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Abstract 

Background: Cryopreservation of ovarian tissue is a fertility‑preservation option for women before gonadotoxic 
treatments. However, cryopreserved ovarian tissue transplantation must be performed with caution in women with 
malignancies that may metastasize to the ovaries. For this purpose, detecting minimal residual disease (MRD) in the 
ovarian cortex using sensitive methods is a crucial step. We developed an automated ovarian tissue dissociation 
method to obtain ovarian cell suspensions.

Results: We assessed MRD by multicolor flow cytometry (MFC) in cryopreserved ovarian cortex of 15 leukemia 
patients: 6 with B‑cell acute lymphoblastic leukemia (B‑ALL), 2 with T‑cell acute lymphoblastic leukemia (T‑ALL) and 7 
with acute myeloid leukemia (AML). Ovarian MRD was positive in 5 of the 15 leukemia patients (one T‑ALL and 4 AML). 
No B‑ALL patient was positive by MFC. Quantitative reverse‑transcribed polymerase chain reaction was performed 
when a molecular marker was available, and confirmed the MFC results for 3 patients tested. Xenografts into immu‑
nodeficient mice were also performed with ovarian cortical tissue from 10 leukemia patients, with no evidence of 
leukemic cells after the 6‑month grafting period.

Conclusions: In conclusion, this is the first study using MFC to detect MRD in ovarian cortical tissue from acute 
leukemia patients. MFC has been accepted in clinical practice for its ease of use, the large number of parameters 
available simultaneously, and high throughput analysis. We demonstrate here that MFC is a reliable method to detect 
MRD in cryopreserved ovarian tissue, with a view to controlling the oncological risk before ovarian tissue transplanta‑
tion in leukemia patients.
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Background
Overall cancer incidence for patients aged 0–19  years 
has been increasing steadily since the 1970s, but death 
rates are continuously decreasing, with a 5-year survival 

rate for all cancers higher than 83% [1]. This results in 
an increasing number of childhood cancer survivors [2, 
3] for whom reproductive health is a major concern [4]. 
Cancer treatments such as chemotherapy and radiother-
apy, are known to be gonadotoxic (especially alkylating 
agents), and lead to premature ovarian failure and infer-
tility in some circumstances [5–7].

To date, several options have been used to preserve and 
restore fertility in female patients [8]. Many international 
guidelines for fertility preservation and restoration have 
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been published [9–14]. Embryo and oocyte cryopreser-
vation are well-established techniques. Ovarian tissue 
cryopreservation (OTC) has only recently been classed 
as an established procedure by the American Society for 
Reproductive Medicine [14], according to reports in the 
literature of successful reuse of ovarian cortical tissue 
with subsequent live births [15–20]. For the European 
Society for Medical Oncology and European Society 
of Human Reproduction and Embryology, OTC is an 
alternative and recommended procedure when embryo/
oocyte cryopreservation is not feasible [21, 22], whereas 
the American Society for Clinical Oncology stilled con-
sidered it experimental as of 2018 [10]. Ovarian cor-
tex autograft is currently the only way to re-use frozen/
thawed ovarian cortical strips.

Leukemia is the most common form of cancer in chil-
dren, adolescents and young adults [23]. The majority 
of these patients are prepubertal girls, and they cannot 
delay the start of chemotherapy and/or radiotherapy. 
OTC is therefore the only option to preserve fertility in 
these patients [24–26]. However, in case of cancers with 
a high risk of ovarian metastasis, such as acute leukemia, 
an important concern is the risk of relapse via the graft. 
An autopsy study performed in Japan reported the pres-
ence of ovarian metastasis in 8.4% of leukemia patients 
under the age of 40 [27].

In hematology laboratories, two methods are currently 
used for MRD monitoring in blood or bone marrow, 
namely polymerase chain reaction (PCR) amplification of 
specific transcripts or Ig gene rearrangements, and detec-
tion of leukemia-associated immunophenotype by multi-
color flow cytometry (MFC) [28–30]. Some studies have 
investigated the detection of minimal residual disease 
(MRD) in cryopreserved ovarian tissue using molecular 
techniques [31–40], xenograft of cryopreserved ovar-
ian tissue in immunodeficient mice [34, 35, 39, 41] and 
next-generation sequencing [41] to highlight the pres-
ence of malignant cells. To detect MRD in ovarian tissue 
by MFC, it is necessary to identify markers that enable 
the differentiation of leukemic cells from viable ovarian 
cells by the use of leukemia-associated immunopheno-
types (LAIP).

