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Optineurin is a multifunctional adaptor protein intimately involved in various vesicular 
trafficking pathways. Through interactions with an array of proteins, such as myosin VI, 
huntingtin, Rab8, and Tank-binding kinase 1, as well as via its oligomerisation, optineurin 
has the ability to act as an adaptor, scaffold, or signal regulator to coordinate many 
cellular processes associated with the trafficking of membrane-delivered cargo. Due to 
its diverse interactions and its distinct functions, optineurin is an essential component 
in a number of homeostatic pathways, such as protein trafficking and organelle mainte-
nance. Through the binding of polyubiquitinated cargoes via its ubiquitin-binding domain, 
optineurin also serves as a selective autophagic receptor for the removal of a wide range 
of substrates. Alternatively, it can act in an ubiquitin-independent manner to mediate the 
clearance of protein aggregates. Regarding its disease associations, mutations in the 
optineurin gene are associated with glaucoma and have more recently been found to 
correlate with Paget’s disease of bone and amyotrophic lateral sclerosis (ALS). Indeed, 
ALS-associated mutations in optineurin result in defects in neuronal vesicular localisa-
tion, autophagosome–lysosome fusion, and secretory pathway function. More recent 
molecular and functional analysis has shown that it also plays a role in mitophagy, thus 
linking it to a number of other neurodegenerative conditions, such as Parkinson’s. Here, 
we review the role of optineurin in intracellular membrane trafficking, with a focus on 
autophagy, and describe how upstream signalling cascades are critical to its regulation. 
Current data and contradicting reports would suggest that optineurin is an important and 
selective autophagy receptor under specific conditions, whereby interplay, synergy, and 
functional redundancy with other receptors occurs. We will also discuss how dysfunction 
in optineurin-mediated pathways may lead to perturbation of critical cellular processes, 
which can drive the pathologies of number of diseases. Therefore, further understanding 
of optineurin function, its target specificity, and its mechanism of action will be critical in 
fully delineating its role in human disease.

Keywords: amyotrophic lateral sclerosis, autophagy, cell signalling, glaucoma, Golgi, membrane trafficking, 
mitophagy, xenophagy

iNTRODUCTiON

Optineurin, through a diverse set of interactions, regulates a number of crucial cellular processes, 
specifically those that require the coordinated trafficking of protein and membrane cargo. First 
isolated in 1998 in a yeast two-hybrid screen by its interaction with the adenoviral protein 
E3-14.7K, it was initially named 14.7K-interacting protein (FIP-2) (1). A later study identified 
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that mutations in this gene, located on chromosome 10p14, were  
found to associate with normal tension glaucoma (NTG), a sub-
type of primary open-angle glaucoma (POAG) (2). Thus, it was 
designated OPTN, encoding the optineurin (for “optic neuropa-
thy inducing”) protein.

Since then, optineurin has been implicated as a genetic risk 
factor in Paget’s disease of bone (3, 4), familial and sporadic forms 
of amyotrophic lateral sclerosis (ALS) (5–11) and Crohn’s disease 
(12). In addition, optineurin has also been found to localise to 
an array of intracellular structures and compartments, providing 
evidence of its ubiquitous distribution and potential multifunc-
tional cellular role. As optineurin plays a critical function across 
several key pathways, its dysfunction is likely to lead to the dis-
ruption of mechanisms that aim to maintain cell homoeostasis 
and thus contribute to the development of a number of human 
pathologies.

OPTiNeURiN PROTeiN DOMAiN 
STRUCTURe AND iNTeRACTiNG 
PARTNeRS

The human OPTN gene, containing three non-coding exons 
that makeup its 5′-untranslated region (UTR) and 13 exons that 
encode the 577 amino acid (66  kDa) protein, is ubiquitously 
expressed in most tissue and cell types (13). Four isoforms with 
identical open-reading frames have been reported to be gener-
ated through alternative splicing of the 5′-UTR (14).

OPTN originated from gene duplication of the NF-κB regula-
tor NF-κB essential modulator (NEMO) (15) and contains two 
ubiquitin-binding motifs, which are the ubiquitin-binding 
domain (UBD) of ABIN proteins and NEMO (UBAN) domain 
and the zinc finger (ZF) domain (16). It has been previously sug-
gested that the presence of two nearby ubiquitin-binding motifs 
within the protein may explain optineurin’s binding preference 
for longer polyubiquitin chains (17, 18). In addition to the afore-
mentioned UBAN and ZF domains, optineurin also contains at 
least one leucine zipper (LZ), multiple coiled-coil (CC) domains, 
a NEMO-like domain, and a microtubule-associated protein 1 
light chain 3 (LC3)-interacting region (LIR) (Figure 1A) (19).

The role of optineurin as an adaptor across many cellular pro-
cesses is made possible by its ability to interact with a large num-
ber of proteins (Figure 1A). Through its functional interactions 
with TANK (TRAF family member-associated NF-κB activator)- 
binding kinase 1 (TBK1) (20–22), LC3 (22, 23), myosin VI (24–28),  
tax1 binding protein 1 (TAX1BP1) (29), Rab8 (25, 30), hun-
tingtin (Htt) (30, 31), transferrin receptor (32), adenovirus 
E3-14.7K (1), receptor-interacting protein (RIP) (33), the 
bZIP transcription factor neural retina leucine zipper (34),  
myosin phosphatase targeting subunit 1 (35), transcription factor 
IIA (36), SOD1 (37), caspase 8 (38), HACE1 (39), CYLD (40), 
or metabotropic glutamate receptor 1 and 5 (41), optineurin can 
regulate a multitude of pathways. In addition to these interac-
tions, optineurin can also oligomerise to form homo-hexameric 
structures (42), which are likely to have distinct roles from the  
monomeric form. The specific regulation, spatiotemporal dyna-
mics, and cellular functions of many of these interactions will be 
discussed later in this review.

