ICHM, and its chaotic performance is analyzed. Compared
with some existing chaotic maps, 2D-ICHM has larger parameter space, continuous chaotic range,
and more complex dynamic behavior. Second, an image encryption structure based on diffusion–
scrambling–diffusion and spatial domain–frequency domain–spatial domain is proposed, which
we call the double sandwich structure. In the encryption process, the diffusion and scrambling
operations are performed in the spatial and frequency domains, respectively. In addition, initial
values and system parameters of the 2D-ICHM are obtained by the secure hash algorithm-512
(SHA-512) hash value of the plain image and the given parameters. Consequently, the proposed
algorithm is highly sensitive to plain images. Finally, simulation experiments and security analysis
show that the proposed algorithm has a high level of security and strong robustness to various
cryptanalytic attacks.

Keywords: image encryption; improved Henon map; integer wavelet transform; double sandwich
structure; SHA-512

1. Introduction

With the development of the information revolution, network technology has been
rapidly popularized. As one of the critical carriers of information exchange in network
technology, digital image plays an important role in our daily life, and its transmission
security problem has been widely concerned. Therefore, digital image encryption arises
at the historic moment. Image encryption can be used in application scenarios based on
computer vision, such as medical vision [1–3], secure surveillance framework for Internet
of Things [4], and biometrics [5]. While the digital image has the characteristics of large
amount of data, high redundancy, and strong correlation between pixels [6], the encryption
algorithms designed for text information, such as the Data Encryption Standard (DES) and
Advanced Encryption Standard (AES), are unsuitable for image encryption scenarios [1,7].

In recent years, with the in-depth study of chaos theory, the unique properties of
chaotic maps have been explored, such as pseudorandomness, ergodicity, nonperiodic-
ity, and high sensitivity to initial values. These properties make the chaos-based image
encryption algorithms can exhibit a good ability to protect image data. So far, the image
encryption algorithms based on chaotic systems have been widely studied [8–16]. In [8],
an image encryption algorithm based on random integer cycle shift and logistic map is
proposed. Zhao et al. [9] proposed a dynamic block image encryption algorithm based on
variable-length secret key and modified Henon map. Zhao et al. [10] proposed a chaotic
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encryption algorithm based on long short-term memory artificial neural networks (LSTM-
ANN). In the proposed scheme, the chaotic sequence used in the encryption algorithm is
constructed by the LSTM-ANN deep learning network. Chai et al. [11] proposed a chaotic
encryption algorithm based on generative adversarial network (GAN), convolutional neu-
ral network (CNN), and denoising network. In the proposed algorithm, the deep learning
reconstruction scheme based on GAN improves the robustness of the encryption algorith,
and the CNN denoiser improves the visual expression of the decrypted image. In [12], a
color image compression–encryption scheme based on autoencoder is proposed, where
the encrypted image is losslessly compressed by unsupervised autoencoder deep learning
networks and this can speed up the transmission. In [13], a chaotic encryption scheme
based on genetic algorithm is proposed. Due to the inherent advantages such as high
parallelism, huge information density, and ultralow energy consumption, deoxyribonucleic
acid (DNA) computing attracts the attention of cryptographers. Therefore, various algo-
rithms combining chaotic systems and DNA computing have been proposed. For instance,
Wang et al. [17] proposed an image encryption algorithm based on a six-dimensional
hyperchaotic system and DNA encoding. El-Shafai et al. [2] proposed a medical image
encryption algorithm using the DNA–chaos cryptosystem. Suri et al. [18] proposed an
image encryption approach based on coupled map lattice, DNA, and multiobjective genetic
algorithm. Furthermore, with increasing demand for high-quality images, image compres-
sion techniques have become an effective way to save memory space and transmission
bandwidth. As a result, some scholars have introduced image compression techniques to
encryption systems, such as compressed sensing [6,19,20], self-encoder [12,21,22], cosine
transform [20,23], and wavelet transform [3,24–27], etc.

In [2,8,9,13–18], several encryption schemes based on spatial domain are proposed.
Image spatial domain encryption is fidelity encryption. In some spatial image encryption
algorithms, the overly simple scrambling–diffusion schemes cannot effectively break the
strong correlation of the plain image, making the algorithms vulnerable to chosen-plaintext
attacks. Therefore, some researchers have designed multiround encryption structures to
enhance the security level, which leads to inefficient encryption. However, for frequency
domain encryption schemes, each change of coefficients in the transform domain leads to
the change of all pixel values in the image spatial domain, and some scholars have shifted
research directions to the more efficient frequency domain. Belazi et al. [24] proposed a
novel image encryption scheme based on chaotic system and lifting wavelet transform.
In [28], a new method of image encryption using fractional Fourier transform is proposed.
With the emergence of encryption algorithms based on the spatial and frequency domains,
hybrid domain encryption algorithms are proposed. Hybrid domain encryption, which
combines the fidelity of spatial domain algorithms and the efficiency of frequency domain
algorithms, provides high-level security. Aashiq et al. [3] proposed a medical image
encryption method based on a chaos–DNA–IWT (integer wavelet transform) combined
approach. However, the diffusion algorithm in this paper did not consider to employ
bit-level diffusion, which has better diffusion performance. Luo et al. [25] proposed an
encryption scheme using the IWT. In this paper, the authors used spatiotemporal chaos to
diffuse low-frequency subbands and kept the high-frequency subbands unchanged. The
diffusion algorithm did not take the full information of the image into account.

Based on the above analysis and to move beyond, we proposed a hybrid domain
image encryption algorithm based on improved Henon map. The main contributions of
this paper are summarized as follows:

(1) We improve the classical two-dimensional (2D) Henon map. The improved Henon
map is briefly called 2D-ICHM. The analyses of dynamical properties show that 2D-
ICHM has more complex chaotic behavior and is more suitable for image encryption
scenarios.

(2) The proposed algorithm adopts a double sandwich structure based on diffusion–
scrambling–diffusion and spatial domain–frequency domain–spatial domain. Specif-
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ically, the diffusion and scrambling operations are performed in the spatial and
frequency domains, respectively, which provides a high level of security.

(3) To enhance plaintext sensitivity, the system parameters and initial values of chaotic
mapping are obtained by the secure hash algorithm-512 (SHA-512) hash value of the
plain image and the given parameters. Therefore, the proposed algorithm is highly
related to plain image.

The remainder of the paper is organized as follows. In Section 2, we introduce the
research status of the chaotic system. In Section 3, the 2D-ICHM is proposed and the
dynamic performance is analyzed. In Section 4, related knowledge is introduced. In
Section 5, we describe the proposed image encryption algorithm in detail. In Section 6,
the simulation results are given. In Section 7, security analyses are presented. Finally, the
conclusion of this paper is reported in Section 8.

