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The transcriptional repressor BCL11A is involved in hematological malignancies, B-cell

development, and fetal-to-adult hemoglobin switching. However, the molecular mechanism

by which it promotes the development of myeloid leukemia remains largely unknown. We

find that Bcl11a cooperates with the pseudokinase Trib1 in the development of acute

myeloid leukemia (AML). Bcl11a promotes the proliferation and engraftment of

Trib1-expressing AML cells in vitro and in vivo. Chromatin immunoprecipitation sequencing

analysis showed that, upon DNA binding, Bcl11a is significantly associated with PU.1, an

inducer of myeloid differentiation, and that Bcl11a represses several PU.1 target genes, such

as Asb2, Clec5a, and Fcgr3. Asb2, as a Bcl11a target gene that modulates cytoskeleton and

cell-cell interaction, plays a key role in Bcl11a-induced malignant progression. The

repression of PU.1 target genes by Bcl11a is achieved by sequence-specific DNA-binding

activity and recruitment of corepressors by Bcl11a. Suppression of the corepressor

components HDAC and LSD1 reverses the repressive activity. Moreover, treatment of AML

cells with the HDAC inhibitor pracinostat and the LSD1 inhibitor GSK2879552 resulted in

growth inhibition in vitro and in vivo. High BCL11A expression is associated with worse

prognosis in humans with AML. Blocking of BCL11A expression upregulates the expression

of PU.1 target genes and inhibits the growth of HL-60 cells and their engraftment to the

bone marrow, suggesting that BCL11A is involved in human myeloid malignancies via the

suppression of PU.1 transcriptional activity.

Introduction

Hematopoiesis-associated transcription factors (TFs) play crucial roles in the malignant transformation
and progression of hematopoietic neoplasms. Many TFs act as oncogenes or tumor suppressors in mye-
loid malignancies. They regulate transcriptional programs of their target genes, constituting specific com-
plexes and modulating each other’s functions. Bcl11a/Evi9/Ctip1 encodes a C2H2-type zinc finger
protein that functions as a transcriptional repressor.1,2 Bcl11a was identified as a myeloid oncogene
associated with a common retroviral integration in acute myeloid leukemia (AML) in BXH2 mice.1 Subse-
quently, BCL11A was implicated in t(2;14) chromosome translocation in cases of human B-cell chronic
lymphoid leukemia in which overexpression of BCL11A messenger RNA is achieved by juxtaposition to
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Key Points

� BCL11A promotes
myeloid leukemogene-
sis via the repression
of PU.1 target genes.

� Inhibition of
corepressors abro-
gates the BCL11A
function, inducing
growth suppression
and inhibition of
engraftment in AML.
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the IGH enhancer.3 Moreover, B-cell development is arrested at the
pro-B stage in Bcl11a homozygous knockout mice, indicating that
Bcl11a plays a critical role in B-cell differentiation.4 Further studies
revealed that Bcl11a is a repressor of the fetal hemoglobin gene
and is essential for its switching of the fetal hemoglobin gene to the
adult type.5-8 Collectively, Bcl11a orchestrates differentiation pro-
grams in multiple lineages of hematopoiesis.

Despite several studies on the functions of BCL11A in B-cell and
erythroid lineages, its role in myeloid leukemogenesis remains poorly
understood. A potential association between Bcl11a and Nf1 loss
or MLL-AF9 was identified using insertional mutagenesis screen-
ing.9,10 Given that BCL11A is involved in the repression of tran-
scription by associating with corepressor complexes,8,11-13 it is
plausible that Bcl11a promotes myeloid leukemogenesis by repres-
sing its downstream targets. Taken together, these data strongly
suggest that Bcl11a acts as a myeloid oncogene, although Bcl11a
by itself does not possess strong transforming activity, and collabo-
ration with other genetic aberrations is required for complete leuke-
mogenesis.9 In addition, Bcl11a plays a role that is distinct from
those of oncogenic TFs, such as Hoxa9 and c-Myc, many of which
act as transcriptional activators. In this context, Bcl11a may interact
with tumor-suppressive TFs and may reverse the transcriptional pro-
grams that they regulate.

