
Effective sequence similarity detection
with strobemers

Kristoffer Sahlin
Department of Mathematics, Science for Life Laboratory, Stockholm University, 10691 Stockholm, Sweden

k-mer-based methods are widely used in bioinformatics for various types of sequence comparisons. However, a single mu-

tation will mutate k consecutive k-mers and make most k-mer-based applications for sequence comparison sensitive to var-

iable mutation rates. Many techniques have been studied to overcome this sensitivity, for example, spaced k-mers and k-mer

permutation techniques, but these techniques do not handle indels well. For indels, pairs or groups of small k-mers are com-

monly used, but these methods first produce k-mer matches, and only in a second step, a pairing or grouping of k-mers is

performed. Such techniques produce many redundant k-mer matches owing to the size of k. Here, we propose strobemers as
an alternative to k-mers for sequence comparison. Intuitively, strobemers consist of two or more linked shorter k-mers,

where the combination of linked k-mers is decided by a hash function. We use simulated data to show that strobemers pro-

vide more evenly distributed sequence matches and are less sensitive to different mutation rates than k-mers and spaced k-
mers. Strobemers also produce higher match coverage across sequences. We further implement a proof-of-concept se-

quence-matching tool StrobeMap and use synthetic and biological Oxford Nanopore sequencing data to show the utility

of using strobemers for sequence comparison in different contexts such as sequence clustering and alignment scenarios.

[Supplemental material is available for this article.]

The dramatic increase in sequencing data generated over the past
two decades has prompted a significant focus on developing com-
putationalmethods for sequence comparison. A popular sequence
comparison paradigm is k-mer-based analysis, in which k-mers are
substrings of length k of, for example, genomic, transcriptomic, or
protein sequences. k-mer-based methods have been applied for se-
quence comparison for error correction (Salmela et al. 2016), ge-
nome assembly (Pevzner 1989; Chikhi and Medvedev 2014),
metagenomic (Wood and Salzberg 2014) and chromosome
(Rangavittal et al. 2019) sequence classification, sequence cluster-
ing (Steinegger and Söding 2018), database searches (Solomon and
Kingsford 2016; Harris and Medvedev 2020), structural variation
detection (Abo et al. 2015; Standage et al. 2019; Khorsand and
Hormozdiari 2021), transcriptome analysis (Patro et al. 2014;
Bray et al. 2016), DNA barcoding of species (Chor et al. 2009), es-
timation of genome size (Hozza et al. 2015), identification of bio-
markers (Wang et al. 2018), and many other applications. Because
of the widespread use of k-mers, many data structures and tech-
niques for efficiently storing and querying k-mers have been pro-
posed (for a review, see Marchet et al. 2021).

Although k-mers have proven to be practical in several se-
quence comparison problems, they are sensitive to mutations. A
mutation will mutate k consecutive k-mers across a string. As the
mutation rate increases, the number of matching k-mers between
two sequences quickly reduces. In work by Blanca et al. (2021), the
distribution ofmutated k-mers was studied in detail. The investiga-
tors provided closed-form expressions for the mean and variance
estimates on the number of mutated k-mers under a random mu-
tationmodel. Although the number of k-mer matches between se-
quences is of interest, it is often more informative to know how
they are distributed across the matching region. k-mer matches,

because of their consecutive nature, cluster tightly in shared se-
quence regions, whereas matches may be absent in regions with
higher mutation rates. A spaced k-mer (or spaced seed) is a k-mer
replacement method that have been studied in several sequence
comparison contexts to overcome the k-mers’ sensitivity to muta-
tions (Ma et al. 2002; Burkhardt and Kärkkäinen 2003; Brǐnda et al.
2015; Wood et al. 2019). Spaced k-mers can produce matches over
substitutions and produce less positionally correlated matches
compared with k-mers. In fact, k-mers are in some conditions the
worst seed pattern for the problem of similarity search (Keich
et al. 2004). An approach that generalizes a spaced k-mer is a vector
seed (Brejová et al. 2005). The vector seed approach introduces
seeds with weighted positions and a seed distance threshold. The
seeds between the reference and the query match if the weighted
seed distance is lower than the threshold. In this context, a spaced
k-mer can be seen as a seed in which the positions have aweight of
zero or one. Vector seeds, similarly to spaced k-mers, are limited to
handling only substitutions. In addition, matches are computa-
tionallymore expensive to compute as a simplemembership look-
up of the seed pattern is not possible.

Another innovative idea has been to permute the letters in a
string before comparison (Charikar 2002; Lederman 2013). The
main idea is to permute the letters in regions of fixed size in a string
using several different permutations. Then, when comparing two
strings in the regions under these permutations, at least one per-
mutation will, with statistical certainty, have pushed any substitu-
tion(s) toward the end of the region. This allows for a constant-
time query of the prefix of the region in the permuted strings.
With more permutations, it is more likely to find an exact prefix
match. However, both spaced k-mers and permutation techniques
are only practical for substitutions. An insertion or deletion (indel)

Corresponding author: ksahlin@math.su.se
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.275648.121.
Freely available online through the Genome Research Open Access option.

© 2021 Sahlin This article, published in Genome Research, is available under a
Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.