Post-translational modifications of optineurin also occur as 
part of its regulation. TBK1, a serine/threonine kinase, is one of 
the primary regulators of optineurin and mediates many of the 
optineurin-dependent cellular processes discussed in this review. 
To date, a number of disease-associated mutations, specifically in 
ALS and frontotemporal dementia (FTD), have been identified 
that perturb TBK1 binding with optineurin, resulting in dysfunc-
tion of trafficking pathways such as autophagy (43). Structurally, 
TBK1 contains an N-terminal kinase domain and ubiquitin-like 
domain (ULD), along with an α-helical scaffold dimerization 
domain (SDD) and adaptor binding (AB) domain within the 
C-terminal region (44, 45) (Figure  1B). Activation of TBK1 
occurs through phosphorylation of the Ser172 residue within its 
kinase activation loop (46), inducing complete remodelling of 
this loop (47). Four dimerisation interfaces have been identified 
within TBK1, formed by the SDD interacting with either the N- 
or C-terminal lobes of the kinase domain, the ULD, or residues 
within the SDD itself (45). It may be the case that a dimeric form 
of TBK1 is maintained in an inactive state through prevention of 
Ser172 phosphorylation. Following specific stimuli, TBK1 is sub-
sequently recruited to signalling scaffolds, whereby its clustering 
triggers the engagement of interdimeric interactions to promote 
Ser172 phosphorylation (47). Recruitment to discrete scaffolds, 
such as those that occur on the Golgi (48), or to polyubiquitylated 
optineurin, to regulate the interferon response (17, 49), may pro-
vide specificity in response to distinct stimuli, therefore allowing 
activation of specific pathways. TBK1 localisation is therefore 
critical in determining its activity and subsequently its impacts 
on optineurin function.

To date, less is understood about the spatiotemporal regulation 
of the TBK1/optineurin axis compared with the characterisa-
tion of their interactions. Indeed, TBK1 binding of optineurin, 
within the C-terminal CC domain (21) through polar and 
hydrophobic interactions (20), is required for TBK1-mediated 
phosphorylation of Ser177. This in turn has been shown to mark-
edly enhance the LC3-binding capacity of the optineurin LIR 
(22, 50). Phosphorylation of optineurin by TBK1 at Ser473 and 
Ser513 also enhances its binding affinity for polyubiquitin chains 
via the UBAN domain (51, 52). These data demonstrate how 
the regulated dynamic binding capacity and post-translational 
modifications of optineurin are critical in modulating its function 
in cargo recognition during autophagy (Figure 1A). Throughout 
this review, we label optineurin as a receptor or an adaptor in 
accordance with either its function in cargo recognition within 
the lumen of the autophagosome or its ability to interact with 
cytosolic facing proteins on the external membrane of the 
autophagosome, respectively.

ROLe OF OPTiNeURiN iN SiGNALLiNG 
AND iNTRACeLLULAR TRAFFiCKiNG

Optineurin is associated with a number of signalling pathways. 
In particular, it has been shown to play an important role in the 
regulation of signalling cascades critical to the innate immune 
response. Several studies have shown optineurin to act upstream 
of NF-κB, negatively regulating its activity. Interleukin-1 receptor-
associated kinase 1, along with tumour necrosis factor (TNF)  

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FiGURe 1 | Optineurin and TBK1 both contain multiple structurally distinct domains associated with their regulation, binding, and activity. (A) Optineurin comprises 
two coiled-coil (CC) domains, a leucine zipper (LZ), an LC3-interacting region (LIR), UBAN domain, and a zinc finger (ZF) domain at it C-terminus. To date, a number 
of studies have identified the interacting regions of optineurin with its binding partners, defined in this figure. Serine phosphorylation sites are represented that 
regulate optineurin’s LC3-binding or ubiquitin-binding capacity. (B) TBK1 comprises a kinase domain, a ubiquitin-like domain (ULD), two CC domains, a LZ, and a 
helix-loop-helix (HLH) motif. Serine 172 represents the site that regulates TBK1’s kinase activity. TBK1 interacts with optineurin via its C-terminal HLH and CC 
domains.
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receptor-associated factor 6 (TRAF6), activates the innate immune 
response (53, 54) and is degraded in a proteasome-dependent 
manner upon its phosphorylation (55). Optineurin directly binds 
IRAK1 and prevents TRAF6 polyubiquitination, which is critical 
for its mediation of NF-κB activation (56). Optineurin also inhibits 
NF-κB activation through another C-terminal-dependent interac-
tion with the deubiquitinase CYLD. This interaction mediates a 
subsequent interaction between CYLD and RIP (40), the latter 
acting as an adaptor upon its ubiquitination of NEMO, which 
senses the polyubiquitination of RIP and activates downstream 
NF-κB signalling via IκB kinase complex (57, 58). Optineurin 
directly competes with NEMO for the binding to ubiquitylated 
RIP (33) and recruits CYLD, which deubiquitinates RIP to inhibit 
NF-κB activation (40). Recently, it was shown that activation of 
T-cell receptor signalling triggers the degradation of optineurin 
to overcome optineurin’s negative regulation of NF-κB signalling, 
which acts to suppress T-cell activation (59). Interestingly, NF-κB 
upregulates OPTN expression (60), suggesting a negative feedback 

loop exists to ensure proper regulation of NF-κB signalling. 
Furthermore, optineurin inhibits the antiviral innate immune 
response by targetting CYLD to TBK1 to suppress its kinase activ-
ity, subsequently inhibiting interferon production (61).

Along with its regulation of signal propagation, optineurin 
also plays an essential role in the maintenance of organelle struc-
ture and function. Optineurin associates with the Golgi complex 
(62, 63) and through an interaction with the multifunctional actin 
motor protein myosin VI, functions to maintain the structural 
organisation of this organelle (26, 64, 65). Loss or mutation of 
optineurin in cell lines leads to Golgi fragmentation (26, 66–68) 
and although this was not replicated in vivo in zebrafish embryos 
(69), increased cell death and vesicle trafficking defects were 
observed. However, since the loss-of-function zebrafish model 
retains a low level of optineurin mRNA and possibly a truncated 
version of optineurin protein, it remains to be determined the 
extent of this phenotype (67). Alternatively, the role of optineu-
rin in Golgi maintenance may therefore be cell type specific, or 
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FiGURe 2 | Selective autophagy. The autophagy pathway can be divided into five major steps: cargo recognition, phagophore nucleation, autophagosome 
elongation and maturation, fusion with the lysosome, and cargo degradation. Initial steps of cargo identification, as which occurs during mitochondrial  
capture, requires ubiquitination of a substrate and identification by autophagy receptors, such as optineurin, which facilitates the recruitment and nucleation  
of autophagosomal membrane to encapsulate the cargo. Subsequently, the autophagosome undergoes maturation following fusion with various endosomal  
vesicles and eventually fuses with the lysosome to facilitate cargo degradation. Abbreviations: En, endosome; MVB, multivesicular body; lys, lysosome.
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alternative/compensatory pathways may exist that can maintain 
Golgi morphology but do not necessarily rescue vesicular traf-
ficking defects.