Our team has developed and validated a technique to 
detect leukemic cells in the ovarian cortex of patients 
with acute lymphoblastic leukemia (ALL) [42] or acute 
myeloid leukemia (AML) [43] via MFC, using a standard-
ized protocol for ovarian cortex dissociation [44].

The present study investigated the presence of leuke-
mic cells in cryopreserved ovarian cortex from patients 
with B-cell acute lymphoblastic leukemia (B-ALL), 
T-cell acute lymphoblastic leukemia (T-ALL) and AML. 
Detection of MRD was carried out by MFC, quanti-
tative reverse-transcribed polymerase chain reaction 

(RT-qPCR) when a molecular marker was available and 
xenograft in immunodeficient mice.

Methods
Patients
Frozen/thawed ovarian cortical tissue was obtained from 
15 leukemia patients: 6 with B-ALL, 2 with T-ALL and 7 
with AML (Table 1). For 7 patients, cryopreservation of 
ovarian cortical tissue was performed in Besançon uni-
versity hospital and for 8 patients, in 4 other university 
hospitals in France (Lille, Nancy, Paris and Rouen). Ovar-
ian cortical tissue was transported from these centers in 
vapor nitrogen and stored in the cryobank of the Assisted 
Reproductive Technology Center of Besançon university 
hospital before MRD testing.

Slow-freezing cryopreservation of ovarian corti-
cal tissue was performed between 2004 and 2018. For 3 
patients, the medulla was also cryopreserved after dissec-
tion from the ovarian cortex. Patients were aged between 
5 and 31 years old when ovarian tissue cryopreservation 
was performed. The mean age was 18.9 years at the time 
of cryopreservation.

All leukemia patients received chemotherapy before 
OTC except one AML patient (patient 14). Chemo-
therapy drugs and cumulative doses of alkylating agents 
(cyclophosphamide equivalent doses) [45] and anthra-
cyclines (doxorubicin isotoxic doses) [46] are listed in 
Table 1. For each patient, the LAIP found in the blood or 
bone marrow at diagnosis was used for MRD detection 
in frozen/thawed ovarian tissue. Any molecular markers 
identified at diagnosis are listed in Table 1.

Ovarian tissue cryopreservation and thawing
Cortical biopsies were cryopreserved in cryovials con-
taining freezing solution consisting of 1.5  M dimethyl 
sulfoxide (DMSO; Sigma) and 0.1 M sucrose (Sigma) in 
Leibovitz’s L-15 medium (Eurobio) supplemented with 
10% heat-inactivated patient serum, according to a proto-
col using slow cooling with manual seeding as previously 
published [47]. After freezing, the vials were stored in 
liquid nitrogen. All ovarian cortical biopsies were thawed 
according to a previously described technique [48]. The 
vials were warmed at room temperature for 30  s, then 
immersed in a 37 °C heat chamber (5 min), and the ovar-
ian tissue pieces were washed in decreased solutions of 
DMSO 1.5 M (5 min), 1 M (5 min) and 0.5 M (10 min) 
and in a solution of Leibovitz’s L-15 medium supple-
mented with 20% heat-inactivated AB serum from blood 
donors (10 min).