In this study, we found that Bcl11a cooperates with Trib1, a pseudo-
kinase gene, identified as a myeloid oncogene that cooperates with
Hoxa9 and Meis1,14 in the development of AML. Trib1 degrades the
p42 isoform of C/EBPa, which induces myeloid differentiation and
acts as a myeloid tumor suppressor.15-17 Bcl11a might replace the
oncogenic functions of Hoxa9 and Meis1 by modulating distinct
transcriptional programs of downstream targets. Therefore, it is
expected that Bcl11a may interact with tumor-suppressive TFs other
than C/EBPa. Our study showed that Bcl11a promoted malignant
progression of Trib1-expressing immortalized hematopoietic cells,
whereas Bcl11a- and Trib1-coexpressing cells enabled the analysis
of global DNA-binding properties of Bcl11a to address its role
in aggressive phenotypes. Importantly, Bcl11a repressed the ex-
pression of the target genes of PU.1, which is a myeloid tumor
suppressor.

Methods

Detailed experimental methods not presented below are described in
supplemental Methods. Specific statistical tests used are described
in each figure legend. All error bars represent the standard error of
the mean (SEM).

Study approval

All animal experiments described in this study were performed in
strict accordance with standard ethical guidelines and were
approved by the animal care committee at the Japanese Foundation
for Cancer Research under licenses 10-05-9 and 0604-3-13.

In vivo studies

For the bone marrow transplantations, mice were subjected to irradi-
ation (8.5 Gy for primary bone marrow cells and 4.0 Gy for cell
lines) and injected IV with 1 3 106 primary bone marrow cells
infected with retrovirus or 1 3 107 Tr1, TB-13, or TB-14 cells. All
mice were on the C57BL/6 background. For transplantation of
HL-60 cells, NSG mice were subjected to 2.0-Gy irradiation.

Cell lines and cell culture

Bone marrow cells were prepared from 8-week-old C57BL6/J mice,
5 days after injection of 5-fluorouracil (Kyowa Hakko Kirin, Tokyo,
Japan) at 150 mg/kg body weight. These cells were transduced
with pMYs-Flag-Trib1-IRES-mKO, with or without pMYs-myc-Bcl11a-
IRES-EGFP, according to the method described previously.18

Human AML cells were maintained in RPMI 1640 supplemented
with 10% fetal bovine serum. Gene knockdown and CRISPR/Cas9-
mediated gene editing were performed by infecting the cells with len-
tiviral vectors bearing short hairpin RNAs (shRNAs; Sigma-Aldrich)
and single guide RNA, respectively. The sequences of shRNAs and
single-guide RNA are listed in supplemental Table 1. For pharmaco-
logical experiments, leukemia cells were treated with 100 nM
pracinostat, 3 nM panobinostat, 10 mM GSK2879552, or 10
mM GSK-LSD1-2HCL for 96 hours, and expression levels of tar-
get genes or surface markers were detected by quantitative
reverse transcriptase polymerase chain reaction (qRT-PCR) and
flow cytometry. The suppression of growth of leukemia cells
was assessed following treatment with 50 nM pracinostat, 1 nM
panobinostat, 1 mM GSK2879552, or 1 mM GSK-LSD1-2HCL
for 96 hours.

Statistics

All in vitro experiments were performed at least in triplicate. The
number of mice used per experiment is indicated in the figures.
Data are expressed as means 6 SEM, and statistical significance
was determined using a 1-tailed Student t test for single compari-
sons and one-way analysis of variance with Dunnett multiple-
comparison test for multiple comparisons on a single data set. Sur-
vival analysis was performed using the Kaplan-Meier life table
method, and survival between groups was compared using the log-
rank test.