2. Chaotic System

Chaotic systems are often used to design image encryption algorithms, due to their
numerous excellent intrinsic characteristics, including unpredictability, aperiodicity, and
pseudorandom behaviors [29,30]. In the image encryption algorithm, chaotic sequences
generated by chaotic systems are often used in the process of image scrambling and diffusion.
Chaotic systems are categorized as one-dimensional (1D) and high-dimensional (HD) systems,
which have been a hot research topic for scholars. The classical 1D chaotic systems have the
logistic, sine, and tent maps [31]. Due to the low complexity and easy predictability of 1D
chaotic maps, the chaotic sequences generated by such maps are less stochastic and cause
a number of security risks in image encryption processing. The HD chaotic systems have
larger parameter space and more complex structure than the 1D chaotic systems, making
the behavior of chaotic sequences more difficult to predict and more suitable for image
encryption theoretically. However, chaotic systems with too high dimensions are not suitable
for designing real-time image encryption systems, as they lead to intensive calculations and
high implementation costs. The 2D chaotic systems, with higher complexity and lower
implementation cost, provide a balance of chaotic performance and implementation cost.
Hence, our scheme chooses to use 2D chaotic systems.

The classical 2D chaotic systems include cat map, standard map, Henon map, etc. [32,33].
In recent years, some weak chaotic characteristics of the classical 2D chaotic systems have
been pointed out, such as small parameter space, discontinuous chaotic intervals, and
poor pseudorandomness. Thus, researchers have made some improvements or proposed
new 2D chaotic systems [34–37]. Hua et al. [34] proposed a new two-dimensional sine
logistic modulation map based on a logistic map and a sine map. Zhu et al. [35] constructed
a new two-dimensional chaotic system by using logistic and sine maps. Bao et al. [36]
proposed a novel two-dimensional sine map (2D-SM) with a simple algebraic structure. A
color image encryption algorithm using the improved Henon map (IHM) was proposed by
Gao [37]. Figure 1 shows the phase portraits and bifurcation diagrams of the classical 2D
Henon map (2D-CHM), 2D-SM, and IHM. The phase portrait and bifurcation diagram are
the most common indicators to identify chaotic states. The phase portrait can represent
the reciprocating nonperiodic motion characteristics of chaotic systems. The bifurcation
diagram can clearly reflect the period-doubling bifurcation phenomenon and parameter
range of chaotic systems, etc. As shown in Figure 1a–c, the motion trajectories of 2D-CHM,
2D-SM, and IHM are not uniformly distributed, indicating they have weaker randomness.
As shown in Figure 1d–f, the 2D-CHM, 2D-SM, and IHM have discontinuous chaotic
intervals and a small range of parameters. Therefore, it is crucial to design a 2D chaotic
system with better chaotic performance.
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Figure 1. The phase portraits and bifurcation diagrams. Phase portraits: (a) 2D-CHM with (a, b) =
(1.4, 0.3), (b) 2D-SM with (a, b) = (0.7, 3.8), (c) IHM with (a, b) = (1, 0.3), r = 0.1; bifurcation
diagrams: (d) the 2D-CHM with b = 0.3, (e) 2D-SM with b = 3.8, (f) IHM with b = 0.3, r = 0.1.

3. Improvement of the Classical Two-Dimensional Henon Map

In this section, we give the definition of the 2D-ICHM and analyze its dynamical
behavior. Further, comparison of the dynamical behavior of 2D-ICHM, 2D-CHM, 2D-SM,
and IHM is considered.

3.1. Definition of 2D-ICHM

Henon map [38], a simple 2D discrete chaotic system, was introduced by Henon in
1976, which is defined as {

x(n + 1) = 1 + y(n)− ax(n)2,
y(n + 1) = bx(n),

(1)

where (x(n), y(n)) ∈ R2 are the state values of system, a ∈ [0, 1.4], and b ∈ [0, 0.3] are
control parameters.

When a = 1.4 and b = 0.3, the 2D-CHM has the maximum Lyapunov exponent
(LE), showing a most significant chaotic behavior. However, the 2D-CHM has some
disadvantages, such as simple chaotic behavior and discontinuous chaotic intervals. In
order to overcome the above shortcomings, we improve the 2D-CHM to 2D-ICHM, defined
as follows: {

x(n + 1) = cos(1− ax(n)2) + eby(n)2
,

y(n + 1) = sin(x(n)2),
(2)

where a and b are control parameters.

3.2. Chaotic Performance of 2D-ICHM

In order to verify the chaotic performance of the 2D-ICHM, the following analyses are
discussed in terms of phase portrait, bifurcation diagram, Lyapunov exponent, approximate
entropy, NIST SP800-22 test, and 0–1 test.

(1) Phase portrait and bifurcation diagram

Figure 2a is the phase portrait of 2D-ICHM with initial values (x(0), y(0)) = (0.3, 0.3), and
the control parameters (a, b) = (5, 5). Figure 2b,c are the bifurcation diagrams of 2D-ICHM
with a ∈ (−50, 50), b = 5, and with a = 5, b ∈ (0, 50), respectively.
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As observed in Figures 1a–c and 2a, the attractor structures of the 2D-CHM, 2D-
SM, IHM, and 2D-ICHM are different. The attractor of 2D-ICHM is a noiselike pattern. It
indicates that 2D-ICHM has better ergodicity. As can be seen from Figures 1d–f and 2b,c, the
bifurcation diagrams of the x and y components of the 2D-ICHM are also noiselike patterns,
where the control parameters a ∈ (−50, 50) and b ∈ (0, 50). It indicates that 2D-ICHM has
a larger parameter space and continuous chaotic range. Taken together, 2D-ICHM has a
more complex chaotic behavior and is suitable for image encryption systems.

(a) (b) (c)

Figure 2. The phase portrait and bifurcation diagrams of the 2D-ICHM. (a) Phase portrait, (b) bifur-
cation diagram of output x, and (c) bifurcation diagram of output y.

(2) Lyapunov exponent

The LE can be used to evaluate the chaotic behavior of dynamical systems. It can reflect
the average exponential rate of separation or aggregation between adjacent trajectories [39].
The number of LEs is equal to the dimension of the chaotic system, which means that 2D
chaotic systems have two LEs. A map has chaotic behavior when there is one positive
LE value. The chaotic behavior of the map becomes more complicated as its LE increases.
LE can be calculated using the Qatari Rial (QR) decomposition algorithm [40], which is
defined as follows.

= [JM JM−1 · · · J2(J1Q0)]

= qr[JM JM−1 · · · J3(J2Q1)][R1]

= qr[JM JM−1 · · · Ji(Ji−1Qi−2)][Ri−1 · · · R1]

= · · ·
= QM[RM · · · R2R1]

= QMR,

(3)

where qr[·] is the QR decomposition function, J is the Jacobian matrix of the chaotic map,
and M is the number of iteration. Then, LE is calculated by

LEv =
1
M

M

∑
i=1

ln|Ri(v, v)|, (4)

where v = 1, 2, · · · , n.
The LEs of 2D-CHM, 2D-SM, IHM, and 2D-ICHM are calculated by QR decomposition

algorithm, and Figure 3 plots their largest LEs. The figures are obtained by changing the
parameter a when other parameters are fixed. A comparison on the largest LEs of the above
four chaotic systems is given in Figure 3e. It is noted from this that 2D-ICHM has a larger
and continuous positive LE value. Thus, 2D-ICHM has a more continuous chaotic range,
which means it is suitable for image encryption systems.
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Figure 3. The largest LE. (a) 2D-CHM with b = 0.3, (b) 2D-SM with b = 3.8, (c) IHM with b = 0.3
and r = 0.1, (d) 2D-ICHM with b = 5, (e) comparison of four maps.