Isolation procedure for ovarian cells
Ovarian cortex was cut into small pieces of 1–2  mm3. 
Depending on the timing of the MRD test, a so-called 
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Table 1 Patient and pathology characteristics

Patient no Age at OTC Type of leukemia Treatment received before OTC LAIP identified at 
diagnosis

Molecular 
marker at 
diagnosisIV, IM or per os IT CED DIE

1 29 B‑ALL 1, 2, 11, 15, 18 1, 11, 14 0 0 CD10 (100%), CD19 (100%), 
CD20 (87%0, CD22 (100%), 
CD34 (78%), CD38 (100%), 
CD58 (100%), CD200 (62%), 
CD304 (78%), cMPO (81%), 
oCD22 (99%), cTDT (73%), 
cCD79a (99%)

BCR‑ABL1

2 31 B‑ALL 1, 2, 3, 4, 5, 6, 11, 12 1, 11, 14 2 500 175 CD19 (100%), CD22 (96%), 
cyCD22 (94), CD34 (100%), 
CD38 (99%), CD44 (98%), 
CD58 (98%), CD123 (99%), 
cyTDT (90%), cyCD79a 
(94%)

Ig/TCR 

3 14 B‑ALL 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 
14, 15

1, 11, 14 1 464 191 CD19 (91%), CD34 (87%), 
negative for CD10 and 
myeloid markers

Ig/TCR 

4 12 B‑ALL 1, 2, 3, 5, 6, 11 1, 11, 19 0 24 CD45 (88%), HLA DRII 
(88%), CD10 (78%), CD19 
(78%), CD22 (82%), CD33 
(35%)

Ig/TCR 

5 5 B‑ALL 1, 2, 3, 4, 5, 6, 7, 9, 19, 11, 12, 
13, 14, 15

1, 11, 14, 19 2 500 314 CD19 (86%), CD10 (98%), 
CD22 (90%) CD38 (99%)

Unkown

6 5 B‑ALL 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 
14, 15

1, 11, 19 610 87 CD45 (12%), CD10 (87%), 
CD19 (79%), CD22 (86%), 
CD34 (70%) HLA‑DRII (81%)

Ig/TCR 

7 14 T‑ALL 1, 2, 3, 4, 6, 11, 12, 15, 20 1, 11, 14 2 000 100 CD2 (89%), cyCD3 (94%), 
CD5 (93%), CD7 (98%), 
CD10 (49%), CD33 (81%), 
CD34 (89%), CD45RA (99%), 
CD123 (56%)

None

8 22 T‑ALL 1, 2, 3, 4, 6, 16 1, 11, 14 1 000 133 CD2 (76%), CD7 (94%), 
CD13 (98%), CD10 (80%), 
cyCD3 (83%), cyCD79 (80%)

None

9 33 AML 1, 3, 17 1, 11, 14 0 300 CD13 (100%), cyCD13 
(100%), CD15 (55%), CD33 
(100%), CD34 (100%), CD38 
(100%), CD117 (100%), 
cMPO (100%)

CBFB‑MYH11

10 15 AML 1 1, 11, 19 0 373 CD34 (96%), CD33 (98%), 
CD13 (54,5%), CD117 (47%), 
CD38 (40,5%)

WT1

11 22 AML 1, 3, 17 1, 11,14 0 300 CD7 (80%), CD11b (83%), 
CD13 (96%), cCD13 (66%), 
CD19 (51%), CD33 (96%), 
CD34 (100%), CD38 (100%), 
CD71 (93%), CD117 (100%), 
cyMPO (100%), HLA DR 
(92%)

WT1

12 15 AML 1, 13 1, 11, 19 0 240 CD13 (90%), CD33 (99%), 
CD117 (99%), CD65 (86%), 
CD7 (99%), HLA DR2 (97%), 
CD34 (98%), CD38 (98%)

CEBPA mutations

13 14 AML 1, 13, 16 1, 11, 19 0 48 CD13 (100%), CD33 (100%), 
CD65 (100%), CD117 
(100%), et CD11c (100%)

Unknown

14 26 AML None None 0 0 CD13 (100%), CD33 (100%), 
CD117 (100%), CD34 
(100%), CD38 (100%), 
CD123 (89%), cyMPO 
(100%), cyCD13 (100%)

