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ABSTRACT Klebsiella pneumoniae is a Gram-negative pathogen that has become
increasingly antibiotic resistant. Phage therapy is potentially a useful approach to con-
trolling this pathogen. Here, we present the genome sequence of the phiKMV-like K.
pneumoniae podophage Pone.

K lebsiella pneumoniae is a nonmotile Gram-negative bacillus found in the soil,
mouth, skin, and gastrointestinal tract. It has received attention in recent years as

a panresistant, nosocomial pathogen (1), particularly the highly resistant carbapene-
mase-producing strains (2, 3). They are also known to carry a wide array of other antibi-
otic resistance genes and are reservoirs for drug resistance elements resulting in
endemic antibiotic resistance among the Enterobacteriaceae (4). Phage therapy is one
promising solution to these panresistant pathogens, and hence it is useful to character-
ize the phages of K. pneumoniae to evaluate their therapeutic potential. Here, we pres-
ent the genome sequence of K. pneumoniae phage Pone.

Bacteriophage Pone was isolated from wastewater collected in College Station, TX,
based on its ability to form plaques on the clinical isolate K. pneumoniae 43421 (GenBank
accession no. NZ_NDDH00000000), using the soft-agar overlay method, and phage purifi-
cation was carried out by picking and replating the isolated plaques for several rounds on
soft-agar overlay seeded with the host strain as described previously (5). Phage and host
bacteria were aerobically cultured on Trypticase soy broth or agar at 37°C. The morphol-
ogy was determined to be podophage by negative staining the sample with 2% (wt/vol)
uranyl acetate (6) and viewing it through transmission electron microscopy at the Texas
A&M Microscopy and Imaging Center. Phage DNA was extracted using the Promega
Wizard DNA extraction system following a modified protocol as previously described (7),
and a DNA library was prepared with average 300-bp inserts using the TruSeq Nano kit
(Illumina). Samples were sequenced with 300-cycle chemistry on an Illumina iSeq 100 plat-
form. Read quality control was conducted using FastQC (www.bioinformatics.babraham.ac
.uk/projects/fastqc) on the 775,946 raw reads, and the genome was assembled from these
reads using SPAdes v3.5.0 (8), resulting in a single contig with 367.6-fold coverage.
The contig was closed and verified using PCR and Sanger sequencing with the forward
primer GTGCCTAGCGCCAAAAAGAG and the reverse primer CACTGGACAGGCACTAGAGG.
Structural annotation was conducted using GLIMMER v3 (9) and MetaGeneAnnotator v1.0
(10), with manual corrections. ARAGORN v2.36 (11) was used to detect potential tRNAs.
Functional annotation was conducted using sequence similarity searches from BLAST
v2.9.0 (12), conserved domain searches from InterProScan v5.33 (13) and HHPred (14), and
membrane topology predictions from TMHMM v2.0 (15). BLAST searches were conducted
against the NCBI nonredundant (nr) and Swiss-Prot databases (16). Genomic comparisons
were conducted using progressiveMauve v2.4 (17). All analyses were conducted via the
CPT Galaxy and Web Apollo interfaces (18–20) with default settings.

Phage Pone is a 44,346-bp podophage, with terminal repeats predicted using
PhageTerm (21). The precise repeat boundaries could not be identified. Its genome
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contains 53.8% G1C content and 56 protein-coding genes at a 94% overall coding
density. Of the 56 protein-coding genes, 36 were assigned putative functions.
Comparative analysis of the genome shows a high degree of identity with phiKMV
(GenBank accession no. NC_005045). Phage Pone shares 19 out of 48 phiKMV proteins
according to a BLASTp comparison (E, 0.001) and 30% similarity at the DNA level with
phiKMV according to a progressiveMauve analysis. The arrangement of genes and the
genome size of phage Pone are consistent with a phiKMV-like phage (22), with the no-
table exception of the first 7 kb, which encodes an array of hypothetical proteins that
contain no detectable similarity to any genes of known function, and a second region
at nucleotide position 14097 to 16649 containing hypothetical proteins with trans-
membrane domains and secretion signals. This likely reflects the specialization of
phage Pone for host takeover and infection processes.

Data availability. The genome sequence of phage Pone was deposited under GenBank
accession no. MT701589 and BioSample accession no. SAMN14609640. The BioProject acces-
sion number is PRJNA222858, and the SRA accession number is SRR11558349.
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