In addition, optineurin associates with Htt and Rab8 at the 
Golgi, where it acts as part of a complex to regulate post-Golgi 
trafficking of proteins (26), sorted by clathrin adaptor protein 
complex 1B and myosin VI (70). Mutations in Htt can uncouple 
the optineurin/Rab8 complex at the late Golgi compartment, 
resulting in decreased trafficking to lysosomes (71). Htt also func-
tions as part of a number of vesicular trafficking pathways (72–74), 
which suggests that Htt defects may have wide-ranging impacts on 
optineurin function along related trafficking pathways. Rab8 is a 
critical component of the trafficking along the biosynthetic pathway 
from the trans-Golgi network (75, 76) and it also functions along 
other discrete endosomal routes. In particular, it has been shown 
that an optineurin interaction with the Rab-activating protein 
TBC1D17 regulates Rab8-dependent endosomal tubule forma-
tion and recycling of the transferrin receptor (77). Furthermore, 
optineurin is phosphorylated by Plk1 at Ser177, which dissociates 
optineurin from the Golgi through abrogation of a Rab8 interaction, 
facilitating its translocation into the nucleus to promote mitotic 
progression through regulation of Plk1 activity (35). Optineurin 
also functions post-Golgi to facilitate secretory vesicle fusion at 
the plasma membrane via an interaction with myosin VI (24). 
Therefore, optineurin may participate as a ‘keystone’ adaptor 
protein within these complexes to maintain Golgi organisation and 
coordinate multiple routes of post-Golgi trafficking.

Interestingly, it has also been shown that optineurin is 
required for the recruitment of ubiquitylated TBK1 to the Golgi 
apparatus, a critical step in TBK1 activation following viral RNA 
sensing as part of the innate immune response (48). Therefore, 
it is likely that optineurin association with the Golgi through 
its interaction with Rab8 (26) also recruits ubiquitylated TBK1 
through its UBD (48), thus acting as a necessary precursor to the 
activation of this heterodimeric complex (20). The stabilisation of 
the TBK1/optineurin complex via ubiquitin could in turn allow 
for the enhanced propagation of optineurin-mediated signalling, 
as well as increasing its affinity for LC3 to promote autophagy 
progression, a mechanism we discuss in detail later in this review.

OPTiNeURiN ReGULATiON OF 
AUTOPHAGY

The cellular mechanism to degrade cytosolic components is 
primarily carried out via the ubiquitin proteasome system (UPS) 
or autophagy. The latter process of autophagy, ‘cellular self-eating,’ 
acts to degrade proteins, organelles, and invading pathogens as 
part of a bulk process, whereas the UPS functions to degrade indi-
vidual proteins (78). Indeed, both UPS and autophagic capacities 
are essential homeostatic pathways under basal conditions or in 
response to stress. Dysfunction in either is associated with the 
pathogenesis of a large number of disorders, ranging from neuro-
degenerative disease to cancer. Around 30% of newly synthesised 
proteins misfold (79), rendering them prone to aggregation. 
These aggregates cannot be efficiently degraded by the UPS, even 
resulting in inhibition of proteasomal functions (80, 81), and thus 
must be removed via autophagic mechanisms. It should, however, 
also be noted that significant cross-talk between the UPS and 
autophagy exists, despite the fact they are often considered as 
completely separate systems (82).

Autophagy is a catabolic process by which intracellular comp-
onents are engulfed and degraded. There are three forms of 
autophagy that can be differentiated by their function and mecha-
nism of cargo delivery. These are chaperone-mediated autophagy, 
microautophagy, and macroautophagy. In this review, we will 
exclusively discuss the implications of macroautophagy, which 
requires the formation of a distinct organelle, the autophagosome. 
Although non-selective, bulk macroautophagy (herein termed 
autophagy) can occur under conditions of nutrient starvation to 
recycle cytosolic content, cargo-specific autophagy (termed selec-
tive autophagy) is critical in the removal of potentially cytotoxic 
components, such as damaged organelles, protein aggregates, and 
invading pathogens. This process can be divided into five basic 
stages: cargo recognition, autophagosome nucleation, autophago-
some elongation and maturation, fusion with the lysosome, and 
degradation of cargo (Figure 2).

To correctly engage selective forms of autophagy to mediate the 
degradation of specific substrates, autophagy receptor proteins 
such as optineurin, nuclear dot protein 52 (NDP52), TAX1BP1, 
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neighbour of BRCA1 gene 1 (NBR1), or p62 are required (22, 28, 
83–85). Substrates to be degraded are ubiquitylated and rec-
ognised by UBDs, specific for certain ubiquitin linkages types, 
present within the autophagy receptors. Through an additional 
LC3 interacting region (LIR), these receptors can directly interact 
with autophagosomal membrane, thus facilitating cargo recogni-
tion, trafficking, and degradation (86).

To date, over 30 autophagy-related (ATG) genes have 
been identified in the yeast, Saccharomyces cerevisiae (87, 
88). In mammals, these have been shown to be involved in 
both ubiquitin-dependent and -independent mechanisms 
of autophagy (89). In yeast, Atg8, an ubiquitin-like protein, 
conjugates to phosphatidylethanolamine to be inserted into 
lipid membranes to mediate tethering and formation of the 
autophagosomal double membrane (90–92). The mammalian 
Atg8 homologues, LC3, γ-aminobutyric-acid-type-A-receptor-
associated protein (GABARAP), and Golgi-associated ATPase 
enhancer of 16  kDa, were then later identified to undergo 
post-translational modifications to form species that can 
associate with autophagosomal membranes (93–96). p62 was 
subsequently shown to directly bind, via a LIR, to both LC3 
and GABARAP (97) and ubiquitin-labelled proteins via its 
ubiquitin-associated (UBA) domain (98). Importantly, forma-
tion and clearance of ubiquitin-positive protein inclusions 
is ablated in p62-deficient cells (97, 99). Thus, p62 acts as a 
receptor protein between ubiquitylated protein aggregates and 
the LC3-positive autophagosomal membranes.