None



Page 4 of 11Zver et al. Journal of Ovarian Research            (2022) 15:9 

“laboratory” protocol (as previously described) [44] or a 
commercial protocol was used for ovarian cell isolation. 
Briefly, the laboratory protocol is based on mechani-
cal and enzymatic dissociation using a cell dissociator 
(GentleMACS; Miltenyi Biotec) and collagenase Ia (1.6 
U/ml; Sigma) with DNase I (Roche) in 5  ml of RPMI 
(ThermoFisher Scientific) in combination with C Tubes 
(Miltenyi Biotec). For the commercial protocol, a Tumor 
Dissociation Kit was used according to the manufac-
turer’s instructions (Miltenyi Biotec); it was previously 
validated in our laboratory for ovarian tissue dissociation 
[44]. After ovarian tissue dissociation, we performed cell 
suspension filtration with a 70 µm cell strainer (Dutscher) 
and washed the suspension with 5 mL of RPMI. Next, the 
suspension was centrifuged at 300  g for 7  min and the 
pellet was resuspended in the appropriate volume.

Multicolor flow cytometry detection of MRD
Eight-color MFC was performed using a BD CANTO II 
flow cytometer (BD Biosciences) and data were acquired 
and analyzed using Diva and Flowjo software (BD Bio-
sciences), respectively. The compensation matrix was set 
up using calibration beads (compbeads®, BD Biosciences) 
according to the manufacturer’s instructions.

The same combinations of eight monoclonal antibod-
ies (mAbs) applied to leukemic cells at diagnosis (when 
available) were used for ovarian cell suspension from 
leukemia patients for MRD assessment. The panel used 
was composed of 4 fixed dye/mAbs and 4 variable dye/
mAbs determined according to the leukemia patient’s 
LAIP. Accordingly, it was used as follows: 7-AAD (Beck-
man Coulter) and SYTO13 (ThermoFisher Scientific) 
are used to identify nucleated viable cells (7-AAD−/
SYTO13+ phenotype), CD45-V500 (HI30, BD Bio-
sciences) or CD45-BV510 (Brillant Violet 510™, HI30, 
BD Biosciences) to characterize leucocytes  (CD45+) 
and CD3-V450 (UCHT1; BD Biosciences) or CD3-
BV421 (Brillant Violet 421™, UCHT1, BD Biosciences) 

or APCH7 (Allophycocyanin H7, SK7, BD Biosciences) 
to isolate residual T lymphocytes  (CD45+/CD3+ phe-
notype). For patient 15, we used FVS 780 (BD Horizon™ 
Fixable Viability Stain 780, BD Biosciences) and CD45-
PerCP-Cyanine5.5 (HI30, BD Biosciences) in place of 
7-AAD and CD45-BV510, respectively. The 4 variable 
mAbs used were determined based on the patient’s LAIP 
at diagnosis, and low or non-expression of their antigen 
target by normal ovarian cells or mature lymphocytes. 
This enabled us to select the best panel for MRD assess-
ment in ovarian cortical tissue (See Additional file 1). For 
patients 7 and 8, a preliminary step of fixation and per-
meabilization (IntraStain, Dako) was required for cyto-
plasmic detection of CD3 (cyCD3). Cells were labelled as 
previously described. Briefly, antibodies were incubated 
with cells for 20  min at 4  °C followed by centrifugation 
at 300  g for 7  min to eliminate excess antibodies. Pel-
leted cells were then resuspended in 100  µl of PBS for 
acquisition.

Viable cells (7-AAD−/SYTO13+ or FVS  780−/
SYTO13+) were used to calculate the MRD level. Among 
the viable cells,  CD45+ leukocytes and  CD3+ T lym-
phocytes were identified. The threshold of  10–4 (1 cell in 
10,000) is currently used in immunohematology labora-
tories to define MRD positivity in blood or bone marrow, 
and was used by default to define MRD positivity in ovar-
ian cortical tissue for the purposes of this study.