Results

Bcl11a cooperates with Trib1 in the development

of AML

In a previous study, we identified 6 common integration sites in 30
murine leukemia tumor tissues from Trib1-expressing mouse AML.17

As expected, Hoxa7 and Hoxa9 were detected at the highest fre-
quency, which concurs with the identification of Trib1 as a collabo-
rator of Hoxa9 and Meis1.14 Bcl11a was identified as the second
most frequent retroviral integration site, especially in the 175-kb
region flanking Bcl11a (Figure 1A). Most of the integration sites
were located 10 to 80 kb downstream of Bcl11a, which is similar
to the reported distribution of common integration sites, suggesting
that retroviral integrations upregulate the expression of Bcl11a.9

Indeed, the expression of Bcl11a was found to be upregulated in
integration-positive AML using qRT-PCR analysis (Figure 1A). To
assess the cooperation between the expression of Trib1 and
Bcl11a, mouse bone marrow cells were transfected with retrovirus
genes, Trib1 and Bcl11a, followed by bone marrow transplantation
into lethally irradiated recipients. The expression of Bcl11a signifi-
cantly accelerated the onset of Trib1-induced AML (Figure 1B).
Notably, the expression of Bcl11a alone was not associated with
the development of leukemia, which is in agreement with the results
of a previous study.9 These results indicate specific cooperation
between Trib1 and Bcl11a in myeloid leukemogenesis. Immortalized
mouse myeloid cell lines expressing Trib1 (Tr1) or Trib1 and Bcl11a
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22 MARCH 2022 • VOLUME 6, NUMBER 6 BCL11A REPRESSES PU.1 TARGETS 1829



(TB-13 and TB-14) were generated, which showed immature mye-
loid phenotypes expressing Mac1, Gr1, and CD34 (Figure 1B-D;
supplemental Figure 1A). Increased cell proliferation and colony-
forming activity were observed with the expression of Bcl11a

(Figure 1E); more importantly, the expression of Bcl11a was required
for the development of AML in vivo (Figure 1F). Conversely, shRNA-
mediated knockdown of Bcl11a in TB-13 and TB-14 cells resulted in
reduced proliferation in vitro and reduced leukemogenicity in vivo
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Figure 1 (continued) Bcl11a promotes Trib1-induced development of AML. (A) Retroviral insertions in Trib1-induced AML. Vertical arrows indicate the locations of

integrations at the Bcl11a locus (upper panel). Expression of Bcl11a in Trib1-induced AML. Asterisks indicate AML with retroviral integrations at the Bcl11a locus (lower

panel). (B) Acceleration of the onset of AML in the Trib1 and Bcl11a–coexpressing cohort in C57BL/6 mice, as shown by Kaplan-Meier survival curves. The number of

animals in each cohort is indicated. (C) Western blot showing the expression of myc-tagged Bcl11a and Flag-tagged Trib1 in Tr1, TB-13, and TB-14 cells. (D) Morphology

indicated by Giemsa staining (left panels) and fluorescence-activated cell sorting showing the expression of Mac1, Gr1, and CD34 in Tr1, TB-13, and TB-14 cells (right

panels). Scale bars, 10 mm. (E) Increased proliferation (left panel) and colony-forming activity (right panel) of TB-13 and TB-14 cells. (F) Kaplan-Meier survival curves show

the development of AML in the recipients transplanted with TB-13 or TB-14 cells, whereas no AML was induced in recipients of Tr1 cells. (G) Suppression of TB-13 cell

proliferation (left panel) and self-renewal (right panel) by shRNA-mediated knockdown of Bcl11a. Three independent shRNAs for Bcl11a were used. (H) Kaplan-Meier

survival curves show inhibition of the development of AML by Bcl11a knockdown in the recipients transplanted with TB-13 cells. (I) Tr1 and TB-13 cells in the bone marrow,

14 days after transplantation, were detected as an mKO-positive fraction using flow cytometry (left panels). A significant increase in the number of TB-13 cells was observed

in the bone marrow. Frequencies of mKO-positive cells in the bone marrow are shown as mean 6 SEM (right). (J) Increased adhesion of Bcl11a-expressing cells to

fibronectin. (K) Coculture of Tr1 or TB-13 cells with OP9 cells. Cobblestone areas were significantly increased by TB-13 cells (left). The number of cobblestone areas is

indicated as the means 6 SEM (right). Scale bar, 200 mm. (L) GSEA shows enrichment of the histone deacetylase complex and hematopoietic cell lineage pathways by