Method

2080 Genome Research 31:2080–2094 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/21; www.genome.org
www.genome.org

mailto:ksahlin@math.su.se
https://www.genome.org/cgi/doi/10.1101/gr.275648.121
https://www.genome.org/cgi/doi/10.1101/gr.275648.121
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml

will shift the sequence and, similarly to k-mers, result in a long
stretch of dissimilar k-mers. For certain applications, such as ge-
nome assembly, selecting several sizes of k for inference has also
been shown to help sequence comparison (Bankevich et al.
2012), but it significantly increases runtime and complexity of
analysis. There are also methods to collapse repetitive regions be-
fore k-mer-based comparison (Liu et al. 2016), which reduces the
processing time of repetitive hits. However, such techniques are
usually used for reference-based analysis and do not apply to gene-
ral sequence comparison problems. A notable approach that is re-
lated to the permutation approaches is covering template families
(Giladi et al. 2010). In this work, the investigators propose a con-
struction algorithm to produce a set of gapped seeds (templates)
such that at least one of the seeds is guaranteed to match over
both substitutions and indels, given some upper bound on the er-
ror rate. To achieve this guarantee, multiple seeds need to be ex-
tracted and compared between the query and the reference,
which results in a high computational query cost and high mem-
ory usage when storing an index with the templates for the refer-
ence. Construction of multiple spaced seed patterns has also
been presented to allow for matches up to one gap (Burkhardt
and Kärkkäinen 2002) or up to some level of mismatches (Pevzner
and Waterman 1995; Kucherov et al. 2005).

As third-generation sequencing techniques appeared with se-
quencing errors, mostly consisting of insertions and deletions,
many of the previously developed sequence comparison tech-
niques for short-read data became unsuitable. For third-generation
sequencing data, MinHash (Broder 1997) and minimizers
(Schleimer et al. 2003; Roberts et al. 2004) proved to be useful k-
mer subsampling methods for such sequence comparison as min-
imizers can be preserved in a window affected by an indel. In addi-
tion, they also reduce the size of the index by subsampling the
data. This hasmadeMinHash andminimizers a popular technique
for subsampling k-mers used for sequence comparison in a range of
applications such as metagenome distance estimation (Ondov
et al. 2016) and alignment (Li 2016; Jain et al. 2018, 2020a), clus-
tering (Sahlin and Medvedev 2020) error correction (Sahlin and
Medvedev 2021), and assembly (Berlin et al. 2015) of long-read se-
quencing data. With the widespread practical use of subsampling
methods, several alternative subsampling techniques have been
proposed to subsample k-mers with as low a density as possible
(Marçais et al. 2018; Zheng et al. 2020), to subsample k-mers
more evenly with weighted minimizers (Jain et al. 2020a,
2020b), and to subsample k-mers context independently with syn-
cmers (Edgar 2021) or minimally overlapping words (Frith et al.
2020). In work by Shaw and Yu (2021), the investigators studied
both theoretical and empirical performance of subsamplingmeth-
ods in detail.

Because of the error rates of long-read sequencing, the size of k
chosen for subsampling methods is often much shorter (∼13–15
nt) than what is considered to produce mostly unique k-mers in,
for example, the human genome (around k>20 nt). With this
length of minimizers, they produce many candidate sequence
matches. Therefore, it would be useful to combine the robustness
of minimizers to indels andmutation errors with larger k-mer sizes
that would offer more unique matches. One approach is to use a
small k-mer size and identify pairs (Altschul et al. 1997) or groups
(Noé andKucherov 2004) of them clustered tightly together, and it
has been studied how to design the sampling distribution of seeds
to optimize alignment sensitivity (Buhler et al. 2005; Sun and Buh-
ler 2005). Multiseed methods are robust to any mutation type and
have been shown to, for example, improve overlap detection be-

tween long reads (Du et al. 2019). However, these methods still
match single k-mers individually and group them based on statis-
tics after individual k-mer hits have been found. To remove the re-
dundancy inmatches, we suggest that it is beneficial to couple the
k-mers before the matching step in order to perform a single cons-
tant-time lookup of coupled k-mers. Coupled k-mers have been ex-
plored by, for example, Chin and Khalak (2019) and Sahlin and
Medvedev (2021), where paired minimizers are generated and
stored as a single hash. A paired minimizer match signals that
the region is similar between sequences. Because of the gap be-
tween the minimizers, such a structure is not as sensitive to indels
or substitutions as k-mers. Pairedminimizers were shown to be use-
ful for both genome assembly (Chin and Khalak 2019) and error
correction of long cDNA reads (Sahlin andMedvedev 2021) where
the reads are similar only in some regions owing to alternative
splicing. However, in work by both Chin and Khalak (2019) and
Sahlin and Medvedev (2021), minimizers are produced indepen-
dently and paired up after theminimizer generation. Asmutations
can alter the minimizers in a region, paired minimizers are sensi-
tive to differences in the minimizer landscape. This holds true
not just for pairing minimizers but for pairing k-mers from any
subsampling method.

In this study, we propose a novel type of seed that we call a
strobemer. Strobemers aims to address some of the limitations of
previous seeding techniques. Unlike spaced k-mers, strobemers
can match over indels, and unlike paired minimizers, they are
not as sensitive to regions in which theminimizer landscape is dif-
ferent. Furthermore, comparedwith other seeding approaches that
canmatch over indels (Giladi et al. 2010), only a single seed needs
to be constructed per position in the sequence. Strobemers are,
therefore, both fast and memory-efficient to construct.