Similar to p62, other autophagy adaptors such as optineurin, 
TAX1BP1, NDP52, and NBR1 also directly bind ubiquitin and 
LC3 to coordinate the autophagosome-mediated engulfment 
of cargo. In particular, optineurin was first identified as an 
autophagic receptor through its interaction with Atg8-related 
proteins in a yeast two-hybrid assay and its localisation to 
LC3-positive autophagosomal membranes upon induction of 
xenophagy, the selective autophagy pathway for pathogens (22). 
Here, the authors identified that optineurin interacts with LC3 
and GABARAP through an LIR located between its CC domains. 
Crucially, the demonstration that phosphorylation upstream of 
the optineurin LIR regulates its interaction with LC3, and thus 
its autophagic function, was a novel finding at the time showing 
a further level of regulation for autophagy receptors. In addition, 
optineurin’s ability to function as an autophagy receptor has 
relevance to distinct pathological mechanisms, as it was recently 
shown to directly interact with the endoplasmic reticulum stress 
protein IRE1α and function to suppress activation of the unfolded 
protein response via mediating the autophagic degradation of 
IRE1α (100).

The ‘ubiquitin code,’ which regulates signal transduction and 
degradation of labelled substrates, has an inherent complexity. 
This is due to the occurrence of both mono- and poly-ubiquitin 
chain types as well as the multiple layers of lysine-dependent 
heterotypic polyubiquitin chain linkages, such as those mediated 
by K6, K11, K27, K29, K33, K48, or K63 (101). Broadly, there are 
two routes of degradation for ubiquitylated substrates; UPS- or 
autophagic-mediated degradation. K63-linked polyubiquitin 
chains are thought to primarily determine autophagic clearance 
of a substrate (84, 102, 103). Optineurin contains two UBDs, an 

UBAN domain and ZF domain. The UBAN and ZF domains 
bind K63- but not K48-linked polyubiquitin chains (15, 16, 33) 
suggesting optineurin primarily functions along the autophagic 
degradation pathway or alternatively regulates signal propagation, 
as which occurs along the NF-κB pathway. However, optineurin, 
TAX1BP1, and NDP52 preferentially bind different types of 
ubiquitin chains (15), which may be critical in determining their 
cargo specificity during autophagy.

Intracellular pathogens, such as Salmonella enterica, which 
escape into the cytosol from a vacuolar compartment are target-
ted and degraded by the autophagy machinery (104). The capac-
ity of optineurin to function as an autophagy receptor, which is 
enhanced by Ser177 phosphorylation, is critical to suppress the 
hyperproliferation of cytosolic S. enterica (22). TBK1, a critical 
regulator of autophagy (105), binds to optineurin (21) and induces 
phosphorylation within the N-terminal LC3-interacting motif of 
optineurin (22) (Figure 3). A similar axis has also been observed 
with TBK1-dependent modulation of NDP52 function, which 
promotes autophagy of S. enterica (85), suggesting the potential 
for synergism or functional redundancy between autophagy 
receptors in the innate immune response. Some suggestion of 
this has already been observed, whereby multiple receptors func-
tion cooperatively along the same pathway (22, 106). However, 
it has also been shown that for both xenophagy and the selective 
mitochondrial pathway, mitophagy, optineurin, and p62 are inde-
pendently recruited to separate autophagosomal subdomains 
(22,  23), suggesting they function along parallel pathways to 
facilitate pathogen and mitochondrial degradation.

In the case of Listeria monocytogenes, upregulation of optineu-
rin occurs in response to the bacterial expression of listeriolysin 
O (LLO) (107), a pore-forming cytolysin that allows the bacteria 
to escape from a vacuolar compartment into the cytosol follow-
ing host entry (108). Here, TBK1 activity enhances optineurin-
mediated clearance of the pathogen, whilst a reduction in 
optineurin expression results in less autophagosomal clearance 
of L. monocytogenes (107). These data together are indicative of 
the importance of the TBK1–optineurin axis in the clearance 
of several pathogenic bacteria. It also suggests that under these 
conditions, this optineurin-regulated immune defence system 
has specifically evolved to detect the LLO-mediated translocation 
of bacteria into the cytoplasm.

Further highlighting the importance of the TBK1–optineurin 
axis, pharmacological inhibition of TBK1 activation using BX795 
(109) inhibits optineurin phosphorylation and subsequent LC3 
recruitment (22). Moreover, activation of the TBK1–optineurin 
complex in mouse bone marrow-derived macrophages is per-
turbed by the ubiquitin-binding defective OPTND477N mutant 
(17, 110), suggesting that the binding of ubiquitin-tagged cargo 
by optineurin is a necessary precursor to its phosphorylation, and 
thus activation of this complex. Interestingly, TBK1-mediated 
phosphorylation of optineurin’s UBAN domain at S473 further 
enhances optineurin’s capacity to bind ubiquitin chains (52) 
(Figure  3). Indeed, optineurin has also been shown to directly 
regulate TBK1 activity (48). K63-linked polyubiquitination of 
TBK1 at residues K30 and K401 is required for TBK1 activation 
(111). These ubiquitin chains are sensed by optineurin localised 
at the Golgi apparatus via its interaction with Rab8 (26), which 
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FiGURe 3 | The mechanisms of the TBK1/optineurin complex during autophagy. Optineurin interacts with ubiquitylated cargo via its UBAN and zinc finger domains. 
TBK1 is then recruited via an interaction with optineurin to facilitate its phosphorylation at Ser177, which enhances its light chain 3 (LC3)-binding capacity and 
recruitment of autophagosomal membrane. Subsequently, TBK1-mediated phosphorylation of optineurin at Ser473 and Ser513 enhances its polyubiquitin-binding 
capacity, thus stabilising its interaction with ubiquitin-labelled cargo. Since K63-linked polyubiquitylation of TBK1 is required for its activation, as well as its 
recognition and recruitment by Golgi-localised optineurin, we would hypothesise that during autophagosome formation ubiquitylated TBK1 is recruited by optineurin, 
where it is activated and in turn phosphorylates optineurin, thus creating a positive signal amplification loop through the recruitment and stabilisation of the TBK1/
optineurin heterodimeric complex on ubiquitylated cargo.
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results in the formation of a complex between optineurin and 
TBK1, with the latter activated by trans-autophosphorylation (48).