comparing AML cells expressing Trib1, with and without Bcl11a. Normalized enrichment scores (NES), nominal P values, and false discovery rate (FDR) q-values are

provided. Trib1 and TB indicate gene expression in Tr1 and TB-13/TB-14 cells, respectively. **P , .01, *** P , .001. GO, gene ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; mKO, monomeric Kusabira Orange; NTC, nontarget control; SSC, side scatter.
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(Figure 1G-H; supplemental Figure 1B-C). Furthermore, the bone
marrow engraftment of leukemia cells was enhanced by the expres-
sion of Bcl11a (Figure 1I). The adhesion of leukemia cells to fibro-
nectin and the interaction between leukemia cells and OP9 bone
marrow stromal cells were also significantly increased by the expres-
sion of Bcl11a (Figure 1J-K); the latter correlated with increased
bone marrow engraftment of AML.18 Taken together, the present
results indicate that Bcl11a cooperates with Trib1, which is known
to suppress C/EBPa and to enhance MEK/ERK signaling.14-16,19

Gene expression profiles were compared between TB-13 or TB-14
and Tr1 cells. Only 216 genes were upregulated twofold, whereas
1428 genes were downregulated twofold in TB-13 cells compared
with Tr1 cells (supplemental Table 2), which is consistent with the
previous findings that Bcl11a functions as a transcriptional repres-
sor.2,5,7 Gene set enrichment analysis (GSEA) showed enrichment
of histone deacetylase complex and hematopoietic cell lineage path-
ways (Figure 1L), suggesting that Bcl11a plays a role in myeloid
cell differentiation via transcriptional repression. Enrichment of the
cell cycle pathway was also observed (supplemental Figure 1D),
which was consistent with increased proliferation upon expression
of Bcl11a.

Bcl11a interacts with PU.1 and represses target

gene expression

To further clarify the function of Bcl11a, chromatin immunoprecipita-
tion sequencing (ChIP-seq) was performed to evaluate the global
DNA binding of Bcl11a and H3K27Ac in TB-13 cells. We identified
10398 DNA binding peaks of Bcl11a that were distributed most
frequently in the promoter regions (44.0%), followed by intergenic
regions (31.1%), and introns (23.2%) (Figure 2A; supplemental
Table 3). Among 1428 genes that were downregulated twofold in
Bcl11a-expressing cells, 876 genes (61.3%) were positive for
Bcl11a DNA binding peaks (Figure 2B; supplemental Table 4), sug-
gesting that several genes could be directly repressed by Bcl11a.
De novo motif analysis of Bcl11a DNA binding peaks revealed that
the most highly enriched motif was the consensus ETS motif of
Sfpi1 (PU.1), followed by Runx and Bcl11a motifs (Figure 2C).
Moreover, motif analysis in GSEA showed an inverse correlation
between the expression of PU.1 target genes and Bcl11a (Figure
2D). These data suggest a possible association between Bcl11a
and PU.1 in DNA binding. Indeed, ChIP-seq analysis for PU.1
showed cobinding between Bcl11a and PU.1, and 6109 (58.7% of
the total peaks) Bcl11a binding peaks overlapped with those of
PU.1 in TB-13 cells (Figure 2E-G). In contrast, Bcl11a binding
peaks around the PU.1 motif were not significantly diminished by
the knockdown of Sfpi1 and vice versa (Figure 2H-J), suggesting
that Bcl11a and PU.1 do not modulate the DNA binding activities
and specificities of their partners. Moreover, pathway analysis using
GREAT software (http://great.stanford.edu/public/html/) showed that
myeloid cell pathways were significantly involved in genes with
Bcl11a and PU.1 cobinding peaks, whereas genes with only Bcl11a
peaks were associated with pathways related to chromatin functions
(Figure 2K). Coimmunoprecipitation assay showed an interaction
between exogenously expressed Bcl11a and PU.1 (Figure 2L), and
interaction of endogenous proteins was also detected at the single-
cell level using a proximity ligation assay (PLA) (Figure 2M). PLA is a
sensitive and specific method to detect interactions of endogenous
proteins using complementary oligonucleotides bound to specific
antibodies.20 Among the multiple transcript variants of Bcl11a,1,3,13

we found that isoforms (v1 and v2) that lacked the C-terminal zinc
finger domains could interact with PU.1 (supplemental Figure 2A).
However, expression of these isoforms in mouse bone marrow cells
failed to show AML development in cooperation with Trib1 in vivo
(supplemental Figure 2B), strongly suggesting that the DNA binding
ability of Bcl11a is required for leukemogenesis. Together, these
results indicate that the expression of PU.1 target genes is
repressed, at least in part, by Bcl11a.