Xenotransplantation
Female (CD-1® Nude) immunodeficient mice were 
obtained from Charles River Laboratories (France). They 
were kept at 4 per individually ventilated cage, with free 
access to food and water. At 7 weeks of age, the mice were 
anesthetized with isofluran (Baxter). One strip of frozen/
thawed ovarian cortex from each leukemia patient was 
divided into equal small pieces (around 0.25  cm2) and 
transplanted subcutaneously into two immunodeficient 
mice on the right or left side of the vertebral column. At 

Table 1 (continued)

Patient no Age at OTC Type of leukemia Treatment received before OTC LAIP identified at 
diagnosis

Molecular 
marker at 
diagnosisIV, IM or per os IT CED DIE

15 27 AML 1, 4, 14, 15, 16, 17, 21 None 0 225 CD34 (100%), CD33 (50%), 
CD38 (100%), HLA DR 
(100%), CD99 (50)

BCR‑ABL1

OTC ovarian tissue cryopreservation, MRD minimal residual disease, LAIP leukemia-associated immunophenotype, IV intravenous, IM intramuscular, IT intrathecal, CED 
cyclophosphamide equivalent dose, DIE doxorubicin isotoxic equivalent, B-ALL B-cell acute lymphoblastic leukemia, T-ALL T-cell acute lymphoblastic leukemia, AML 
acute myeloid leukemia, Ig immunoglobulin rearrangement genes, TCR  T-cell receptor rearrangement genes

1 indicates cytarabine, 2 vincristine, 3 daunorubicin, 4 cyclophosphamide, 5 etoposide, 6 asparaginase, 7 doxorubicin, 8 ifosfamide, 9 thioguanine, 10 vindesine, 11 
methotrexate, 12 mercaptopurine, 13 mitoxantrone, 14 prednisolone, 15 dexamethasone, 16 amsacrine, 17 idarubicin, 18 imatinib, 19 hydrocortisone, 20 vinblastine, 
21 gemtuzumab

See Additional file 1 for CED and DIE calculation
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24  weeks post-transplantation, mice were sacrificed by 
cervical dislocation to harvest the ovarian grafts (when 
visible) and specific organs (femur, lymph nodes, spleen, 
blood) which were then manually dissociated for MRD 
analysis by MFC. We used a rat anti-mouse CD45-V450 
(30-F11, BD Biosciences) to distinguish murine cells from 
human cells by MFC.

Results
Validation of the gating strategy by MFC
This study confirmed that ovarian cells can be identified 
based on the elimination of debris by using side (SSC, 
for granularity) and forward (FSC, for size) light scat-
ter characteristics, and 7-AAD−/SYTO13+ (Fig.  1A) or 
FVS  780−/SYTO13+ (Fig. 1B) for the viable ovarian cells. 
 CD45low cells correspond to viable ovarian cells or leuke-
mic cells, while CD45 positive cells can be identified as 
leucocytes (Fig. 1A and B).

MRD detection by MFC
Of the 15 patients, all could be analyzed by MFC to detect 
MRD in ovarian cortical tissue. Eight patients displayed 
molecular markers suitable for MRD detection, while 7 
patients had no markers, or had unknown or unusable 
markers (for example, WT1 for patients 10 and 11).

Among the B-ALL patients (n = 6, patients 1 to 6), none 
was found to positive by MFC for MRD in their ovarian 
cortical tissue (Table 2). Two patients were also negative 
for ovarian MRD by RT-qPCR, confirming the results 
obtained by MFC. Three other B-ALL patients had Ig/
TCR rearrangements at diagnosis, but we did not have 
the technologies in our laboratory to test ovarian cortical 
tissue from these patients by this method at diagnosis or 
prior to OTC. The sixth patient had no molecular marker 
to detect MRD. For patient 1, no MRD positive event was 
detected among 449 438 total viable nucleated events 
(Fig. 2A) with a maximum sensitivity for the experiment 
of 4.4 ×  10–5 (Table  2). When the ovarian cortical tis-
sue from this patient was artificially contaminated with 
B-ALL patient cells at diagnosis, we were able to detect 
these cells by MFC (Fig.  2A), confirming the ability of 
MFC to identify leukemic cells in ovarian tissue.

Among the T-ALL patients (n = 2, patients 7 and 8), 
ovarian cortical tissue from one patient was detected 
positive by MFC (patient 8). Indeed, we identified 335 
LAIP positive events among 1.36 ×  106 viable events. 
MRD for patient 8 is thus positive at a level of 3 ×  10–4 
(Table 2).