Optineurin is also a key adaptor protein for the actin motor 
protein myosin VI (112). This interaction is critical for the spa-
tiotemporal regulation of many optineurin-mediated functions, 
including autophagy and secretory vesicle fusion (24, 27, 28). 
There are around 40 different myosins expressed in humans (113) 
and due to the association of myosin dysfunction in a number of 
diseases, the development of small molecules to manipulate their 
function is a growing area of investigation (24). However, unlike 
other myosins, myosin VI movement is towards the pointed 
(minus) ends of actin filaments (114) using large powerstroke 
movements achieved through significant conformational rear-
rangement (115–117). Whilst the N-terminal motor domain, 
conserved across myosins, undergoes adenosine triphosphate 
(ATP)-dependent conformational changes to induce motor 
translocation (118), the C-terminal tail region is divergent across 
the myosin family and thus confers cargo specificity via direct 
interactions (112). Upon the binding of cargo, for example, 
via optineurin as an adaptor, myosin VI is able to dimerise 
and potentially function as a processive motor (119). To date, 
multiple binding motifs within the tail region of myosin VI have 
been identified, which allow specific interactions with a range of 
proteins that function in membrane trafficking (26, 28, 120–127). 
In particular, the RRL motif within the myosin VI tail is required 
for its interaction with optineurin, as well as the other autophagy 
receptors TAX1BP1 and NDP52 (26, 126, 127).

Mutation within, or deletion of, the optineurin UBD per-
turbs optineurin pull down of myosin VI, as well as target of 
myb protein 1 (Tom1) (128), highlighting the importance of 
this region in the interaction with the myosin cargo-binding 
tail and its potential to facilitate larger scale adaptor protein 
complexes. Recent data have shed further light on this. Within 

the C-terminal region of myosin VI, a motif interacting with 
ubiquitin domain exists (129). A second region, encompassing 
the RRL motif, was subsequently identified and termed the 
myosin VI ubiquitin-binding domain (MyUb) (123). Here, the 
authors found that residues R1117 (part of the RRL motif) and 
I1104 within the MyUb domain are critical for MyUb structural 
integrity and the binding of ubiquitin conjugated to optineurin, 
respectively. This may suggest that optineurin, separate to its 
function as a cargo-binding receptor that binds ubiquitin upon 
phosphorylation by TBK1, may act as an adaptor protein by 
interacting with the myosin VI MyUb domain or RRL motif to 
facilitate autophagosomal maturation.

The optineurin–myosin VI complex likely regulates a key 
aspect of autophagy, which is to facilitate the maturation of the 
autophagosome and its fusion with the lysosome (28, 130). In 
particular, myosin VI, through a direct interaction with optineu-
rin via its RRL motif (26), delivers Tom1-positive endosomal 
membranes to autophagosomes, which is required for autophago-
some–lysosome fusion (28). This holds significance because the 
origins of the autophagosomal membrane are wide-ranging and 
highly debated within the literature, with recruitment coming from 
the ER (131, 132), endosomal compartments (133–136), plasma 
membrane (137), mitochondria (138), and Golgi (139, 140) all 
contributing to nucleation and elongation of the phagophore 
membrane. It has also been demonstrated that autophagosomal 
membranes derive from ER–mitochondrial contact sites (141), as 
well as the ER–Golgi intermediate compartment (26, 142, 143). 
Tom1 is an alternative endosomal sorting complex required for 
transport (ESCRT) class 0 protein (144), a family of trafficking 
proteins required for cargo sorting along the endocytic route and 
in the autophagy pathway (145), and binds the WWY motif of 
myosin VI, unlike optineurin, NDP52, and TAX1BP1 which bind 
the RRL motif (28). Although multiple studies had previously 
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shown Tom1 and myosin VI to interact (122), the more recent 
observations discussed here (28, 123, 129) may suggest how this 
specific and dynamic pathway is tightly regulated.

The capacity of optineurin to bind both ubiquitylated cargoes 
and autophagosomal LC3 via its UBD and LIR, respectively (19), 
and myosin VI in an ubiquitin-dependent (123) or -independent 
manner may represent distinct autophagic steps. In this paradigm, 
it may be that a specific stimulus results in TBK1 recruitment 
and subsequent phosphorylation of optineurin at sites of cargo 
recognition and autophagosome formation to enhance its bind-
ing to LC3 (22) and ubiquitin (52). Separately, the conjugation 
of cytosolic optineurin to ubiquitin may enhance its interaction 
with myosin VI, via the MyUb RRL motif (123), to recruit it to 
LC3-positive membranes and form an adaptor/membrane/motor 
complex to promote autophagosomal maturation. It is therefore 
important to note that optineurin likely has a dual function dur-
ing autophagy, functioning as a cargo receptor in the lumen of 
the autophagosome and also functioning as an adaptor protein on 
the cytosolic face of the autophagosome. More recent data further 
implicate optineurin in autophagosomal maturation in neurons 
through an interaction with the GTPase Rab1a (146). Optineurin 
also mediates the recruitment of the Atg12-5-16L1 complex to 
promote autophagosomal elongation (147), suggesting a role dis-
tinct from its cargo-binding capacity. In addition, other autophagy 
receptors could play a cooperative role alongside optineurin. For 
example, NDP52 recruitment of TBK1 to autophagosomes via 
the formation of an ubiquitin-sensing complex with Nap1 and 
Sintbad (85) could stimulate the formation and stabilisation of 
the heterodimeric TBK1–optineurin axis. Moreover, optineurin, 
TAX1BP1, and NDP52 preferentially bind different types of 
ubiquitin chains (15), which may be critical in regulating their 
cargo specificity. Interestingly, the optineurin paralogue NEMO 
is negatively regulated by the E3 ubiquitin ligase TRIM29 via 
interactions within its CC domain, resulting in the ubiquityla-
tion and degradation of NEMO (15,  148). Whether a similar 
mechanism exists to regulate optineurin function remains to be 
determined, but this may indicate the existence of a further mode 
of optineurin regulation.

OPTiNeURiN FUNCTiON DURiNG 
MiTOPHAGY

Mitochondria are a critical organelle in the eukaryotic cell, with  
most cellular ATP produced by oxidative phosphorylation 
(OXPHOS) within the mitochondrial matrix. Mitochondria pro-
vide the major source of intracellular cytotoxic reactive oxygen 
species (ROS) (149) as a by-product of OXPHOS, with ROS pro-
duction increasing upon mitochondrial damage. It is therefore 
crucial that the accumulation of dysfunctional mitochondria is 
effectively prevented through homeostatic mitochondria quality 
control pathways, such as mitophagy. Failure of these mechanisms 
is strongly associated with a number of age-related diseases, such 
as Parkinson’s disease (150). Mitophagy, a term originally coined 
over a decade ago (151), is the selective autophagic removal of 
damaged mitochondria within a cell, although the UPS is also 
a critical component of this pathway (152–155). More recently, 

the role of receptors/adaptors such as optineurin in mitophagy 
has begun to emerge, which has resulted in their investigation in 
greater detail.