Results

Strobemers overview

To construct a k-mer somewhere from a biological sequence s, one
extracts k consecutive letters in s. Consequently, a k-mer only
needs the length of the substring, k, as a parameter to be specified.
A strobemer can be seen as a set of linked k-mers. Strobemers con-
sist of n smaller ℓ-mers (strobes), where each ℓ-mer is extracted
from a specified window in s. The first strobe is chosen at a fixed
position in s, that is, the positionwewant to sample the strobemer
from. For the consecutive strobes, lower (wmin) and upper (wmax)
offsets to the previous strobe’s window define the window in
which the next strobe is extracted. Therefore, we parameterize a
strobemer as (n, ℓ,wmin,wmax). The novelty compared with, for ex-
ample, k-mers and spaced k-mers, is that strobemers allow flexibil-
ity in the strobes’ spacing and can produce matches between two
sequences in a region with indels. There are different methods to
produce the strobes, giving different results in performance for se-
quence matching and construction time. We explore three such
methods here, called minstrobes, randstrobes, and hybridstrobes.
The formal definition and construction of the strobemers are dis-
cussed in detail in the Methods section. The name strobemers is
inspired by strobe sequencing technology (an early Pacific
Biosciences sequencing protocol), which would produce multiple
subreads from a single contiguous fragment of DNA in which the
subreads were separated by “dark” nucleotides whose identity was
unknown, illustrated by Ritz et al. (2010). Strobemers introduced
here are, however, produced computationally.

Strobemers

Genome Research 2081
www.genome.org

Strobemers in relation to other seeding techniques

We will compare strobemers to spaced k-mers and k-mers, which
extract one subsequence per position from the sequence.
Therefore, these methods (1) have a similar memory requirement
to store reference seeds and (2) require only a single lookup per
query seed position. Because of these requirements, we refer to
spaced k-mers and strobemers as k-mer replacement methods
(term used by Shaw and Yu 2021). Suchmethods differ from other
seeding techniques, which require that multiple subsequences are
stored and queried at each position (Burkhardt and Kärkkäinen
2002; Giladi et al. 2010; Lederman 2013). In addition, k-mer re-
placement methods are orthogonal to seeding techniques based
on k-mer subsampling (e.g., minimizers, syncmers, andminimally
overlapping words), which can be applied to subsample k-mers or
k-mer replacement methods. Finally, the paired minimizer ap-
proach (Chin and Khalak 2019) relates closely to minstrobes
with two strobes. The paired minimizer approach produces a sub-
set of minstrobes, as minstrobes sample the first strobe at each po-
sition. This means that a minstrobes created with parameters (2,
15,wmin, wmax) provides an upper bound on thematchingmetrics
obtained with paired minimizers sampled with a window size of
(wmax−wmin).

Experimental overview

We will first investigate sequence matching performance of stro-
bemers compared to k-mers and spaced k-mers using simulated
data. We consider both how effective the different protocols are
at finding matches under different error rates (related to sensitiv-
ity) and how unique the matches are that they produce (related
to specificity).

We then implement a tool, StrobeMap, and use synthetic and
biological data to show the utility of strobemers in various applica-
tions. We map Oxford Nanopore Technologies (ONT) cDNA reads
with a 7% median error rate from Sahlin and Medvedev (2021)
both to themselves and to reference sequences.We alsomap geno-
micONT Escherichia coli readswith a 17%median error rate both to
themselves and to an E. coli genome, as well as two E. coli genomes
to themselves. In the experiments, we compare the contiguity and
coverage of the matches produced by k-mers and strobemers.

Experiment design

The size of the extracted subsequence length k of any protocol is
central when comparing the efficacy of finding matches and their
uniqueness. Therefore, we are interested in comparing sizes of sub-
sequences that are similar between the protocols. Specifically, if
the size of the k-mer is 30, we want to compare the k-mers to stro-
bemers parameterized, for example, by (2, 15, ·, ·) and (3, 10, ·, ·), as
all the extracted subsequences have a length of 30 on the strings.
We similarly compare k-mers and strobemers to spaced k-mers
where k positions are fixed but at different densities denoted sparse
and dense (for details, see Methods).

Evaluation metrics

If a k-mer or spaced k-mer extracted from position i in s and i′ in t
produces the same hash value, we say that amatch between two se-
quences, s1 and s2, occurs at positions i and i′ in the two strings, re-
spectively. For a k-mer, we say that the match produces a sequence
coverage over positions [i, i+ k]. For a spaced k-mer, we say that the
match produces a sequence coverage over the k fixed (sampled) po-
sitions. Furthermore, for a k-mer we say that thematch has amatch

coverage of length k (i.e., positions [i, i+ k]), and of length L in case
of the spaced k-mer (i.e., the span of the fixed positions). If a stro-
bemer extracted from position i in s and i′ in t produces the same
hash value, we say that a match between two sequences, s1 and
s2, occurs at position i and i′ as well as at the start positions of
the additional strobes, m2, …, mn, in the two strings, respectively.
We say that the match produces a sequence coverage over all the po-
sitions covered by the strobes in the match. Furthermore, we say
that the match has a match coverage spanning the first nucleotide
in the first strobemer to the last nucleotide in the last strobemer.
The total sequence coverage and match coverage of a string, s, is
calculated as the union of all positions covered under the defini-
tions of sequence coverage and match coverage, respectively. We
adopt similar terminology as in the work by Blanca et al. (2021)
and denote a maximal interval of consecutive positions without
matches as an island.

To evaluate the sequencematching ability, we compare under
different error rates (1) the fraction of matches, (2) the sequence
coverage, (3) the match coverage, and (4) the distribution of is-
lands.Weneed tomake two clarifications on these evaluationmet-
rics. First, our experiments on simulated data are designed with
parameters so that the event of observing a falsematch (e.g., repet-
itive k-mer) under any protocol has a negligible probability. This
means that our simulated experiments only measure the raw abil-
ity to identify correct matches.