Among the AML patients (n = 7, patients 9 to 15), 4 
patients showed positive MRD by MFC in their ovarian 
cortical tissue (Patient 11, 12, 13 and 14) (Table  2). For 
patient 9, the MFC result was confirmed negative by 

Fig. 1 MFC gating strategy applied to detect MRD in ovarian samples. The observed populations are indicated at the top of the dot plots. The first 
gate is used for debris exclusion using SSC and FCS light scatter (Morphology). The 7‑AAD− or  FVS780− combined with  SYTO13+ set the nucleated 
viable cells. CD45 enabled us to separate  CD45+ leucocytes from other viable cells for MRD analysis. A Gating strategy with 7‑AAD. B Gating 
strategy with FVS780. Data acquired with Diva software and analysed with Flowjo software
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Fig. 2 MRD detection by MFC in ovarian tissue from leukemia patients. The observed populations are indicated at the top of the dot plots 
 (CD45low, see Fig. 1). A B‑ALL patient (patient 1) with negative MRD in the ovarian cortical tissue. (1) B‑ALL cells at diagnosis express the following 
immunophenotype:  CD19+/CD10+/CD22+/CD20+low. (2) Ovarian cells from patient 1: in 449 438 events acquired, we identified no event 
presenting the same phenotype as the B‑ALL cells at diagnosis (P1 ∩ P2 ∩ P3 ∩ P4 ∩ P5). (3) Ovarian cells from patient 1 artificially contaminated 
with B‑ALL cells: in 540 035 events acquired  (CD45low events), we identify 118 events presenting the same phenotype as the B‑ALL cells 
(P1 ∩ P2 ∩ P3 ∩ P4 ∩ P5): the artificial MRD level is quantified at 2.2 ×  10–4. B AML patient (patient 14) with positive MRD in the ovarian tissue. 
(1) Healthy ovarian tissue (control): there is no event presenting an AML immunophenotype  (CD33+/CD38+/CD34low/CD117+low). (2) Ovarian 
cortical cells from patient 14: in 267 702 events acquired, we identified 75 events presenting the same phenotype as the AML cells at diagnosis 
(P1 ∩ P2 ∩ P3 ∩ P4 ∩ P5). The MRD level is quantified at 2.8 ×  10–4. (2) Ovarian medulla cells from patient 14: in 738 895 events acquired, we identified 
1 233 events presenting the same phenotype as the AML cells at diagnosis (P1 ∩ P2 ∩ P3 ∩ P4 ∩ P5). The MRD level is quantified at 1.7 ×  10–3
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RT-qPCR. RT-qPCR was not performed for the other 
AML patients due to unsuitable markers in the ovarian 
cortex (Patients 10 and 11), lack of ovarian cortical tissue 
for testing (Patients 12 and 15) or no molecular marker 
available or known for MRD detection (Patients 13 and 
14). Medulla was tested by MFC for patients 11, 14 and 
15: the results confirmed those obtained in ovarian corti-
cal tissue, i.e. positive MRD for patients 11 and 14, and 
negative MRD for patient 15. MRD results obtained in 
the medulla and in the cortical tissue of patient 14 are 
presented in Fig. 2B.

Among the 5 patients who were positive for MRD 
in their ovarian tissue by MFC, 4 had already received 
chemotherapy before OTC: 3 had undergone one regi-
men of induction and consolidation, and 1 patient only 
one regimen of induction (Table 1). These results confirm 
that firstline chemotherapy is not completely toxic to 
malignant cells, and leukemia patients in complete remis-
sion may harbor leukemic cells in their ovarian cortical 
tissue.

Xenotransplantation
Twenty nude mice (two per patient) were grafted with 
ovarian cortical tissue from B-ALL patients (n = 6, 
patients 1 to 6), one T-ALL patient (n = 1, patient 8) or 
AML patients (n = 3, patients 10 to 12). Ovarian corti-
cal tissue from patients 7, 9, 12, 13 and 14 was not tested 
by xenotransplantation as there was insufficient tissue 
available.

One mouse died during the 24 weeks of the xenograft-
ing period because of weight loss (patient 3). None of the 
other mice showed any macroscopic signs of malignancy 
(e.g., weight loss, enlarged organs). After 24  weeks of 
grafting, spleen, lymph nodes, blood and bone marrow 
were recovered from all mice for MFC analysis.