(3) Approximate entropy

The complexity of nonlinear time series can be evaluated by the approximate entropy
(ApEn), which increases with the increase of ApEn value. The calculation process of the
ApEn is shown as follows [41]:

Step 1: Given a time series x(1), x(2), · ··, x(N), divide them into m-dimensional
vectors

X(i) = [x(i), x(i + 1), · · · , x(i + m− 1)], (5)

where i = 1, 2, 3, · · · , N −m + 1.
Step 2: Measure the distance between X(i) and X(j) by

d(i, j) = max
k=0,1,··· ,m−1

[|x(i + k)− x(j + k)|], (6)

where i = 1, 2, 3, · · · , N −m + 1, j = 1, 2, 3, · · · , N −m + 1.
Step 3: Set a threshold value r(r > 0), define for each i, 1 ≤ i ≤ N −m + 1,

Cm
i (r) = (number of j such that d(i, j) < r)

/
N −m + 1, (7)

where j = 1, 2, 3, · · · , N −m + 1.
Step 4: Denote the mean of logarithm of Cm

i (r) as ϕm(r) and we have

ϕm(r) =
1

N −m + 1

N−m+1

∑
i=1

ln Cm
i (r). (8)

Step 5: Change the dimension m to m + 1 and repeating step 1 to step 4, the ApEn is

ApEn(m, r) = lim
N→∞

[
ϕm(r)− ϕm+1(r)

]
. (9)

In practical terms, the length of the data sequence is bounded. Therefore, the ApEn algo-
rithm is changed into

ApEn(m, r, N) = ϕm(r)− ϕm+1(r). (10)

In order to keep the correlation between ApEn and N to a minimum, Pincus found
that parameters can be set to m = 2 and r ∈ [0.1SD(x), 0.2SD(x)], SD(x) is the standard
deviation of x [42]. Using the above algorithm, the ApEn values of the 2D-CHM, 2D-SM,
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IHM, and 2D-ICHM are shown in Figure 4. As shown in Figure 4, 2D-ICHM has a higher
ApEn value; therefore, the output time series of 2D-ICHM has higher complexity.

0 0.2 0.4 0.6 0.8 1

a

0

0.5

1

1.5

2

2.5

A
pE

n

2D-ICHM
2D-CHM
2D-SM
IHM

Figure 4. The ApEn comparison among the 2D-ICHM (b = 5), 2D-CHM (b = 0.3), 2D-SM (b = 3.8,
r = 0.1), and IHM (b = 0.3).

(4) NIST SP800-22 test

The level of security of an image encryption system depends heavily on the ran-
domness of the pseudorandom number sequence. NIST SP800-22 test [43] can be used to
evaluate the random characteristics of binary bit sequences. The NIST SP800-22 test pro-
vides 15 test methods, including frequency test, run test, approximate entropy test, random
excursions test, etc. Each test calculates a random value to determine whether the binary
sequence is random. If p_value > 0.01, the binary sequence is considered to be random,
and the larger the p_value, the better the randomness. The SP800-22 test recommends
that the length of the binary sequence tested is from 103 to 107. Therefore, the test binary
sequence we used is 106 in length. As we can see from Table 1, all the calculated p_value
are larger than 0.01. Therefore, the 2D-ICHM has passed all the random tests, which shows
that the 2D-ICHM is more suitable for image encryption.

Table 1. SP800-22 test.

Statistical Test p_Value

Frequency 0.9856
Block Frequency 0.8178
Cumulative Sums 0.2113
Runs 0.1421
Longest Run 0.6101
Rank 0.3482
Fft 0.5341
Nonoverlapping Template 0.9114
Overlapping Template 0.5341
Approximate Entropy 0.3504
Random Excursions 0.6528
Frequency 0.8562
Random Excursions Variant 0.7236
Serial 0.7399
Linear Complexity 0.0179

(5) 0–1 test

G. A. Gottwald and I. Melbourne proposed a reliable and effective binary test method
for checking whether the dynamical system is chaos, which is called the “0–1 test” [44]. It
can be described as
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Step 1: For a time series x(j)(j = 1, 2, · · · , N), the definition of translation variables is
pc(n) =

n
∑

j=1
x(j) cos(jc),

qc(n) =
n
∑

j=1
x(j) sin(jc),

(11)

where c ∈ (0, π) and n = 1, 2, · · · , N.
Step 2: In order to measure the diffusive (or nondiffusive) behavior of pc and qc, the

mean square displacement defined as

Mc(n) = lim
N→∞

1
N

N

∑
j=1

{
[pc(j + n)− pc(j)]2 + [qc(j + n)− qc(j)]2

}
, (12)

where n ≤ N0 << N. In practice, N0 = round(N/10).
Step 3: Define the modified mean square displacement Dc(n) as

Dc(n) = Mc(n)−Vosc(c, n), (13)

where Vosc(c, n) =

[
lim

N→∞
1
N

N
∑

j=1
x(j)

]2
1−cos(nc)
1−cos(c) .

Step 4: Define the vectors and the correlation coefficient{
∆ = (Dc(1), Dc(2), · · · , Dc(N0)),
Kc = corr(ξ, ∆) ∈ [−1, 1],

(14)

where ξ = 1, 2, · · · , N0. Kc ≈ 0 indicates regular behaviour, while Kc ≈ 1 indicates chaotic
behaviour.

Figure 5 shows the 0–1 test results of 2D-ICHM with c = 2, and initial values
(x(0), y(0)) = (0.3, 0.3). As shown in Figure 5a, Kc is very close to 1, illustrating that
the 2D-ICHM has significant chaotic behavior. In addition, The (p, q) plane also can intu-
itively reflect whether the dynamic system is chaotic or not. When the trajectory of the
(p, q) plane is bounded motion, the dynamical system is regular, and when the trajectory of
the (p, q) plane is Brownian-like motion, the dynamical system is chaotic. The (p, q) planes
of the 2D-ICHM are shown in Figure 5b,c. It can be seen that the trajectories of 2D-ICHM
are similar to Brownian motion. This means that the 2D-ICHM is a chaotic dynamic system.

(a)

p

q

(b)

p

q

(c)

Figure 5. 0–1 test results. (a) Plot of Kc versus a and b, (b) (p, q) plane of the x sequence with
(a, b) = (5, 5), (c) (p, q) plane of the y sequence with (a, b) = (5, 5).
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4. Relevant Knowledge
4.1. Bit-Plane Decomposition

The recombined plane of binary pixel values at the same bit positions of a grayscale
image is called the bit plane. The grayscale image P = {p(i, j)} is decomposed into eight
binary bit planes Pk = {pk(i, j)}(k = 1, 2, · · · , 8) [45], given by

P =
8

∑
k=1

Pk2k−1 = P120 + P221 + · · ·+ P827. (15)

Figure 6a is a grayscale image “Lena” of size 256 × 256. The eight binary planes
of “Lena” are shown in Figure 7a–h. The higher bit plane contains more information,
among which the high four bit planes contain more than 94% of information in the original
image [46]. A composite image of high four bit planes is shown in Figure 6b, which retains
the vast majority of the original image.