Second, as for the distribution of islands, we are interested in
measuring the sizes of islands and their size distribution. We
calculate the island E-size (Salzberg et al. 2012), a commonly
usedmetric in genome assembly that wewill adapt for our purpos-
es. For a string, s, and a set of islands lengths, X, on s we calculate
the island E-size, E, as follows:

E = 1
|s|

∑

x[X

x2.

E measures the expected island size, and intuitively, we can
think of E as follows.We pick a position at random across s and ob-
serve the island size spanning that position.Wemaypick positions
that are covered by matches (i.e., island size zero), but if we keep
picking positions at random over s and store our observations on
the island lengths, we will end up with E according to the law of
large numbers. We will also show the entire island distribution.

Strobemer versus k-mer matching

We compare how effective the different protocols are at producing
matches for different error rates. We start with a controlled sce-
nario, in which mutations are distributed with a fixed distance.
In our second experiment, we use a randommutation distribution.
We perform the fixed-distance mutation experiment to illustrate
the advantage of strobemer protocols.

Controlled mutations

We simulate a string, s, of 100 random nucleotides and a string, t,
derived from simulating mutations every 15th position in s. The
mutation is chosen as an inserted, deleted, or substituted nucleo-
tide randomly with an equal probability of 1/3 each. We simulate
s and t 10 times to illustrate the variability in matches for the stro-
bemers between simulations. In this experiment, we chose the pa-
rameters of the strobemers so that their total length is 18, which is
larger than 15, rendering k-mers and spaced k-mers of the same
length infeasible, because there is a substitution or indel every

Sahlin

2082 Genome Research
www.genome.org

15 positions. The start positions of matching strobemers are
shown in Figure 1 under two different parameterizations for min-
strobes and randstrobes. Minstrobes, althoughmore effective than
k-mers in this scenario, fail to produce matches between many of
the mutations for the (2, 9, 10, 20) parameterization and for
some with the (3, 6, 10, 20) parameterization. We observe that
randstrobes producematches in all 10 experiments under both pa-
rameterizations and provide a more random match distribution
across the string thanminstrobes. Hybridstrobes have amatch per-
formance in between minstrobes and randstrobes.

Random mutations

In our second experiment, we simulate a string of length 10,000 nt
and construct a second string by generating inserted, deleted, or
substituted nucleotides with equal probability of 1/3 each across
the string with the mutation rate μ∈0.01, 0.05, 0.1. This means
that the positions for the mutations are randomly distributed.
Each such simulation is replicated 1000 times to alleviate sample
variation. We refer to this as the SIM-R experiment (for simulation

random). In this scenario, spaced k-mer
protocols perform worse than k-mers,
with fewer matches, lower match cover-
age, and larger expected island size (Table
1).Weobserve that k-mers have the high-
est fractionofmatches in all experiments.
This is because matches produced by k-
mers cluster optimally tight (1-nt offset)
between neighboring mutations at a dis-
tance larger than k. Theminstrobe proto-
cols under the two parameterizations
have roughly the same performance as
k-mers, with higher match coverage and
smaller expected island size but a lower
fraction of matches and sequence cover-
age. The randstrobe protocols are also in
this scenario significantly better at dis-
tributing matches across the sequences
compared to all the other protocols. The
randstrobe protocols have a substantially
higher sequence and match coverage,
and smaller expected island size under
both parameterizations, which are all im-

portant aspects of sequence matching. Hybridstrobes produce re-
sults that are relatively close to the performance of randstrobes
across the four matching metrics.

We also show the full distribution of island sizes for the three
different mutation rates for a subset of the protocols
(Supplemental Fig. S1), which illustrates the general trend in island
sizes. For example, for a mutation rate of 0.1, we observe that the
randstrobe protocols have ∼1000 nt as the largest island size in
our simulations, whereas k-mers have ∼2000 nt (Supplemental
Fig. S1).

Subsampling

k-mers, spaced k-mers, and strobemers can all be subsampled us-
ing subsampling methods such as minimizers (Roberts et al.
2004), syncmers (Edgar 2021), or minimally overlapping words
(Frith et al. 2020). We compared the protocols when applying a
minimizer protocol with window sizes w=10 and 20 to both se-
quences in the SIM-R experiments. For k-mers and spaced k-mers,
the subsampling is performed by selecting the k-mer with the

Figure 1. An example of strobemer matches for minstrobes, randstrobes, and hybridstrobes with two
different parameterizations each (separate panels). Each panel showsmatches between a string, s, of 100
nt and a string, t, derived from simulatingmutations every 15th position in s. Indels and substitutions are
chosen at random with equal probability. The matches are plotted with respect to the positions in s on
the 83 possible matching positions (x-axis). Each row in a panel corresponds to a separate simulation.