Bcl11a represses the expression of PU.1

target genes

Among the genes with overlapping peaks between Bcl11a and
PU.1, 623 genes (8%) were downregulated by the expression of
Bcl11a (supplemental Figure 3; supplemental Table 5). The downre-
gulated expression of candidate Bcl11a target genes (Figure 3A)
was validated using qRT-PCR, and their expression was found to be
significantly increased upon knockdown of Bcl11a (Figure 3B). Con-
sistent with the inclusion of myeloid differentiation–related genes
among Bcl11a targets, granulocytic differentiation was induced by
Bcl11a knockdown, as indicated by granulocyte-specific naphthol
AS-D chloroacetate esterase staining and modulation of myeloid
differentiation–associated gene expression (Figure 3C). On the con-
trary, PU.1 target genes without Bcl11a binding peaks, such as Akt3
and Fam117b, were not downregulated by Bcl11a expression or
upregulated by knockdown of Bcl11a (Figure 3A-B; supplemental
Figure 3A). The high-affinity receptor for immunoglobulin G encoded
by Fcgr3, a known PU.1 target, is required for important functions,
such as phagocytosis and antimicrobial activity, in myeloid line-
ages.21,22 Bcl11a and PU.1 bind to the respective consensus
sequences (TGACCA for Bcl11a and AGGAAG for PU.1) in the
Fcgr3 promoter region, and the expression of Fcgr3 was downregu-
lated in TB-13 cells (Figure 3A,D; supplemental Figure 3B). This
finding suggests that the downregulation of Fcgr3 requires an associ-
ation between the expression of Bcl11a and PU.1. The luciferase
reporter assay showed that Bcl11a repressed the transactivation by
PU.1 to the Fcgr3 promoter (Figure 3E). Cobinding of Bcl11a and
PU.1 was also detected at a region 10 kb upstream of Clec5a
(210-kb enhancer), which is a PU.1 target and is important in mye-
loid differentiation (Figure 3F).23,24 In contrast to the 210-kb
enhancer where Bcl11a and PU.1 cobind, the Clec5a promoter
showed PU.1 binding without Bcl11a. The DNA binding consensus
sequence of Bcl11a (TGACCA)8 was present within the 210-kb
enhancer but not within the promoter (supplemental Figure 3C),
which suggests that there may be an interaction between the Clec5a
promoter and the 210-kb enhancer. Chromosome conformation cap-
ture (3C) analysis indicated DNA looping between the Clec5a pro-
moter and enhancer, regardless of the presence of Bcl11a (Figure
3G). When the 210-kb enhancer and promoter of Clec5a were
inserted into the pGL4.0 luciferase vector, Bcl11a again repressed
the transactivation by PU.1 (Figure 3H). These results suggest that,
on the 210-kb enhancer, Bcl11a could access PU.1 on its own site,
as well as on the promoter in the preexisting DNA loop.

Asb2 is a PU.1 target gene repressed by Bcl11a

To identify PU.1 target genes that are important for malignant pro-
gression upon the expression of Bcl11a, we compared gene
expression profiles and ChIP-seq data for Tr1 and TB-13 cells.
Among the 1428 genes that were downregulated more than
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Figure 3. Repression of PU.1 target genes by Bcl11a. (A) Validation of downregulated expression of representative Bcl11a and PU.1 target genes using qRT-PCR.