(a) (b)

Figure 6. Lena and composite image of high four bit planes. (a) Lena, (b) composite image of high
four bit planes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. The corresponding eight bit planes of Lena. (a) P8, (b) P7, (c) P6, (d) P5, (e) P4, (f) P3, (g) P2,
and (h) P1.

4.2. Integer Wavelet Transform

Wavelet transform links the time domain and frequency domain of the image. The
IWT was proposed by Swelden and Daubechies in 1998 [47]. Compared with the traditional
wavelet transform, the IWT has obvious advantages, e.g., low computational complexity,
no edge effect, and complete reversibility. The image can be decomposed into four bands
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LL, LH, HL, and HH using IWT (see Figure 8). Most of the detailed information in the
image is concentrated in the low frequency band LL [48].

Image

LL LHLL LH

HL HHHL HH

LL LH

HL HH

Figure 8. IWT operations.

4.3. DNA Sequence Operations

DNA sequence operations consist of two components: DNA encoding/decoding and
DNA computation.

(1) DNA encoding and decoding rules

The DNA sequence of biology contains four nucleic acid bases i.e., A (Adenine), C
(Cytosine), G (Guanine), and T (Thymine), where A and T, G, and C are complementary,
respectively [49]. In binary computing, 0 and 1 are complementary, so the binary digits 00
and 11 are complementary, as well as 01 and 10. The binary digits 00, 01, 10, and 11 can be
encoded as the four bases A, T, C, and G. There are 24 kinds of coding rules, while only
eight coding rules are capable of meeting the Watson-Crick complement rule, as listed in
Table 2. A pixel value denoted by eight bits can be encoded as a DNA sequence containing
four bases. For example, a decimal pixel value is 150, and its corresponding binary is
[10010110]. Different coding rules yield different combinations of bases. If we use Rule 3,
[10010110] is encoded as [TAAT]. Decoding is the inverse process of encoding. The inverse
of Rule 3 can be used to decode [TAAT] into [10010110].

Table 2. DNA coding rules.

Rules 1 2 3 4 5 6 7 8

00 A A C C G G T T
01 C G A T A T C G
10 G C T A T A G C
11 T T G G G G A A

(2) DNA computation

The computation of DNA sequences includes DNA addition, subtraction, and XOR
operations, where DNA addition and DNA subtraction operations are reciprocal. These
three DNA computations are all used in this paper. The eight different DNA coding rules
in Table 2 correspond to eight different DNA addition, subtraction and XOR operations.
In this paper, we use the coding Rule 4, whose corresponding DNA addition and XOR
operations are shown in Table 3.

Table 3. DNA addition operations and XOR operations.

+ A C G T XOR A C G T

A C A T G A C A T G
C A C G T C A C G T
G T G A C G T G C A
T G T C A T G T A C
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5. The Proposed Image Encryption Algorithm
5.1. Generating Chaotic Sequences

In order to enhance the correlation of the proposed algorithm and the plain image.
the system parameters and initial values of the 2D-ICHM are generated by the SHA-512
hash values of the plain image. The process of generating chaotic sequences is specified
as follows.

Step 1: The SHA-512 hash values of the plain image are divided into 64 8-bit blocks:
K = [k1, k2, · · · , k64]. The parameters s1, s2, s3, s4, s5, s6 can be calculated by

s1 = k1+k2+···+k8
8×28 ,

s2 = k9⊕k10⊕···⊕k16
28 ,

s3 = k17⊕k18⊕···⊕k24
28 ,

s4 = k25⊕k26⊕···⊕k32
28 ,

s5 = (k33+k34)⊕(k35+k36)⊕···⊕(k47+k48)
2×28 ,

s6 = (k49⊕k50)+(k51⊕k52)+···+(k63⊕k64)
8×28 ,

(16)

where x⊕ y is the bitwise XOR operator. The system parameters a0, b0 and initial values
x0, y0 of 2D-ICHM are calculated as follows.

a0 = mod((s1 + s2 + s3)× 108, 256)
/

255 + v1,

b0 = mod((s2 + s3 + s4)× 108, 256)
/

255 + v2,

x0 = mod((s3 + s4 + s5)× 108, 256)
/

255 + v3,

y0 = mod((s4 + s5 + s6)× 108, 256)
/

255 + v4,

(17)

where v1, v2, v3, v4 are real numbers. The K, v1, v2, v3 and v4 are secret keys.
Step 2: To eliminate the transient effect and improve security of the system, 2D-ICHM

is performed with N0 pre-iterations. Then it is iterated M × N times, where M and N
represent the width and height of the plain image, respectively. We use i to represent the
index of the number of iterations. After each iteration, state values X(i), Y(i) are stored in
the sequence X, Y, respectively.

Step 3: The two chaotic sequences X1, Y1 are calculated by{
X1(i) = mod

(⌊
(|X(i)| − b|X(i)|c)× 216⌋, 256

)
,

Y1(i) = mod
(⌊
(|Y(i)| − b|Y(i)|c)× 216⌋, 256

)
,

(18)

where b·c denotes the round-down operation, and i = 1, 2, · · · , M× N.

5.2. Encryption Process

The encryption process is as follows. The process of high bit planes diffusion in
the space domain corresponds to Steps 2–3, the process of scrambling operation in the
frequency domain corresponds to Steps 4–7, and the process of DNA computing and
bidirectional diffusion in the spatial domain corresponds to Steps 8–10.

Step 1: The plain image P of size M× N is decomposed into eight binary bit planes
P1, P2, · · · , P8.

Step 2: Arrange the high bit planes Pi (i = 5, 6, 7, 8) into binary vectors P′i (i = 5, 6, 7, 8)
from top to down row by row. Take the first MN/8 terms of the chaotic sequence X1 and
convert it into the binary sequence H1.
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Step 3: The new binary vectors P′′i (i = 5, 6, 7, 8) are generated by the diffusion opera-
tion of Equation (19). The vectors P′′i (i = 5, 6, 7, 8) are transformed into the bit planes P̂i
(i = 5, 6, 7, 8) according to the top to down and left to right rules.

P′′8 = bitxor(P′8, H1),

P′′7 = bitxor(P′7, P̂8),

P′′6 = bitxor(P′6, P̂7),

P′′5 = bitxor(P′5, P̂6),

(19)

where bitxor(x, y) represents bit by bit XOR operations. The intermediate cipher image Q1
is obtained using Equation (20).

Q1 = P120 + P221 + P322 + P423 + P̂524 + P̂625 + P̂726 + P̂827. (20)

Step 4: The IWT is applied to Q1 to obtain the bands LL, LH, HL and HH of each size
M/2× N/2. To visualize the Chunking-Arrangement-Combination operation, an example
is provided in Figure 9 (M = 12, N = 12).

Step 5: LL is divided into 4 sub-blocks of size m× n (see Figure 9b, m = 3, n = 3).
Convert each sub-block to a vector of length m× n by arranging the first column sub-blocks
from left to right row by row and the second column sub-blocks from top to down column
by column (see Figure 9c). After that, sub-vectors are recombined into a vector Z1 of length
4×m× n according to the combination method of Figure 9d.

Step 6: Using the method in Step 5 to convert LH, HL and HH to vectors Z2, Z3 and Z4,
respectively. Take the first MN/4 terms of the chaotic sequence X1 to obtain the sequence
X2. By arranging the sequence X2 in ascending order, the index sequence I is obtained.