Table 1. Match statistics for k-mers, spaced k-mers, minstrobes, randstrobes, and hybridstrobes under mutations rates of 0.01, 0.05, 0.1

SIM-R

0.01 0.05 0.1

m sc mc E m sc mc E m sc mc E

k-mer 30 74.5 95.9 95.9 7.9 22.4 54.7 54.7 79.2 4.7 18.1 18.1 344.9
Spaced k-mer dense 67.6 95.6 96.2 9.7 13.8 50.9 53.9 120.7 1.8 14.1 16.1 570.1

sparse 50.5 87.8 89.7 44.4 3.5 21.4 26.7 640.7 0.1 2.1 3.6 4223.1
Minstrobe (2,15,25,50) 69.1 94.8 99.2 4.3 16.5 51.9 72.6 53.2 3.0 15.9 27.3 330.9

(3,10,25,50) 64.4 90.3 99.4 4.7 12.6 43.4 75.3 58.1 1.9 12.0 28.7 440.4
Randstrobe (2,15,25,50) 70.7 98.2 99.9 2.0 18.2 72.7 87.8 23.0 3.4 31.1 44.6 144.7

(3,10,25,50) 66.7 98.8 100.0 0.9 14.7 78.3 98.2 11.1 2.5 33.7 67.0 92.9
Hybridstrobe (2,15,25,50) 71.6 97.9 99.8 2.2 19.2 70.3 86.0 25.6 3.7 29.1 42.1 157.9

(3,10,25,50) 65.5 97.4 99.4 1.7 14.5 70.4 95.6 16.5 2.5 27.4 58.4 132.5

Here, m denotes the number of matches as a percentage of the total number of extracted subsequences for the protocol, sc (sequence coverage) and
mc (match coverage) are shown as the percentage of the total sequence length, and E is the expected island size. Boldfaced values indicate the most
desirable result across protocols for each of the match statistics.

Strobemers

Genome Research 2083
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1

lowest hash value in a window of size w. For strobemers, the sub-
sampling is performed by selecting the first strobe with the low-
est hash value in a window of size w. This start strobe will be used
to construct the full strobemer. In case of ties in hash values, the
first k-mer (strobe) is selected.

In this scenario, the relative improvement of strobemers com-
pared with k-mers decreases as w increases. For w= 10, randstrobes
has a better sequence coverage, match coverage, and expected
island size than all other protocols across mutation rates
(Supplemental Table S1). With w=20, k-mers produce the best se-
quence coverage across protocols, whereas randstrobes produce
the best match coverage across protocols. Expected island size is
better for randstrobes for mutation rates 0.01 and 0.05 but is worse
for amutation rate of 0.1. Hybridstrobes follow the performance of
randstrobes closely in all experiments. Our experiments indicate
that, under the subsampling method considered here, the rela-
tive increase in performance that strobemers have over k-mers de-
creases as sample size decreases.

Strobemer versus k-mer uniqueness

Although preserving matches under mutations is an important
feature for any seeding strategy, the other aspect is whether the
constructed seeds are unique. Uniqueness is beneficial as any
downstream algorithmwill spend less time on evaluating spurious
similarities caused by repetitive seeds. The importance of provid-
ing unique seeds for sequence comparison applications has been
shown by significant work on algorithms and data structures to ef-
ficiently find unique sequences (Delcher et al. 1999; Haubold et al.
2005; Jain et al. 2020a).

Strobemers offer more match flexibility than k-mers and
spaced k-mers, as they can preserve amatch over indels in the sam-
pled region. We refer to the ability for a protocol to match over
indels as flexible-position protocols), contrary to k-mers and spaced
k-mers (referred to as fixed-position protocols). It is reasonable to as-
sume that for the same size k of extracted subsequence, the stro-
bemer protocols will have lower uniqueness (precision) than k-
mers and spaced k-mers owing to the flexible-position feature.
We study the uniqueness inmatches by computing the percentage
of unique k-mers, spaced k-mers, and strobemers on the three larg-
est human chromosomes (Fig. 2). For a k-mer size of k, we parame-
terize the strobemer protocols as (2, k/2, k/2+1, 50) and (3, k/3, k/3+1,

25) in order to have the same subsequence lengths as k-mers and
spaced k-mers, and similar sampling span between the order 2
and 3 strobemers. Similarly, the spaced k-mers are parameterized
by L =1.5k and L =3k, and the positions are simulated as in previ-
ous experiments (for details, see Methods subsection “Spaced
k-mer sampling”).

We observe that for the three fixed-position protocols, a larg-
er fixed-positions span helps subsequence uniqueness. The
spaced-sparse has the highest uniqueness across all the three chro-
mosomes, followed by spaced-dense and finally the k-mers.

Contrary to our intuition, strobemers offer a higher unique-
ness than k-mers for k≥24 (Fig. 2), whichmaybe owing to the larg-
er sampling window span, similarly to what we observed for the
spaced k-mers. Out of the strobemer protocols evaluated here, stro-
bemers of order 3 produce the highest percentage of unique
matches for reasonably large subsequence lengths (k≥24). There
is no substantial difference between the strobemer protocols of
the same order. However, for k=18, the strobemer protocols will
be parameterized by (2, 9, 10, 50) and (3, 6, 7, 25), which, with
the flexible-position sampling, appear too small to guarantee rea-
sonable uniqueness on the largest human chromosomes.

Time and memory to construct strobemers

We compared construction time of strobemers to k-mers in both
Python and C++ and observed very different results between stro-
bemers in the two languages. We first compared the relative run-
time of computing k-mers compared with strobemers in Python
for different k-mer and window sizes (Supplemental Table S2).
The k-mers are the fastest to compute. Randstrobes have the slow-
est relative runtime compared with k-mers, where the relative in-
crease in computation time depends on the window size. Both
minstrobes and hybridstrobes have comparable relative construc-
tion times to k-mers (Supplemental Table S2), making hybrid-
strobes, with their beneficial sequence match metrics, the most
attractive protocol out of the strobemers. Therefore, in a scripting
language, the construction time largely corresponds with our ex-
pectations that computing time is roughly proportional to win-
dow size.