(B) Downregulation of gene expression was reversed by Bcl11a knockdown (right panel). Efficiency of Bcl11a knockdown by 3 shRNAs (left panel). (C) Naphthol AS-D
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twofold in TB-13 cells, 623 genes showed Bcl11a and PU.1 bind-
ing peaks within 30 kb from gene bodies. The expression of 46
genes was recovered upon treatment with LSD1 and HDAC inhibi-
tors as shown in the next section. Of these, 25 genetic loci con-
tained the Bcl11a consensus sequences; finally, 9 target candidates
were validated using qRT-PCR (Figure 4A; supplemental Figure 4A).
Among the 9 genes, Asb2 was selected as a key target of PU.1
and Bcl11a interaction (Figure 4B; supplemental Figure 4B-C),
because it plays an important role in the adhesion and migration of
cells. Asb2 encodes a suppressor of cytokine signaling box protein
that acts as an E3 ubiquitin ligase.25 The suppression of ASB2 by
the N6-methyladenosine RNA demethylase FTO is considered an
important genetic event in AML cells.26 Asb2 targets and induces
the ubiquitination of filamin A,27,28 resulting in the promotion of cell
mobilization. Indeed, the overexpression of Asb2 suppressed the
proliferation and self-renewal of TB-13 cells (Figure 4C-D). Further-
more, the overexpression of Asb2 inhibited the bone marrow engraft-
ment of TB-13 cells (Figure 4E), suggesting that Asb2 might be
involved in the interaction between leukemia cells and the bone mar-
row stroma. As shown in Figure 1J and 1K, Bcl11a expression
induced an increase in the adhesion to fibronectin and promoted
cobblestone formation upon coculture of leukemia cells with OP9
bone marrow stromal cells. Likewise, the overexpression of Asb2
suppressed cellular adhesion and interaction with OP9 (Figure 4F;
supplemental Figure 4D). Cytoplasmic expression of filamin A was
significantly increased in TB-13 cells compared with Tr1 cells and
was canceled by the overexpression of Asb2 (Figure 4G). The
increase in the expression of filamin A was associated with the pro-
motion of cell migration (supplemental Figure 4E). When the Bcl11a
binding motif at the Asb2 locus was deleted using CRISPR/Cas9-
mediated genome editing (supplemental Figure 4B-C), cell adhesion,
interaction with OP9 cells, and cell migration were suppressed,
and filamin A staining was increased (Figure 4F-G; supplemental
Figure 4D-E). Moreover, knockdown of Asb2 in Tr1 cells promoted
similar phenotypes as in TB-13 cells, such as increased interaction
with OP9, increased cytoplasmic filamin A levels, and adhesion and
migration of cells (Figure 4H-I; supplemental Figure 4F-H). Taken
together, Asb2 is a critical downstream target gene of PU.1 that is
repressed by Bcl11a, potentiating the malignant characteristics of
AML.

Bcl11a suppresses the function of PU.1 via

corepressor complexes

Given that Bcl11a interacts with corepressor complexes to repress
the expression of its target genes,11,12 we tested whether knock-
down of specific components of the complexes would recover the
expression of Bcl11a target genes. The knockdown of Kdm1a
(encoding LSD1), Hdac1, Hdac2, Ncor1, or Ncor2 consistently
induced the upregulation of Clec5a and Asb2, whereas the knock-
down of Sin3a was not effective for the expression of these genes
(Figure 5A; supplemental Figure 5A-B). The suppression of leukemia
cell growth by pracinostat and GSK2879552, or by panobinostat
and GSK-LSD1, was significantly associated with the expression of
Bcl11a (Figure 5B-C; supplemental Figure 5C). Furthermore,
pracinostat treatment, with or without GSK2879552, significantly
suppressed AML cells coexpressing Trib1 and Bcl11a in vivo
(Figure 5D). Pracinostat and GSK2879552 treatment significantly
modified the gene expression profiles. GSEA showed that genes
downregulated by Bcl11a were inversely correlated with those

upregulated upon treatment with LSD1 and HDAC inhibitors, and
genes upregulated by LSD1 and HDAC inhibitors were significantly
enriched in the upregulated genes without the expression of Bcl11a
(Figure 5E). Treatment of AML cells with the HDAC inhibitors praci-
nostat and panobinostat induced the upregulation of Clec5a and
Asb2; the addition of the LSD1 inhibitors GSK2879552 and GSK-
LSD1 enhanced these effects (Figure 5F; supplemental Figure 5D).
DNA hypomethylating agents, 5-azacytidine and decitabine, did not
significantly suppress the growth of Tr1, TB-13, and TB-14 cells
(supplemental Figure 5E). Together, these data indicate that Bcl11a
represses the expression of PU.1 target genes via the recruitment of
corepressor complexes, suggesting that the corepressor complex
might be a promising drug target for AML with upregulation of
BCL11A.