Step 7: The vectors Z1, Z2, Z3 and Z4 are obtained by using the global scrambling
operation of Equation (21).

Zi(j) = Zi(I(j)), (21)

where i = 1, 2, 3, 4 and j = 1, 2, · · · , M× N/4. Then Z1, Z2, Z3 and Z4 are transformed into
matrices LL1, LH1, HL1 and HH1 according to the top to down and left to right rules. The
intermediate cipher Q2 is obtained by applying inverse IWT of LL1, LH1, HL1 and HH1.

Step 8: Arrange Q2 into binary vectors Q′2 from top to down row by row, and convert
chaotic sequence Y1 into binary sequence H2. Convert Q′2, H1, H2 into DNA sequences
Q̂′2, H1

1 , H1
2 by DNA coding Rule 4 in Table 2. Then the DNA addition and XOR operations

(see Table 3) are performed on the above DNA sequences using Equation (22) to obtain the
sequence H3.

H3 = DNA_xor(DNA_add(Q̂′2, H1
1), H1

2). (22)

Step 9: The inverse of DNA coding Rule 3 is used to decode H3 to obtain the binary
sequence Q′3.

Step 10: Q′3 is converted to the decimal sequence Q3. Then we use the bidirectional
diffusion processing of Equation (23) to obtain the sequence Q4.{

E(i) = E(i− 1)× X1(i)×Q3(i),

Q4(j) = Q4(j + 1)×Y1(j)× E(j),
(23)

where i = 1, 2, · · · , MN, j = MN − 1, MN − 2, · · · , 1, “×” denotes GF(257) field multi-
plication, E(0) and Q4(0) are positive integers and take values in the range 0 to 255,
Q4(MN) = Q4(0)×Y1(MN)× E(MN). E(0) and Q4(0) are secret keys.

Step 11: The Q4 is transformed into the final encrypted image C according to the top
to down and left to right rules.

The encryption flow chart of the proposed algorithm is shown in Figure 10. Decryption
can be completed by performing the reverse operation of encryption. The decryption flow
chart is shown in Figure 11.
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Figure 9. Example of Chunking—Arrangement—Combination. (a) 6 × 6 matrix, (b) chunking
operations, (c) arrangements of sub-blocks, and (d) combination of vectors.
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Figure 10. Encryption flow chart.



Entropy 2022, 24, 287 14 of 28

1X

1

1

X

Y

1X

Plain image P
Bit plane 

decomposition

High bit plane 

XOR

Bit plane 

merge
IWTPlain image P

Bit plane 

decomposition

High bit plane 

XOR

Bit plane 

merge
IWT

Chaotic sequences
Scrambling

operations

Inverse IWT

DNA 

operations

DNA 

decoding

Bidirectional 

diffusion
Cipher image C

2D-ICHM

DNA 

encoding

SHA-512

Given 

parameters

SHA-512

Given 

parameters

Chaotic sequences
Scrambling

operations

Inverse IWT

DNA 

operations

DNA 

decoding

Bidirectional 

diffusion
Cipher image C

2D-ICHM

DNA 

encoding

SHA-512

Given 

parameters

Plain image P
Bit plane 

decomposition

High bit plane 

XOR

Bit plane 

merge
IWT

Chaotic sequences
Scrambling

operations

Inverse IWT

DNA 

operations

DNA 

decoding

Bidirectional 

diffusion
Cipher image C

2D-ICHM

DNA 

encoding

SHA-512

Given 

parameters

0 0 0 0, , ,a b x y

1 2 3 4, , ,v v v v

0 0 0 0, , ,a b x y

1 2 3 4, , ,v v v v

Inverse IWT
Bit plane 

decomposition

High bit plane 

Inverse XOR
Plain image P

Bit plane 

merge
Inverse IWT

Bit plane 

decomposition

High bit plane 

Inverse XOR
Plain image P

Bit plane 

merge

Inverse 

scrambling

operations 

2D-ICHM  Chaotic sequencesInitial keys

DNA 

encoding

Inverse DNA 

operations

DNA 

encoding

DNA 

encoding

Inverse DNA 

operations

DNA 

encoding

Cipher image C

Inverse 

bidirectional 

diffusion

IWTCipher image C

Inverse 

bidirectional 

diffusion

IWT

Inverse 

scrambling

operations 

2D-ICHM  Chaotic sequencesInitial keys

DNA 

encoding

Inverse DNA 

operations

DNA 

encoding

Cipher image C

Inverse 

bidirectional 

diffusion

IWT

Inverse IWT
Bit plane 

decomposition

High bit plane 

Inverse XOR
Plain image P

Bit plane 

merge

Inverse 

scrambling

operations 

2D-ICHM  Chaotic sequencesInitial keys

DNA 

encoding

Inverse DNA 

operations

DNA 

encoding

Cipher image C

Inverse 

bidirectional 

diffusion

IWT

1X

1

1

X

Y

1X

0 0 0 0, , ,a b x y

1 2 3 4, , ,v v v v

0 0 0 0, , ,a b x y

1 2 3 4, , ,v v v v

1X

1

1

X

Y

1X

0 0 0 0, , ,a b x y

1 2 3 4, , ,v v v v

Inverse IWT
Bit plane 

decomposition

High bit plane 

Inverse XOR
Plain image P

Bit plane 

merge

Inverse 

scrambling

operations 

2D-ICHM  Chaotic sequencesInitial keys

DNA 

encoding

Inverse DNA 

operations

DNA 

encoding

Cipher image C

Inverse 

bidirectional 

diffusion

IWT

1X

1

1

X

Y

1X

0 0 0 0, , ,a b x y

1 2 3 4, , ,v v v v

Figure 11. Decryption flow chart.

6. Simulation Results

The experimental environment is Intel(R) Core(TM) i5-9300HF CPU processor oper-
ating at 2.4 GHz, 8 GB of RAM, and a Microsoft Windows 10 operation system. We use
Matlab 2016b to execute encryption and decryption programs. The experimental images
are chosen from the CVG-UGR and USC-SIPI image databases. The parameters used in
this paper are as follows: v1 = 80, v2 = 20, v3 = 2, v4 = 2, E(0) = 20, Q4(0) = 20, and
the size of sub-blocks m× n = 64× 64. Four different 256× 256 grayscale images “Lena”,
“Peppers”, “5.1.10”, and “5.1.11” are used as plain images.

The results of encryption and decryption are displayed in Figure 12. As can be seen,
the cipher images are noise-like. It means that we cannot get useful information about the
plain images from the cipher images. Furthermore, the decrypted images are identical to
the plain images in visual respects. Thus, the proposed image encryption algorithm has
excellent encryption and decryption effects.

Figure 12. Cont.
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Figure 12. The simulation results of the proposed image encryption algorithm. The first column:
plain images; the second column: encrypted images; the third column: decrypted images.

7. Security Analysis

In this section, we evaluate the security performance of the proposed algorithm through
the analysis of key space, key sensitivity, histogram, correlation, information entropy, differen-
tial attack, chosen/known-plaintext attack, cropping attack, and noise attack.