Human grafted ovarian cortical tissue was not found 
on autopsy of both mice for 4 patients (patients 1, 2, 5 
and 12), and was not found on autopsy of one mouse for 
4 patients (patients 3, 4, 8 and 10). No proliferation or 
tumor growth was observed on xenografted ovarian cor-
tical tissue. Pieces of ovarian cortical tissue were reduced 
in size during the xenografting experiment, making MRD 
detection by MFC impossible.

For all patients, serial sections of grafts and organs 
were observed and did not show any signs of malignant 
cells (data not shown). The search for MRD by MFC 
revealed no leukemia cells in the bone marrow, blood, 
lymph nodes or spleen of mice (Table 2). RT-qPCR was 
performed for four patients (BCR-ABL1 for patient 1 
and WT1 for patients 10, 11 and 12) on different organs 
when there was sufficient material. All results were nega-
tive (data not shown), confirming the results obtained by 
MFC.

Discussion
To the best of our knowledge, this is the first study in a 
cohort of leukemia patients where MFC is used to detect 
MRD in ovarian cortical tissue. This technology has pre-
viously been validated by our team, demonstrating its 
effectiveness for the detection of MRD in ovarian cortical 
tissue [42, 43, 49].

Ovarian cortical tissue cryopreservation is currently 
the only available method to preserve fertility for prepu-
bertal children or women who cannot delay chemo- and/
or radiotherapy [8, 24]. Indeed, ovarian cortex trans-
plantation is the only established technique for re-use 
of ovarian cortex, with a high success rate [15, 17, 18, 
20, 50–52]. Our team has set up a study in France called 
DATOR (Development of Ovarian Tissue Autograft in 
Order to Restore Ovarian Function) (NCT02846064) 
with the aim of assessing the safety and efficacy of ovar-
ian cortex transplantation [19]. However, in leukemic 
patients, this technique incurs a risk, with the possibility 
of cancer reseeding. It is therefore important to develop 
techniques for MRD detection in ovarian cortical tissue.

Among 15 leukemia patients included in this study, 
ovarian cortical tissue was positive for MRD by MFC in 5 
of them (33%). Results obtained by MFC were confirmed 
where possible by RT-qPCR (in 3 patients). Molecular 
markers were available for other patients, but analysis 
was not performed due to lack of ovarian cortex. How-
ever, molecular analysis could be performed just before 
autotransplantation of ovarian cortex to confirm MFC 
results, as was done in patient 2, for example. The find-
ings presented in this study are congruent with previous 
reports from other teams [34, 35, 38, 40].

Xenograft studies failed to amplify leukemic cells iden-
tified by MFC. These results corroborate those reported 
by a Danish team [35], where no MRD amplification was 
observed, but contrast with those from a Belgian team 
[34], who observed clinical disease. Another study, pub-
lished by Diaz-Garcia in 2019, also showed MRD ampli-
fication by a xenograft model [53]. However, this model 
for MRD detection is time consuming, and depends on 
multiple factors, such as the mouse model [54] (SCID, 
Nude, NSG for example), or the graft site [55], which can 
explain the difficulty of reproducing results. The major 
conclusion of all these studies is that they confirm the 
potential for leukemic cell contamination in ovarian cor-
tical tissue [34–36, 53], but that positive MFC results do 
not necessarily translate into disease recurrence.

Currently, we do not know the level of MRD that can 
induce relapse after ovarian cortical tissue transplan-
tation. Results differ between studies. Injection of 200 
leukemic cells into nude mice was shown to induce leu-
kemia in one study [56], whereas 1000 cells were unable 
to induce relapse in another [57]. In one recent study, 
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malignant cells were found in mice injected with 1000 
cells, and clinical disease was only caused by injection 
of 5 ×  106 leukemic cells [53], in line with the findings of 
a previous study [57]. Host species and grafting site, as 
well as the heterogeneity of leukemic contamination in 
ovarian cortical tissue, may explain these discrepancies 
between studies [53, 58]. It is also important to bear in 
mind that a patient who receives ovarian cortical tissue 
transplantation has an immune system to fight leukemic 
cells, contrary to immunodeficient mice. The minimal 
dose of transplanted leukemic cells that may lead to leu-
kemia in mouse or human recipients remains unknown, 
and therefore, the established flow cytometric platform 
cannot currently be used as a selection criterion for suit-
ability of autografting. Further research is needed to 
identify the threshold of leukemic cells that could induce 
cancer relapse in patients. Future studies could pro-
vide important information on the relationship between 
the relative and absolute number of leukemic cells in an 
ovarian autograft and the clinical outcome after its trans-
plantation. This may ultimately determine whether it is 
really necessary to assess leukemia MRD in ovarian tissue 
grafts.