In our C++ library, we implemented k-mers, minstrobes of
order two, randstrobes of order two and three, and hybridstrobes
of order two and three. We optimize the computation speed of k-

Figure 2. The percentage of unique k-mers, spaced k-mers, minstrobes, randstrobes, and hybridstrobes (y-axis) on the three largest chromosomes (Chr
1–Chr 3) of the human genome for various sequence lengths of k (x-axis). Each panel shows a separate chromosome. For a given k in the plot, strobemers
with n=2 are computed with parameters (2, k/2, k/2+1, 50) and strobemers with n=3 are computed with parameters (3, k/3, k/3+1, 25) so that the num-
bers of extracted nucleotides between the five methods are the same. Y-axes have been cut at 80% for illustration. The values for minstrobes and randst-
robes with parameters (3, 6, 7, 25) are below 50% on all the three chromosomes. The values for minstrobes and randstrobes with parameters (2, 9, 10, 50)
are below 70% on all the three chromosomes.

Sahlin

2084 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1

mers and strobes by representing a nucleotide with two bits and
using a sliding bit-packing window (64-bit integer) over the se-
quence. This technique avoids repetitive hashing of substrings
to integers and is used in, for example, minimap2 (Li 2018).
Because of the bit-packing, our implementation is limited to a
maximum k-mer size of 32 and a maximum strobemer size of
32n for strobes of order n. We computed the wall-clock time to
construct and push k-mers and strobemers to a vector in C++
(Supplemental Table S3). For the strobemers, we used window siz-
es of 20, 40, 60, 80, and 100. Overall, we observed that (1) com-
puting and storing randstrobes are only about 1.5−2.5× slower
than computing and storing k-mers, (2) computing randstrobes
is more efficient than computing hybridstrobes for most window
sizes in our implementation, and (3) the difference in computa-
tion time for randstrobes is negligible for window sizes of 20–
100. From these observations, we hypothesize that the compiler
is very efficient at computing randstrobes, because it does not re-
quire any overhead of a queue data structure (used for minstrobes
and hybridstrobes) and because the window in which the mini-
mum value is computed is a contiguous block in a vector that
may, most of the time, be in the cache. It may therefore be advan-
tageous to use randstrobes over hybridstrobes in a compiled lan-
guage. Construction time of strobemer may also be further
improved using, for example, single instruction multiple data
(SIMD) implementations as is commonly used in bioinformatics
(e.g., Daily 2016; Vaser et al. 2017).

The peak memory to compute and store k-mers and stro-
bemers is similar if only the start position is stored. If all the posi-
tions of the strobemers are stored, the allocated memory will be
higher. If we represent a k-mer with a 64-bit integer hash value,
the reference id, and the position of the k-mer with 32 bit integers
each, thememory occupied by the array storingmk-mers and their
start position will be 128m bits (16m bytes). Strobemers have iden-
tical memory constraints, but if we decide to store the second and
third position of the strobe, they will take an additional 4 bytes per
strobemer unless stored as an offset to previous strobe.

Proof-of-concept sequence mapper

As shown in our simulated experiments, spaced k-mers perform
suboptimally to k-mers and strobemers when indels are present.
Therefore, we further compared k-mers to strobemers using syn-
thetic and biological data with indels. We implemented the
proof-of-concept tool StrobeMap in both C++ and Python. The
Python implementation of StrobeMap implements a sequence
similarity searchwith k-mers and strobemers of order 2 and 3with-
out limitations to the k-mer and strobemer size, whereas the C++
implementation is limited to k-mers of size 32 or less and stro-
bemers of size 32n or less, where n is the number of strobes. The
output of StrobeMap is a tab-separated value (TSV) file with map-
ping information on the same format as MUMmer (Kurtz et al.
2004). However, instead of producing maximal exact matches
(MEMs) or maximal unique matches (MUMs) between a query
and a reference sequence, StrobeMap outputs what we refer to as
nonoverlapping approximately matching (NAM) regions based
on matches from the strobemer or k-mer protocol. The NAMs
are produced by matches that overlap both on the query and
reference; details on how NAMs are produced are found in
Supplemental Note A.

As sequence mapping is often used as a preprocessing step to
performing alignment or clustering, we use metrics valuable to
candidate filtering to evaluate the methods. We measured the

number of NAMs generated, the total match coverage produced
by the NAMs, and the average normalized NAM length, which is
the length of theNAMdivided by either the length of the reference
or the query depending on the mapping context. To achieve high
accuracy and efficient sequence similarity searches, it is important
that a mapping step produce few but long matches that cover a
large portion of the query and/or the reference. Few matches will
reduce time to postcluster matches and reduce disk space (if
matches are stored), whereas long contiguous matches will im-
prove the decision on whether a candidate matching region
should be aligned or not. We mapped ONT cDNA and DNA reads
with 7% and 17% median error rates both to reference sequences
and to the reads themselves. We also studied whole-genome map-
ping of two E. coli genomes under some different settings. The
details of the data and experiments are found in Supplemental
Note A.

We first mapped cDNA reads (queries) to SIRVs (references)
using k-mers and strobemers with a subsequence size of 30, where
strobemers were parameterized as (2, 15, 20, 70) and (3, 10, 20, 70).
Randstrobes produce the highest match coverage to references
(Fig. 3A), lowest number of matches (Fig. 3B), and highest normal-
ized NAM lengths (Supplemental Fig. S2). On this data set, rand-
strobes are favorable to all other protocols when it comes to
sequence matching, closely followed by hybridstrobes. Many of
the NAMs that the randstrobes produce cover nearly the full
SIRV reference (Supplemental Fig. S2). We observe the same trend
when we compare the ability match reads from the same SIRV to
each other (Supplemental Fig. S3). However, all the protocols pro-
duce a lower coverage and normalized match length owing to the
lower sequence identity.