7.1. Key Space Analysis

To counter brute force attacks, we should expand the key space of the algorithm as
much as possible. The literature [50] stated that the key space of a secure encryption algo-
rithm should be larger than 2100. The secret key of the proposed algorithm includes three
subkeys: (1) 512-bit hash value K of the plain image; (2) the given parameters v1, v2, v3, and
v4; (3) the positive integers E(0) and Q4(0). Suppose the operational precision of the com-
puter is 10−14; the key space of the proposed algorithm is 2512 × 1014×4 × 256× 256 > 2714,
which is much larger than 2100. The results compared with other algorithms are listed
in Table 4. From Table 4, it is obvious that our key space is larger, which means that the
proposed algorithm is resistant to brute force attacks.

Table 4. Key space for different algorithms.

Algorithms Proposed Ref. [6] Ref. [16] Ref. [51] Ref. [52] Ref. [53] Ref. [54]

Key spaces 2714 299 2598 2213 2186 2496 2512

7.2. Key Sensitivity Analysis

A secure image encryption system should show a high sensitivity to the key. The key
sensitivity can be considered in two aspects.

In the encryption process, using two keys with a tiny difference to encrypt the same
plain image, the two encrypted images should be completely different. Take “Lena” as test
image. The key sensitivity analysis results of the encryption process are shown in Figure 13,
where K1 is obtained by changing the 1st bit of K from 1 to 0. The cipher images C1, C2, and
C3 (Figure 13c–e) are obtained by using slightly different keys (A subkey is changed while
the other subkeys remain unchanged). The subtraction images S1, S2, and S3 (Figure 13f–h)
with noiselike textures indicate that C1, C2, and C3 are totally different from C.

In the decryption process, the plain image can only be decrypted correctly when the
correct secret key is used. The key sensitivity analysis results of the decryption process are
shown in Figure 14. It can be seen that when the decryption keys with a tiny difference
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are used, the decrypted images become noise images. The decrypted images are totally
different from the correct plain images.

To quantitatively evaluate the key sensitivity of the proposed algorithm, the number
of pixels change rate (NPCR) and unified average changing intensity (UACI) are adopted.
For two random 8-bit noise images, the ideal values of NPCR and UACI are 99.61% and
33.46% [55]. The formula is defined as follows. NPCR =

∑M
i=1 ∑N

j=1 D(i,j)
M×N × 100%,

UACI =
∑M

i=1 ∑N
j=1 |C1(i,j)−C2(i,j)|
M×N×255 × 100%,

(24)

where

D(i, j) =
{

1, C1(i, j) 6= C2(i, j),
0, C1(i, j) = C2(i, j),

(25)

C1, C2 represents two different cipher images, M× N represents the size of image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. The key sensitivity analysis results of the encryption process. (a) Plain image “Lena”,
(b) cipher image C with correct keys, (c) cipher image C1 with K1, (d) cipher image C2 with v′1 = v1 +

10−14, (e) cipher image C3 with v′3 = v3 − 10−14, (f) subtraction image S1 = |C1 − C|, (g) subtraction
image S2 = |C2 − C|, and (h) subtraction image S3 = |C3 − C|.

The calculated values of NPCR and UACI between the cipher image C (Figure 13b)
and the cipher images C, C1, C2, and C3 (Figure 13b–e) are listed in Table 5. It can be seen
that the values of NPCR and UACI are close to the ideal values. This means that when
slightly different keys are used in the encryption process, the cipher images obtained are
totally different. Between a random noise image and a determinate Lena image, the ideal
value of NPCR is 99.61% and the ideal value of UACI is 28.62% [56]. The calculated values
of NPCR and UACI between the decrypted image D (Figure 14a) and the decrypted images
D, D1, D2, and D3 (Figure 14a–d) are listed in Table 6. It is clear that the values of NPCR
and UACI are close to the ideal values. This means that when slightly different decryption
keys are used in the decryption process, the decrypted images obtained are totally different.
Therefore, the proposed encryption algorithm has a high sensitivity to the secret key.
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(a) (b) (c) (d)

Figure 14. The key sensitivity analysis results of the decryption process. (a) Decrypted image D with
correct keys, (b) decrypted image D1 with K1, (c) decrypted image D2 with v′1 = v1 + 10−14, and
(d) decrypted image D3 with v′3 = v3 − 10−14.

Table 5. Values of NPCR and UACI of Lena’s cipher images.

Secret Keys Calculated Values

NPCR% UACI%

v1 v3 K 0 0
v1 v3 K1 99.61 33.55
v′1 = v1 + 10−14 v3 K 99.60 33.45
v1 v′3 = v3 − 10−14 K 99.62 33.46

Ideal value 99.61 33.46

Table 6. Values of NPCR and UACI of Lena’s decrypted images.

Secret Keys Calculated Values

NPCR% UACI%

v1 v3 K 0 0
v1 v3 K1 99.62 28.65
v′1 = v1 + 10−14 v3 K 99.65 28.57
v1 v′3 = v3 − 10−14 K 99.58 28.60

Ideal value 99.61 28.62

7.3. Histogram Analysis

The distribution of image pixel values can be reflected by the image histogram. If the
histogram of a cipher image is flat, information of the plain image is excellently hidden.
Figure 15 shows the histograms of the images before and after encryption. It can be seen
that the histograms of encrypted images become relatively flat. Therefore, the proposed
algorithm can effectively resist statistical attacks.

The chi-square test can be used to quantitatively analyze the uniformity of the his-
togram, which is defined by Equation (26).

χ2 =
255

∑
i=0

( fi − g)
g

, (26)

where g = M× N/256, and fi is the occurrence frequency of the pixels whose value is i.
Given a significant level α = 0.05, if χ2

0.05 < 293.2478, the chi-square test is passed [57].
Table 7 shows that the calculated chi-square values for all cipher images are less than
293.2478. Therefore, all the cipher images encrypted by the proposed algorithm have
passed the chi-square test, which means that the proposed algorithm can resist statistical
attacks.
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Figure 15. Histogram results. Plain image: (a) Lena, (c) Peppers, (e) 5.1.10, and (g) 5.1.11; cipher
image: (b) Lena, (d) Peppers , (f) 5.1.10, and (h) 5.1.11.

Table 7. χ2 test.

Image Plain Cipher

Lena 4.2698× 104 231.1174
Peppers 1.2892× 105 271.2109
4.1.01 3.0295× 105 271.6172
4.1.02 7.1297× 105 258.7578
4.1.03 1.4396× 106 230.5156
5.1.09 1.3569× 105 219.5625
5.1.10 5.0863× 104 240.9844
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Table 7. Cont.

Image Plain Cipher

5.1.11 2.2085× 105 258.7188
5.1.12 2.8206× 105 275.6250
5.1.13 1.1983× 107 239.3359
5.1.14 5.0326× 104 251.0156
6.1.01 1.2230× 105 225.1953

7.4. Correlation Analysis of Adjacent Pixels

The plain image with effective information has a strong correlation between adjacent
pixels. The ideal encryption algorithm can eliminate the correlation of adjacent pixels to
resist statistical attacks. To ensure the reliability of the experiment, 20,000 pairs of pixels
are randomly selected to test the correlation in horizontal, vertical, and diagonal directions.
As shown from Figure 16, the adjacent pixel distribution of the plain image is relatively
concentrated, whereas the adjacent pixel distribution of the cipher image is noiselike. This
means that the correlation of the plain image is greatly reduced. To quantitatively describe
the correlation, the correlation coefficient is calculated as follows.