The most well studied form of mitophagy is regulated by 
the PTEN-induced putative kinase 1 (PINK1)/Parkin axis, 
although alternative pathways have been shown to exist. Under 
‘normal’ or ‘healthy’ conditions, PINK1 is rapidly imported into 
mitochondria via TOM40 and translocation of inner membrane 
pores (156) in a mitochondrial membrane potential-dependent 
manner (157–159). Following its import, PINK1 undergoes inter-
membrane degradation by mitochondrial processing peptidase 
and presenilin-associated rhomboid-like protein (160–162), with 
the residual N-terminus then being exported into the cytosol for 
proteasomal turnover (163).

Upon mitochondrial damage, PINK1 is stabilised and selec-
tively accumulates on the mitochondrial outer membrane (MOM), 
where it recruits and activates Parkin (158, 159, 164). PINK1 is 
critical for a number of post-translational modifications to Parkin 
(165, 166), MOM proteins (167), and ubiquitin (168–171), as 
well as promoting fission to isolate damaged mitochondria for 
degradation (172). Parkin subsequently ubiquitylates a number 
of MOM proteins (173–175), in addition to RHOT1/2 (Miro in 
Drosophila), a small GTPase involved in mitochondrial transport, 
resulting in the arrest of mitochondrial trafficking (176).

For mitophagy to correctly function and damaged mitochon-
dria to be selectively degraded, autophagy receptors once again 
represent critical components of the pathway. The mitochondrial 
protein Nix has been identified as an autophagy receptor for the 
targetted clearance of mitochondria (177), which is regulated by 
its phosphorylation (178). Although p62 has been shown to act as 
a receptor during mitophagy (174), its importance has since been 
disputed (23, 179). We would suggest that both functional redun-
dancy and cooperativity are likely to exist between autophagy 
receptors with respect to their role during mitophagy. It may be 
the case that specific receptors are critical at distinct points dur-
ing mitophagy, or that they only function under different types 
of mitochondrial stress and in certain cell lines. For example, 
mitochondrial damage induced by oxidative stress may result in 
the activation of a different mitophagy pathway compared with 
pharmacological uncoupling of membrane potential. Although 
p62 is recruited to uncoupled mitochondria in HeLa cells (179), 
optineurin is also recruited under the same conditions (23) where 
it induces autophagosome assembly (180).

Optineurin, along with NDP52, is recruited by PINK1 to dam-
aged mitochondria, but in a Parkin-independent manner (181). 
Optineurin then preferentially binds linear ubiquitin chains 
via its UBAN domain (38), with TBK1 activity regulating this 
interaction by phosphorylation of residues within this domain 
(51). Although the phosphorylation of ubiquitin has been sug-
gested to be critical in PINK1/Parkin-dependent mitophagy 
(170) and TBK1-mediated phosphorylation of optineurin on 
Ser473 facilitates its binding of pSer65 ubiquitin chains on mito-
chondria (52), conflicting reports have also emerged on whether 
optineurin activity requires ubiquitin phosphorylation in the 
context of mitophagy (51, 181, 182). It may be the case that these 
phosphorylation events are dispensable for mitophagy under  
certain conditions, but not others.
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The fact that p62 and optineurin are recruited to distinct 
domains on damaged mitochondria to facilitate the separate roles 
of mitochondrial aggregation and LC3 recruitment, respectively 
(23), demonstrates the functional divergence of autophagy recep-
tors. More recently, the divergent pathways of the overall process 
of mitophagy have also become better understood. Degradation 
of mitochondrial proteins can occur via a pathway in which 
mitochondria-derived vesicles (MDVs) bud off from the organelle 
(183–185) in a Parkin/PINK1-dependent manner (186), with 
Syntaxin-17 mediating MDV fusion with endolysosomal com-
partments (187). This pathway is likely to represent both normal 
physiological recycling of mitochondrial proteins and the disposal 
of mitochondrial components damaged by low level stress. 
Although no direct assessments have been made to date, we would 
hypothesise that proteins such as optineurin may act as receptors 
and/or adaptors in this lysosomal degradation pathway as the loss 
of Parkin ubiquitin ligase activity perturbs the MDV pathway 
(186), suggesting that receptors with ubiquitin-binding capacity 
may be required downstream of Parkin to facilitate degradation. In 
addition, trafficking of MDVs containing mitochondrial proteins 
to lysosomes is likely to require adaptor protein interactions with 
molecular motors such as myosin VI to facilitate cargo delivery.

Such alternate mitophagic pathways could be activated only 
under specific stress conditions, whereby distinct autophagy 
receptors undergo mitochondrial recruitment. Some evidence of 
this has already been observed, whereby the receptor TAX1BP1 
interacts with Parkin upon mitochondrial uncoupling, but only 
when fusion events are also inhibited by Bafilomycin A1 (175). 
This could suggest that specific autophagy receptors only play a 
role in this pathway if other stress conditions occur in parallel, 
or alternatively illustrate that these interactions are transient and 
the inhibition of other pathways leads to their retention. Indeed, 
this may even better represent actual physiological disease condi-
tions, where cells are likely to be undergoing multiple stresses 
whilst trying to maintain homoeostasis. Extensive further work 
is therefore needed to delineate the specific role of receptors, such 
as optineurin, during mitophagy using physiologically relevant 
disease models.

OPTiNeURiN iN HUMAN DiSeASe

Primary Open-Angle Glaucoma
As previously discussed, optineurin has been associated with a 
number of diseases across a wide range of genetic and functional-
based studies. The first proven association with disease was over 
a decade ago when mutations in OPTN were shown to cause an 
autosomal dominant form of hereditary glaucoma (2). Here, the 
initial studies suggested that optineurin plays a neuroprotective 
role, a hypothesis that has been supported by numerous subse-
quent publications (188–191).