Modulation of PU.1 target gene expression by

BCL11A in human AML

We assessed whether the expression of BCL11A and TRIB1 corre-
lated with prognosis in human normal-karyotype AML using the
PrognoScan online platform (http://www.prognoscan.org/).29,30

We selected a cohort of 163 patients with AML29; 156 patients
(95.7%) were enrolled in the multicenter AMLCG-1999 trial of the
German AML Cooperative Group between 1999 and 2003,31 and
all received 1 or 2 courses of high-dose cytarabine plus mitoxan-
trone therapy, followed by autologous stem cell transplantation or
maintenance chemotherapy. Increased expression of BCL11A, with
or without TRIB1, correlated significantly with worse prognosis
(Figure 6A; supplemental Figure 6A), suggesting that the overex-
pression of BCL11A might contribute to malignant progression of
human AML. In addition, an inverse correlation between the expres-
sion of BCL11A and ASB2 was observed in this cohort (supple-
mental Figure 6B-C). The expression of SPI1 encoding PU.1 was
not significantly different between BCL11A-high and BCL11A-low
groups (supplemental Figure 6D). Next, to investigate the possible
involvement of BCL11A in human AML, the expression of BCL11A,
as well as of SPI1, encoding PU.1, was examined using AML cell
lines in vitro. Among 8 cell lines tested, HL-60, EOL1, and THP-1
cells showed coexpression of BCL11A and SPI1 (Figure 6B). The
knockdown of BCL11A suppressed the proliferation of HL-60 and
THP-1 cells (Figure 6C; supplemental Figure 6E). BCL11A knock-
down and treatment with HDAC and LSD1 inhibitors induced an
upregulation of CLEC5A and ASB2 in HL-60 and THP-1 cells
(Figure 6D-E; supplemental Figure 6F), suggesting that repression
of PU.1 target genes by BCL11A might be achieved in human AML
by similar mechanisms as in mouse AML. Despite moderate sup-
pression of the growth of HL-60 cells by knockdown of BCL11A,
the in vivo engraftment of HL-60 cells in NSG mice was significantly
inhibited (Figure 6F). Knockdown of BCL11A suppressed cellular
adhesion of HL-60 to fibronectin (Figure 6G). Collectively, these
data strongly suggest that BCL11A functions primarily as a repres-
sor of target genes that are driven by PU.1.

Discussion

Bcl11a encodes a C2H2-type zinc finger TF with 6 zinc fingers in the
largest isoform.3,13 Multiple splicing variants of Bcl11a have been
reported,13 but only the largest isoform contains the 3 C-terminal zinc
fingers that possess the major DNA binding activity.8 In the present
study, the DNA binding activity was required for the oncogenic func-
tion in AML. BCL11A interacts with multiple partner proteins, such as
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BCL6, COUP-TF, RBBP4/7, and SOX2, as well as a broad spec-
trum of corepressor components, including NuRD, CoREST, and
NCoR complexes.1,2,12,32 In this study, we unraveled a novel mecha-
nism by which Bcl11a represses the expression of PU.1 target genes
in association with the corepressor complex in myeloid leukemogene-
sis. The repression of PU.1 target genes by Bcl11a is frequently

associated with the cobinding of PU.1 and Bcl11a to DNA, and inter-
action of these TFs was shown by coimmunoprecipitation assay and
PLA; the latter is a sensitive and specific method to detect the inter-
action of endogenous proteins. Previous retroviral tagging studies
indicated that Bcl11a cooperates with Nf1 loss and MLL-AF9
expression, and downregulation of Cdkn1a by Bcl11a was reported
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in the cooperation between Bcl11a expression and Nf1 loss.9,10

Although the expression of Cdkn1a was not altered by the expression
of Bcl11a in our model, the suppression of PU.1 function by Bcl11a
might also be important in these models.