E(x) = 1
N

N
∑

i=1
xi,

cov(x, y) = 1
N

N
∑

i=1
(xi − E(x))(yi − E(y)),

D(x) = 1
N

N
∑

i=1
(xi − E(x))2,

rxy = cov(x,y)√
D(x)
√

D(y)
.

(27)

The calculated correlation coefficients are shown in Table 8. It can be seen that the
correlation coefficients of the cipher images have been greatly reduced, close to 0. The
results compared with other algorithms as shown in Table 9. As can be seen, the correlation
coefficients of Lena for the proposed algorithm are smaller in all three directions compared
with [6,54], and the proposed algorithm has great advantages in the horizontal and diagonal
directions compared with [16,51,52], and the proposed algorithm has certain advantages
in the horizontal direction compared with [53]. The above results show that the proposed
algorithm can effectively remove the correlation of adjacent pixels, so it provides a high
level of security to resist statistical attacks.
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Figure 16. Correlation analysis of Lena before and after encryption. (a,d) horizontally adjacent, (b,e)
vertically adjacent, (c,f) diagonally adjacent.

Table 8. Correlation coefficients of images.

Image
Cipher Image Plain Image

Horizontal Verticall Diagonal Horizontal Vertical Diagonal

Lena −0.0008 0.0041 −0.0011 0.9753 0.9425 0.9180
Peppers −0.0006 0.0052 −0.0043 0.9848 0.9906 0.9714
4.1.01 0.0010 −0.0016 −0.0123 0.9625 0.9672 0.9462
4.1.02 0.0045 −0.0012 −0.0121 0.9558 0.9312 0.8956
4.1.03 0.0017 0.0014 0.0068 0.9166 0.9729 0.9092
5.1.09 0.0035 −0.0023 −0.0037 0.9397 0.9008 0.9038
5.1.10 0.0042 −0.0052 0.0017 0.9399 0.9640 0.8977
5.1.11 0.0023 0.0021 −0.0020 0.8583 0.9061 0.8207
5.1.12 0.0006 −0.0108 0.0138 0.9750 0.9568 0.9367
5.1.13 −0.0019 0.0008 0.0028 0.8756 0.8750 0.7585
5.1.14 −0.0026 −0.0056 −0.0013 0.8962 0.9454 0.8540
6.1.01 0.0156 −0.0015 0.0071 0.9906 0.9872 0.9751

Table 9. Comparison on correlation coefficients for Lena.

Algorithms Horizontal Vertical Diagonal

proposed −0.0008 0.0041 −0.0011
Ref. [6] −0.0209 0.0528 −0.0099
Ref. [16] 0.0058 −0.0024 0.0012
Ref. [51] 0.0082 −0.0032 −0.0025
Ref. [52] 0.0083 −0.0021 −0.0025
Ref. [53] −0.0021 0.0009 0.0003
Ref. [54] −0.0148 0.0106 0.0134

7.5. Information Entropy

Information entropy is an important indicator to describe the uncertainty of image in-
formation, which quantifies the distribution of the image’s grayscale values [17]. Generally
speaking, the higher the information entropy value, the higher the degree of disorder in
the image [52]. The formula of information entropy is as follows.

H(s) = −
L

∑
i=1

p(xi)log2 p(xi), (28)

where L is the grayscale grade of the image,and p(xi) is the probability of the grayscale
value xi.

For 8-bit noise type grayscale images, the ideal value of information entropy is 8.
The information entropy of different plain images and their corresponding cipher images
are listed in Table 10. As can be seen, values of the information entropy of all encrypted
images are close to 8. Table 11 lists the comparison results with other algorithms for Lena.
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It is obvious that the proposed algorithm owns a larger information entropy compared
with [6,16,51–54], which means the cipher images encrypted by the proposed algorithm
have a stronger randomness. Thus, the proposed algorithm can resist statistical attacks
based on entropy.

Table 10. Information entropy of images.

Image Plain Cipher

Lena 7.4116 7.9975
Peppers 7.7448 7.9970
4.1.01 7.0525 7.9973
4.1.02 6.4207 7.9972
4.1.03 5.5939 7.9975
5.1.09 6.7093 7.9976
5.1.10 7.3118 7.9973
5.1.11 6.4523 7.9971
5.1.12 6.7057 7.9970
5.1.13 1.5483 7.9974
5.1.14 7.3424 7.9972
6.1.01 7.2044 7.9975

Table 11. Information entropy comparison of Lena’s cipher image.

Image Proposed [6] [16] [51] [52] [53] [54]

Lena 7.9975 7.9661 7.9975 7.988 7.9971 7.9971 7.9975

7.6. Differential Attack Analysis

A secure image encryption algorithm should have excellent capability to resist differ-
ential attacks. Attackers can encrypt two slightly different plain images using the same al-
gorithm, and then try to establish a link between the plain and cipher images by comparing
the two encrypted images. The NPCR and UACI are able to evaluate whether encryption
algorithms can resist differential attacks. The study in the literature [58] pointed out that the
algorithm is resistant to differential attacks when the NPCR > Nα and U−α < UACI < U+

α ,
where Nα, U−α , U+

α are the critical values and α is the significance level. The critical values
for images of size 256× 256 are listed in Table 12.

Table 12. The critical values of NPCR and UACI.

Images Size
NPCR% UACI%

N0.05 N0.01 N0.001 (U−
0.05, U+

0.05) (U−
0.01, U+

0.01) (U−
0.001, U+

0.001)

256× 256 99.5693 99.5527 99.5341 (33.2824,33.6447) (33.2255,33.7016) (33.1594,7677)

To test the performance of the proposed algorithm against differential attacks, we
randomly change a pixel value of the plain image to obtain the modified plain image.
Subsequently, the two plain images are encrypted by the proposed algorithm to get the
cipher images. The test is performed over 100 times with different test images. The mean
values of the test results are listed in Tables 13 and 14, respectively. It can be seen that the
proposed algorithm passes the test and is resistant to differential attacks. Table 15 lists a
comparison of the NPCR and UACI values of Lena for different encryption algorithms. As
can be seen, the NPCR and UACI values of Lena for the proposed algorithm are closer to the
ideal value compared with [16,54], and the proposed algorithm has some merits compared
with [51,53]. Thus, the proposed algorithm is capable of resisting differential attacks.
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Table 13. NPCR test value.

Image NPCR%
Critical NPCR%

N0.05 = 99.5693% N0.01 = 99.5527% N0.001 = 99.5341%

Lena 99.6172 X X X
Peppers 99.6086 X X X
4.1.01 99.5892 X X X
4.1.02 99.5793 X X X
4.1.03 99.6002 X X X
5.1.09 99.5998 X X X
5.1.10 99.6052 X X X
5.1.11 99.6175 X X X
5.1.12 99.6134 X X X
5.1.13 99.6100 X X X
5.1.14 99.5895 X X X
6.1.01 99.6213 X X X
All black 99.5987 X X X

Table 14. UACI test value.