Glaucoma is a disease characterised by the progressive dege-
neration of the optic nerve. This optic neuropathy is the primary 
cause of irreversible blindness worldwide, with POAG being 
the most common subtype (192). Although often classed as a 
neurodegenerative disease, it has been hypothesised that it is a 
primary optic neuropathy with secondary pathogenic effects in 
the central nervous system (193). The bilateral blindness that 

results from glaucoma is a result of the progressive loss of retinal 
ganglion cells (RGCs) in the optic nerve head (194). A number 
of studies have suggested that mutations in optineurin that cause 
glaucoma are a result of defective autophagy (195). Furthermore, 
this pathology resulting from autophagic defects may be limited 
specifically to dysfunction in optineurin-mediated autophagy as 
a small-scale genetic study did not find mutations in the SQSTM1 
gene encoding the autophagy receptor p62, also phosphorylated 
by TBK1 (105), in patients with NTG (196).

The optineurin E50K mutation, a primary cause of POAG-
induced blindness (2), impairs autophagy. Indeed, in this initial 
study by Rezaie et al. to identify OPTN mutations as causative of 
glaucoma, the E50K mutation segregated with the NTG phenotype 
within a large family, providing solid evidence for their hypothesis 
and was associated with 16.7% of the familial NTG cases inves-
tigated. The extension of these data into E50K transgenic mouse 
models has further supported this hypothesis (190,  197,  198), 
with mice specifically exhibiting pathological features of POAG 
when physiological relevant levels of the transgene were expressed 
(199). Cell death is also induced in mouse photoreceptor cells 
derived from retinal tumours expressing either E50K or M98K 
glaucoma-associated variants (200) (Table 1).

At the subcellular level, the E50K mutation enhances its inter-
action with TBK1 (21), which disrupted proper oligomerisation 
resulting in its insolubility (201). This E50K mutation has also been 
shown to perturb optineurin’s interaction with Rab8 (77, 190, 208), 
a critical regulator of vesicular trafficking. The M98K mutation, 
found in 13.6% of NTG cases in one study (2), enhances the 
interaction of optineurin with Rab12 (203), a GTPase involved in 
vesicular trafficking and lysosomal degradation of the transferrin 
receptor (209). This enhanced interaction lead to the increased 
degradation of the transferrin receptor and RGC death (203). 
Furthermore, M98K demonstrates enhanced binding to TBK1, 
which in turn leads to enhanced Ser177 phosphorylation and thus 
optineurin activation in a TBK1-dependent manner, resulting in 
activation of autophagic cell death (204). In neuronal RGCs, the 
overexpression of wild-type or E50K optineurin compromises 
UPS-mediated turnover of optineurin leading to the accumulation 
of autophagosomes and apoptosis (202). It would appear that cells 
must maintain functional levels of optineurin and that the altera-
tion of this homeostatic balance results in autophagic-induced cell 
death and/or autophagic dysfunction (Table 1).

The aberration of mitochondrial homoeostasis is also associ-
ated with glaucoma (210, 211). In transgenic mice or in vitro cul-
tured RGCs, E50K expression alters mitochondrial dynamics and 
promotes expression of the proapoptotic protein Bax, leading to 
retinal cell death. In addition, this mutation resulted in mitochon-
drial loss through the induction of mitochondrial fission and the 
formation of mitochondrial-containing autophagosomes, as well 
as increased ROS production (212). This dysfunction in mito-
chondrial regulation may elucidate why oxidative stress-induced 
retinal cell death is associated with this particular optineurin 
mutation (189, 213).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis is a neurodegenerative disease associ-
ated with mitochondrial dysfunction with respect to their function, 
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TABLe 1 | Identified and characterised optineurin mutants associated with POAG and ALS.

Mutation Disease Functional impacts interactions Reference

E50K POAG Autophagy dysfunction; photoreceptor cell death; altered 
mitochondrial dynamics; increased ROS; mitochondrial loss; 
increased expression of Bax

Enhanced TBK1 interaction; disrupted Rab8 
interaction; enhanced oligomeric state of optineurin

(2, 36, 190, 
200–202)

M98K POAG Photoreceptor and RGC cell death; increased degradation of TfR; 
enhanced S177 phosphorylation; increased autophagic cell death

Enhanced Rab12 interaction; enhanced binding  
to TBK1

(200, 203, 204)

H486R POAG, 
JOAG

NF-κB dysregulation Disrupted CYLD interaction; decreased ubiquitin 
binding

(40, 205, 206)

E478G ALS Lack of mitochondrial translocation; cytoplasmic inclusions;  
NF-κB dysregulation

Interaction with SOD1 aggregates intact;  
lack of ubiquitin binding

(8, 18, 37, 181, 
207)

D398X 
(truncation)

ALS Lack of mitochondrial translocation; NF-κB dysregulation;  
Golgi fragmentation

Lack of ubiquitin binding (8, 181, 207)

R96L ALS Golgi fragmentation; predicted gain-of-function Enhanced Rab8 binding (207)

Q165X 
(truncation)

ALS Predicted loss-of-function Predicted disruption of Rab8, myosin VI, Htt,  
and ubiquitin binding

(10)

Q454E ALS Reduced NF-κB inhibition Unknown (10, 38)

Identified optineurin disease mutants in POAG, JOAG, and ALS. In addition, the functional impacts and the effects on protein–protein interactions of these mutants are described.
TfR, transferrin receptor; ROS, reactive oxygen species; NF-κB, nuclear factor kappa B; RGC, retinal ganglion cell; TBK1, tank-binding kinase 1; CYLD, cylindromatosis lysine 63 
deubiquitinase; Htt, huntingtin; SOD1, superoxide dismutase 1; POAG, primary open-angle glaucoma; JOAG, juvenile open-angle glaucoma; ALS, amyotrophic lateral sclerosis.
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morphology, transport, and turnover (214–217). Mutations in 
optineurin have been identified in ALS patients, as well as muta-
tions in its complex binding partners TBK1 and p62, suggesting that 
autophagic dysfunction is the common pathway (8, 10, 18, 207). 
In support of this, optineurin and TBK1 mutations perturb the 
recruitment of LC3-positive membrane to damaged mitochondria, 
leading to less efficient mitophagy (50), which could account for 
some cases of mitochondrial dysfunction observed in ALS.