When mapping genomic ONT E. coli reads to an E. coli ge-
nome, we measure how many NAMs the protocols generate and
the fraction of the read that is covered by NAM matches for the
best mapping location. To get the best mapping location, we com-
pute the longest collinear chain of NAMs to the genome.We count
only the coverage of the longest collinear chain of NAMs to avoid
overestimating coverage from additional matches owing to, for ex-
ample, matches in repetitive regions. However, a collinear chain
may still contain spurious matches. We, therefore, also measure
the fraction of a NAM’s genomic span that overlaps with the
true genome mapping and refer to this overlap as correct. A
NAM can have a correct overlap fraction between zero and one,
where the fraction is zero if thematch is fully outside the truemap-
ping location and one if thematch is fullywithin the truemapping
location. We estimate the true genome mapping location from
minimap2’s primary alignments (for experiment details, see
Supplemental Note A).

We compared k-mers of length 30 to randstrobes with param-
eters (3,10,11,100). The NAMs produced by randstrobes cover
more of the read (Fig. 4A) and are fewer (Fig. 4B). As for correctness,
randstrobes and k-mers give 963 and 959 reads with a correctness
of 1.0, respectively. The correctness fraction is shown for all reads
in Supplemental Figure S4A. We also mapped the reads against
themselves, and similarly to mapping to the genome, we comput-
ed the total number of NAMs as well as the coverage of the optimal
collinear chain solution.Using only the coverage contributed from
the matches in the collinear chain solution means that the cover-
age is only calculated for the largest overlap to another read.
Similarly to when mapping reads to the genome, we measure
correctness. We then measure the fraction of correctness of
NAMsbetween reads fromthe true overlapbetween the reads based
on minimap2’s read-to-genome alignments (for details, see

Strobemers

Genome Research 2085
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1

SupplementalNote A). For the read-to-read alignments, we observe
that randstrobes produce higher NAM coverage (Fig. 4C) and fewer
NAMs (Fig. 4D). We also observe that for randstrobes as seeds, 895
out of 1000 reads have a correctness of 1.0, whereas only 759 reads
have a correctness of 1.0 using k-mers as seeds. The correctness frac-
tions for the read-to-read mappings are shown in Supplemental
Figure S4B.

StrobeMap and MUMmer are not competing tools as they
produce different outputs. Nevertheless, at a high level, they are
both mapping tools for finding local shared regions between se-
quences. Therefore, in addition to comparing sequence matching
statistics between strobemers and k-mers, which is the primary in-
tent with StrobeMap, we also included a comparison between
StrobeMap and MUMmer (Table 2). We used comparable parame-
ter settings between the tools and computed runtime, memory us-
age, and various match statistics when finding all shared regions
between two E. coli genomes to each other and Chromosome 21
from hg38 to Chromosome 21 from CHM13 (Nurk et al. 2021)
(for details, see Supplemental Note A). As can be inferred from
the match E-size, (Table 2) StrobeMap produces longer contiguous
NAMs with randstrobes compared with the NAMs produced with
k-mers as well as the MEMs and MUMs produced by MUMmer.
The increase in contiguity is not surprising as strobemers are de-
signed to match over smaller indels and substitutions.

Figure 5 shows dotplots and optimal collinear chaining solu-
tions for the matches produced for various settings for the E. coli–
to–E. coli mapping experiment in Table 2. By design, MUMs (Fig.
5A) andMEMs (Fig. 5B) produce fragmentedmatches in the collin-
ear chaining solution as they break at everymismatch.We also ob-
serve that the dotplot showing all MEMs of minimum size 30 (Fig.
5B) is nearly identical to the plot created with StrobeMap using k-
mers of size 30 (Fig. 5C). Such a similar result is expected as NAMs
produced from k-mers are nearly identical to MEMs, except that
NAMs do not break over homopolymer and short tandem repeat
differences. When using randstrobes, both small local NAMs and
large contiguous NAMs can be preserved by specifying a small
wmin values, as can be seen from comparing the dotplot to the con-
tiguity of the collinear chaining solution (Fig. 5D). Many small
NAMs can be removed by specifying a larger wmin (Fig. 5E,F).

Time and memory usage of StrobeMap

The C++ implementation of StrobeMap represents the seed (i.e., k-
mer or strobemer) as a 64-bit integer hash value, the reference ac-
cession as a 32-bit integer, and the position of the seed as a 32-bit
integer as tuples in a vector sorted by seed hash value. If k-mers are
used as seeds, only the start position is stored. If strobemers are
used as seeds, the positions of the first and last strobe are stored.
StrobeMap also uses a hash table with seed hash value as a key
and the position and occurrence count of the seed in the sorted
vector. The peak memory depends on the number of unique k-
mers or strobemers and howmany hits they generate in the map-
ping stage. In practice, we see a relatively small difference in peak
memory usage for different seeds (Table 2). StrobeMap is as fast
or faster than MUMmer for most settings. However, MUMmer
has about a 6× smaller peak memory usage compared with
StrobeMap. StrobeMap is only a proof-of-concept tool to imple-
ment the experiments in this study. Reducing memory and
runtime can be achieved by using, for example, subsampling
methods such as minimizers.