Image UACI%

Critical UACI%

U−
0.05 = 33.2824% U−

0.01 = 33.2255% U−
0.001 = 33.1594%

U+
0.05 = 33.6447% U+

0.01 = 33.7016% U+
0.001 = 33.7677%

Lena 33.4516 X X X
Peppers 33.4752 X X X
4.1.01 33.5487 X X X
4.1.02 33.4870 X X X
4.1.03 33.3864 X X X
5.1.09 33.5019 X X X
5.1.10 33.5172 X X X
5.1.11 33.2873 X X X
5.1.12 33.5091 X X X
5.1.13 33.4249 X X X
5.1.14 33.5100 X X X
6.1.01 33.5516 X X X
All black 33.4624 X X X

Table 15. NPCR and UACI values of Lena for different algorithms.

Algorithms NPCR% UACI%

Proposed 99.6172 99.4516
Ref. [6] - -
Ref. [16] 99.60 33.45
Ref. [51] 99.6150 33.4205
Ref. [52] - -
Ref. [53] 99.9596 33.4588
Ref. [54] 99.5041 33.4238

7.7. Chosen/Known-Plaintext Attack Analysis

Chosen-plaintext and known-plaintext attacks are prevalent and high-threat types of
attacks. The literature [59] indicated that an encryption algorithm with the capability to
resist chosen-plaintext attacks can also resist known-plaintext attacks. Therefore, we only
consider resisting chosen-plaintext attacks.
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In the proposed algorithm, we exploit the SHA-512 hash values of the plain image
to generate the system parameters and initial values of the chaotic system, making the
proposed algorithm highly sensitive to the plain image. Thus, when attackers use the
proposed algorithm to encrypt slightly changed plain images, the encryption result obtained
is totally different. Attackers cannot gain the desired information using special images.
Furthermore, we perform bit-level exclusive-or operations between different bit-planes.
Attackers are incapable of using special images to simplify the diffusion process.

Attackers often use all-black or all-white plain images as special images to attack en-
cryption algorithms, since such special images can disable the scrambling process [55]. We
leverage the all-black and all-white plain images with the size 256× 256 in the experiment,
and the results are shown in Figure 17. It can be seen that the cipher images are noiselike
images, and the histograms of the cipher images are quite flat. Attackers cannot derive
valid information from the cipher images. Table 16 lists the χ2 test results, information
entropies, and correlation coefficients of the cipher images. It can be seen that the proposed
algorithm has good encryption performance for all-white and all-black images. Therefore,
the proposed algorithm can effectively resist chosen-plaintext and known-plaintext attacks.
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Figure 17. Experimental results of “all-black” and “all-white”. (a) “all-black”, (b) encryption “all-
black”, (c) histogram of encryption “all-black”, (d) “all-white”, (e) encryption “all-white”, (f) his-
togram of encryption “all-white”.

Table 16. Encryption results of all white and black images.

Cipher Image χ2 Test Information
Entropy

Correlation Coefficients

Horizontal Vertical Diagonal

All white 272.6641 7.9970 0.0008 −0.0005 0.0087
All black 253.8516 7.9972 −0.0012 −0.0019 0.0116

7.8. Cropping Attack and Noise Attack Analysis

In the actual transmission process of the network, the images are at high risk of data
loss or noise contamination. Therefore, a secure image encryption algorithm shall be robust
against cropping attacks and noise. Take “Lena” as a test image. The cropped images are
shown in Figure 18a–d. We can see that even if cropping attacks on cipher images lead to
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data loss, the decrypted image can still be recognized by the human eye. This shows that
the proposed algorithm is resistant to cropping attacks.

To test the antinoise performance of the proposed algorithm, we add salt and pepper
noise with different intensities to the cipher image, where the intensities are 0.01, 0.05, and
0.1, respectively. The results are shown in Figure 19a–c. It can be seen that the decrypted
images contain some noises, but we can still recognize most of the information in the plain
image by human eyes. The proposed algorithm is resistant to noise attacks. In addition, as
shown in Figure 19d, salt and pepper noise with intensity of 0.05 is added to the cipher
image with 6.25% cropping. The decrypted image Figure 19h can still be recognized by
human eyes. Thus, the proposed algorithm can effectively resist cropping attacks and noise
attacks.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. The results of cropping attack. (a) Encrypted image with 6.25% cropping, (b) encrypted
image with 25% cropping, (c) encrypted image with 25% cropping (middle), (d) encrypted image
with 50% cropping, (e) decryption of (a), (f) decryption of (b), (g) decryption of (c), and (h) decryption
of (d).

(a) (b) (c) (d)

Figure 19. Cont.
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(e) (f) (g) (h)

Figure 19. The results of noise attack. (a) Encrypted image with 0.01 salt & pepper noise, (b) encrypted
image with 0.05 salt & pepper noise, (c) encrypted image with 0.1 salt & pepper noise, (d) encrypted
image with 0.05 salt & pepper noise and 6.25% clipping, (e) decryption of (a), (f) decryption of (b),
(g) decryption of (c), and (h) decryption of (d).

8. Conclusions

In this paper, we develop a hybrid domain image encryption algorithm based on
improved Henon map. First, we construct an improved Henon map called 2D-ICHM, and
dynamical analysis indicates that it has excellent chaotic properties. Second, an image
encryption algorithm with a double sandwich structure is proposed using 2D-ICHM, where
the content structure of the image is destroyed by the proposed chunking–arrangement–
combination operation, which enhances the security performance of the algorithm. Third,
the SHA-512 hash value of the plain image is used to obtain the initial values and system
parameters of the chaotic system, which enhances the plaintext sensitivity. Simulation
experiments and security analysis show that the proposed image encryption algorithm has
a huge key space, strong key sensitivity, and strong robustness to various cryptanalytic
attacks. Therefore, the proposed algorithm has high level of security.

However, the limitations of this algorithm include the inability to encrypt color images
directly and the unsuitability for real-time confidential communications. We will extend
our approach based on the ideas of the block and nature-inspired optimization techniques
from the literature [60] to address these shortcomings in future research. Considering the
excellent properties of hyperchaotic systems, we try to design a 2D hyperchaotic system for
image encryption. In the last few years, machine learning and deep learning networks have
shown great advantages in the field of image processing. We attempt to introduce these
techniques to simplify and improve the proposed double sandwich encryption structure to
design a real-time secure color image encryption algorithm.
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Abbreviations
The following abbreviations are used in this manuscript:

IWT Integer wavelet transform
DNA Deoxyribonucleic acid
SHA-512 Secure hash algorithm-512
DES Data Encryption Standard
AES Advanced Encryption Standard
LSTM-ANN Long short-term memory artificial neural networks
GAN Generative adversarial network
CNN Convolutional neural network
1D One-dimensional
2D Two-dimensional
HD High-dimensional
2D-CHM Classical two-dimensional Henon map
2D-ICHM Improved classical two-dimensional Henon map
2D-SM Two-dimensional sine map
IHM Improved Henon map
QR Qatari Rial
ApEn Approximate entropy
LE Lyapunov exponent
A Adenine
C Cytosine
G Guanine
T Thymine
NPCR Number of pixels change rate
UACI Unified average changing intensity
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