Disruption of the TBK1–optineurin interaction and their co-
dependent regulatory mechanisms can be attributed to disease 
pathology. For example, whereas the glaucoma-associated E50K 
mutation in optineurin enhances its interaction with TBK1 
resulting in impacts on the oligomeric state of optineurin, the 
ALS-associated E696K mutation of TBK1 abolishes its interaction 
with optineurin leading to a failure of mitochondrial transloca-
tion (20, 52). In addition, optineurin may be activated by TBK1-
mediated Ser177 phosphorylation to induce autophagic clearance 
of protein aggregates in an ubiquitin-independent manner via its 
C-terminal CC domain. Interestingly, in this study, the optineurin 
UBAN mutant E478G still interacted with SOD1 protein aggre-
gates, whereas depletion of optineurin in this ALS zebrafish model 
resulted in motor axonopathy (37). Importantly, these data have 
implications for both ALS and Huntington’s disease. Furthermore, 
mutations in TBK1 have more recently been associated with the 
development of FTD associated with ALS (218–221). SQSTM1 
mutations in FTD and FTD with ALS have also been identified 
(222), which would indicate that autophagic dysfunction is 
at the heart of these diseases. It may therefore be the case that 
some TBK1 mutation-associated phenotypes in FTD/ALS occur 
through an optineurin-mediated action with resulting autophagic 
defects driving the degenerative pathology.

Many of the optineurin mutations associated with ALS are 
located within the UBAN domain, thus disrupting ubiquitin 
binding (8). ALS-associated optineurin mutations E478G and  

Q398X (both within the UBAN domain), as well as the ubiquitin- 
binding deficient D474N, do not translocate to mitochondria 
(181) (Table 1). However, the authors did find that the expres-
sion of the glaucoma-associated E50K mutation and the 
phospho-deficient S177A could marginally rescue mitophagy. 
This limited rescue may be explained by the fact that E50K and 
S177A optineurin mutants, unlike ubiquitin-binding deficient 
mutants, are still recruited to damaged mitochondria where 
they are still able to exhibit some activity, resulting in very low 
level recruitment of TBK1. These data are therefore indicative 
of an optineurin-mediated system in which its interaction with 
ubiquitin is most critical for mitophagy. A current hypothesis is 
therefore that mutations disrupting the ubiquitin-binding capac-
ity of optineurin prevents efficient mitophagy in neurons and 
leads to the accumulation of cytotoxic dysfunctional mitochon-
dria (180). p62 and optineurin are recruited to discrete domains 
on damaged mitochondria (23), suggesting distinct functional 
mechanisms exist. However, it would appear that disrupting just 
optineurin activity alone is enough to induce ALS pathology. The 
reason why neurodegeneration only occurs in specific neuronal 
subtypes carrying these ALS-associated familial mutations is 
likely due to these cells unique energetic demands and suscep-
tibility to mitochondrial damage alongside their limited capacity 
for mitochondrial homeostatic pathways. Nevertheless, as wild-
type optineurin binds and inactivates caspase-8 (38), mutations 
that result in a loss of this activity may potentiate the apoptotic 
pathway that occurs in ALS-associated pathologies following 
optineurin dysfunction.

Other Diseases
In addition to ALS and FTD, the TBK1/optineurin axis may also 
be implicated in the pathogenesis of other neurodegenerative 
disorders. Indeed, a patient carrying the optineurin E478G mutant  
was clinically diagnosed with both ALS and Parkinson’s disease, 
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with autopsy analysis showing degeneration of the substantia 
nigra, as well as the presence of tau-positive neurofibrillary tan-
gles and α-synuclein-positive Lewy bodies (223). As optineurin 
acts as a receptor during mitophagy (23), a pathway in which its 
dysfunction is known to cause Parkinson’s (224), it is possible 
that hereditary or somatic mutations in genes encoding optineu-
rin or TBK1 may lead to a Parkinsonian progression through 
mitophagic perturbation.

Trinucleotide expansions within the HD gene encoding the 
Htt protein result in the progression of the devastating neuro-
degenerative disorder Huntington’s disease (225, 226). Due to its 
interaction with Htt (30), a protein known to regulate a number 
of vesicular trafficking pathways (71, 227, 228), optineurin is of 
significant interest in Huntington’s research. Although optineurin 
interacts with Rab8 and Htt at the Golgi (26), a localisation that is 
disrupted by mutant Htt resulting in lysosomal impairment (71), 
and is found in Htt protein inclusions observed in the cortex of 
Huntington’s patients (229), it is currently not known what role 
optineurin plays in the progression of the disease. Nevertheless, 
because optineurin is involved in the autophagic clearance of pro-
tein aggregates (37) and its abundance/neuronal distribution may 
confer susceptibility to Htt inclusions (230), its role in mediating 
clearance pathways may offer novel therapeutic targets as our 
understanding grows.

The impairment of vesicular trafficking and autophagy is not 
just associated with neurodegeneration, but has also been linked 
to a number of cancers (231–233). HACE1, an E3 ubiquitin ligase 
and potent tumour suppressor (234), ubiquitylates optineurin 
which promotes its interaction with p62 and induces autophagy 
(39). This accelerated degradation lead to a suppression of ROS 
and reduction of tumourigenicity of human lung cancer cells. 
Thus, optineurin-induced autophagy appears to represent a poten-
tial tumour suppressing pathway in some cancers.

CONCLUSiON

Both autophagy and mitophagy have been implicated in cell 
survival and death pathways by a number of studies. The role of 
optineurin in these pathways currently remains relatively unex-
plored. Dysfunction in autophagy and mitophagy is associated 
with a number of neurodegenerative diseases and so questions 

therefore remain as to how optineurin-mediated autophagy, and 
its dysfunction, plays a role in directing neuronal death pathways 
under specific stress conditions. As multiple distinct pathways 
exist within each form of selective autophagy, which involves a 
number of distinct autophagy receptor and adaptor proteins, our 
understanding of which of these proteins play a role across each 
discrete pathway must be improved. For example, it is clear that the 
TBK1–optineurin complex plays a pivotal role during the innate 
immune response to target unwanted cellular pathogens, but how 
it spatially and temporally regulates this process with respect to 
related autophagy receptors has not yet been clearly defined. In 
addition, the outcome of TBK1 kinase activity may be regulated 
by the level and duration of activation, as well as by cross-talk 
between other kinase classes (235). Therefore, TBK1 regulation of 
autophagy may also occur in this manner, whereby only specific 
levels or discrete localisation of TBK1 activity leads to the activa-
tion of optineurin-dependent autophagy, thus allowing the cell to 
distinguish between different stimuli and mount the appropriate 
autophagic response. Nevertheless, disease-causing mutations in 
optineurin that result in the presentation of autophagic defects in 
patients highlights the central role that is played by this protein  
in the regulation of these cargo-specific membrane trafficking 
and recycling pathways.
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