Despite the risk related to ovarian cortical tissue trans-
plantation in case of leukemia, six live births have been 
reported in the literature after ovarian cortex transplan-
tation in leukemia patients [18, 41, 59]. In each case, the 
search for MRD in ovarian cortical tissue was done with 
reliable techniques like histology, molecular techniques, 
next generation sequencing or xenograft into immuno-
deficient mice. However, these tests are time-consuming, 
expensive and hard to achieve for most laboratories (need 
for experience and facilities for animal experimentation).

MFC can also potentially be adapted to all leukemia 
patients with LAIP, contrary to PCR, which is poten-
tially applicable in 28–89% of patients [41]. MFC has 
been used with success by other teams on ovarian cor-
tical tissue [60, 61]. Many hospitals have a hematol-
ogy laboratory, where the leukemia diagnosis is made. 
It is also easy to obtain the diagnostic information to 
constitute LAIP for MRD investigation in ovarian cor-
tical tissue. When using MFC, the ideal method is to 
use leukemic blasts frozen at diagnosis to test the anti-
body panel on these cells, and reference ovarian tis-
sue with no leukemic cells. The MFC technique can 
be implemented rapidly, contrary to xenografting into 
immunodeficient mice, for example. Nevertheless, it is 
important to perform reliable techniques to assess and 
confirm MRD results obtained by other methods. MRD 
evaluation in the residual medulla, when available, 
is recommended by ESHRE [22]. In our study, MRD 
results for the cortex and medulla were concordant in 

3 patients, and in line with a recent study where 20/24 
MRD results were concordant [40].

Whether chemotherapy is received before OCT or not 
does not seem to have any impact on ovarian cortical tis-
sue MRD results. Indeed, in our study, positive MRD was 
observed in patients who received treatment, and in one 
patient without chemotherapy. The treatment received 
by the patients before OTC was at low risk in terms of 
gonadotoxicity, with a Cyclophosphamide Equivalent 
Dose < 4 000  mg/m2 (0—2  500  mg/m2) and a Doxoru-
bicin Isotoxic Equivalent > 250  mg/m2 for 4/15 patients 
(cardiac toxicity) [62]. Some studies have reported that 
exposure to chemotherapy before OTC does not alter 
the future result of ovarian cortical tissue transplantation 
[50, 63, 64]. However, prior chemotherapy may decrease 
MRD in ovarian cortical tissue in leukemia patients [36]. 
As previously suggested by other groups, we recommend 
performing OTC after the first round of chemotherapy, 
or before hematopoietic stem cell transplantation, to 
reduce the risk of leukemic cells in ovarian cortical tissue.

In conclusion, cryopreserved ovarian cortex was posi-
tive for MRD by MFC in 5 out of 15 leukemia patients 
(4 AML and 1  T-ALL), even though RT-qPCR and/or 
xenograft MRD was negative for these patients, when 
performed. This study demonstrates that MFC is a reli-
able and easy-to-use technique to detect MRD in ovarian 
cortical tissue. This adds to the wide variety of techniques 
available to test ovarian MRD prior to transplantation in 
leukemia patients. This represents an important step to 
controlling oncological risk of ovarian cortex transplan-
tation in leukemia patients. Whether MRD detection in 
ovarian cortical tissue has any clinical utility, and how 
the data should be incorporated in a clinical protocol will 
require follow-up studies in leukemia patients who have 
been transplanted with ovarian tissues having accurately 
documented MRD levels.
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