PU.1 regulates the differentiation of myeloid and lymphoid cell line-
ages, and it is essential for normal myelopoiesis.33,34 Mice bearing
hypomorphic Sfpi1 alleles developed AML,35 and p53 loss pro-
motes malignant progression in homozygous deletion of the
upstream regulatory element of Sfpi1.36 These data suggest that
the inhibition of PU.1 function disrupts signaling pathways that are
important for myeloid differentiation. In support of this, many genes
involved in myeloid differentiation, such as Clec5a, Fcgr3, Csf1r,
and Ncf4, are identified as targets for PU.1, which were downregu-
lated by Bcl11a in the present study. Asb2 has been identified as a
novel Bcl11a target gene that is downregulated by interaction with
Bcl11a. Asb2 is a known target of N6-methyladenosine, promotes
myeloid differentiation, and encodes a component of the ECAS E3
ubiquitin ligase complex.26,37 Filamin A is a target of ECAS/Asb2-
mediated protein degradation. We found the disappearance of fila-
min A when Asb2 was upregulated in AML cells. Asb2/filamin A is
involved in the remodeling of the actin cytoskeleton28 and is associ-
ated with cell adhesion, interaction with bone marrow stromal cells,
and engraftment of leukemia cells. In addition, the migratory activity
of leukemic cells was increased by the Bcl11a-induced expression
of filamin A. Previous studies showed that filamin A promoted the
migration of Jurkat and melanoma cells38,39 but inhibited the migra-
tion of dendritic cells,40 suggesting that the function of the Asb2/fil-
amin A axis in cell motility might be cell context dependent. It
remains to be clarified how the downregulation of Asb2 and the
increase in filamin A induce interaction between leukemia cells and
bone marrow stromal cells; however, our study highlights the possi-
ble role of Asb2 in the engraftment of leukemia cells. Asb2 was also
found to induce the degradation of MLL,41 and this mechanism
might also be associated with the suppression of the growth of
Bcl11a-expressing AML. In both mechanisms, Asb2 plays an impor-
tant tumor-suppressive role in the progression of leukemia down-
stream of the PU.1/Bcl11a axis.

Cooperation between TRIB1 and BCL11A functions as a powerful
driving force in leukemogenesis by abrogating the 2 major myeloid
suppressors: PU.1 and C/EBPa. Trib1 pseudokinase degrades
C/EBPa by COP1-mediated ubiquitination.15 In the cooperation
between Trib1 and Hoxa9, the C/EBPa p42 isoform is selectively
degraded, resulting in the modulation of the Hoxa9 transcriptional
program and of the superenhancer at the Erg locus.42 Recruitment

of the corepressor complex to PU.1 by BCL11A promotes leukemo-
genic activity independent of, but cooperating with, the Trib1-
induced degradation of C/EBPa. In a previous study, it was
reported that deficiency of Runx1 in AML led to the recruitment of
PU.1 to the corepressor complex.43 Moreover, inhibition of LSD1
induced the differentiation of AML cells by interfering with the GFI1-
mediated repression of PU.1 target genes.44 Thus, the rescue of
PU.1 target gene expression by inhibiting the corepressor compo-
nents is a promising therapeutic tool for BCL11A-expressing AML.
In contrast, the decrease in the expression of PU.1 in MLL-
AF9–expressing AML induced resistance to LSD1 inhibition.45

However, it has been reported that LSD1 inhibition sensitizes glioma
cells to HDAC inhibition,46 and combination therapy consisting of
LSD1 and HDAC inhibitors against AML has been proposed.47

HDAC inhibition might rescue the effect of LSD1 inhibitors on the
diminished PU.1 activity. Therefore, it is expected that the expres-
sion level of BCL11A will be a reliable biomarker indicating
response to therapy with HDAC and LSD1 inhibitors. A previous
study indicated that LSD1 cooperates with Bcl11a in silencing the
expression of globin,11 suggesting the specific interaction between
Bcl11a and LSD1 in the hematopoietic system.
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