Discussion

Wehave studied strobemers, an alternative sampling protocol to k-
mers and spaced k-mers for sequence comparison. We have exper-
imentally shown that strobemers, particularly randstrobes and
hybridstrobes, efficiently produce higher sequence coverage,
match coverage, and lower gap size between matches under differ-
ent mutation rates (Table 1). Strobemers also produce a higher
number of unique matches (specificity) compared with k-mers
for several commonly used sizes of k (Fig. 2).

As k-mer matches cluster optimally tight between mutations
at distance larger than k, they produce the highest number of
matches in the SIM-R experiments. However, the number of
matches is not always helpful as matches may cluster owing
to local repeats. Randstrobes and hybridstrobes can offer more
evenly distributed matches, higher match coverage, and higher
uniqueness. These are features that are useful for several algo-
rithms that require chains of matches between two sequences to

A B

Figure 3. Comparison between strobemers and k-mers when matching ONT cDNA reads (7.0% median error rate) to 61 unique spike-in RNA variant
(SIRV) reference sequences. Each SIRV corresponds to a tick on the x-axis. (A) Total fraction of the SIRV covered byNAMs from reads (y-axis). (B) The number
of NAMs (y-axis) between a read and the SIRV. The line shows the mean, and the shaded area displays the standard deviation of the reads. A high NAM
coverage and low number of NAMs means long contiguous matches and facilitates accurate and efficient sequence comparison.

Sahlin

2086 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1

be considered candidates for alignment, clustering, or read overlap
detection (e.g., Li 2016, 2018; Chin and Khalak 2019; Sahlin and
Medvedev 2020).

As for time to generate strobemers, we observe that rand-
strobes are only about 1.5−2.5× slower to generate and store
than k-mers in our compiled implementation (Supplemental
Table S3), whereas they are significantly slower to generate in
script languages such as Python (Supplemental Table S2). As

randstrobes has the best performance in terms of sequence com-
parison according to our analyses, we recommend them over min-
strobes and hybridstrobes in most sequence comparison
applications implemented in compiled languages. In scripting lan-
guages, hybridstrobes have the best trade-off in performance and
sequence comparison accuracy (Supplemental Table S2).

To further show the utility of strobemers, we implemented a
mapping tool, StrobeMap, for finding local matches between

A B

DC

Figure 4. Comparison between randstrobes and k-mers when mapping genomic ONT reads for reads of different lengths (x-axis). Panels A and B show
readmapping results whenmapping reads to the genome, and C andDwhenmapping reads to themselves. (A) Total fraction of the read covered byNAMs
in the optimal collinear chaining solution to the genome (y-axis). (B) The total number of NAMs (y-axis) between a read and the genome. (C) Total fraction
of the read covered by NAMs to the longest overlapping read, inferred from the optimal solution of a collinear chaining (y-axis). (D) The total number of
NAMs (y-axis) generated for the read. The line shows the mean, and the shaded area displays a 95% confidence interval of the mean estimate. High NAM
coverage and low number of NAMs mean long contiguous matches and facilitate accurate and efficient sequence comparison.

Strobemers

Genome Research 2087
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1

sequences using both k-mers and strobemers.We showed in sever-
al different scenarios, such as mapping ONT cDNA and genomic
reads to themselves or to reference transcripts or genomes, that
strobemers produce favorable sequence comparison metrics com-
pared with k-mers (Figs. 3, 4). Although StrobeMap primarily was
implemented as a proof-of-concept tool for our experiments, it is
as fast or faster than MUMmer in the majority of our genome-to-
genome mapping experiments, albeit with a substantially higher
peak memory usage (Table 2). Particularly, hybridstrobes offer a
beneficial trade-off between construction time and the ability to
produce long contiguous matches under various sequence match-
ing contexts. Overall, we believe that strobemers offer a valuable
contribution to methods that rely on sequence similarity search.

Future study of strobemers

Parameterization

Although our study provides an experimental evaluation of stro-
bemers under some commonly used values of k and mutation
rates, the statistics of strobemers remain to be explored. In work
by Blanca et al. (2021), the investigators derived themean and var-
iance of islands for k-mers and the number of mutated k-mers un-
der given mutation rate. If we can derive analytic expressions for
strobemers, it may suggest to us how to optimize parameters of
the strobemer protocols under various mutation rates, which will
be useful for similarity comparison algorithms. Even without ana-
lytic expressions, we can evaluate the sizes on strobes andwindows
suitable for various mutation rates. Also, we could relax the con-
straint of equal-size strobes and window sizes. As a start in this di-
rection, we may derive more efficient parameter selection on
window sizes bymodeling the number of mutations after a certain
number of nucleotides as a Poisson process. Under such a model,
the investigator hypothesizes that choosing larger window sizes
downstream could be beneficial. This remains to be explored.

Structural variation detection

Strobemers are currently designed to match only over substitu-
tions and small indels. It remains as future work to investigate if
larger windows or alternative designs can span over larger variants.
For example, one could design strobemers with different window
ranges between, for example, two chromosomes, to detect larger
indels. Another example would be to detect inversion breakpoints
by constructing strobes with different directions, for example, one
forward and one reverse complement.

Construction, storing, and queries

There are several aspects of construction, indexing, and storage of
strobemers that could be explored. One such direction is to store
and query the positions of the other strobes efficiently, as they
give extra information about the coverage and span of matches
across sequences for sequence similarity applications. Another ap-
plication is to efficiently index the data sets for abundance and
presence of strobemers (Marchet et al. 2020). For such applica-
tions, minstrobes may be advantageous owing to the more fre-
quently shared minimizers between the strobes. Finally, the
possibility of further decreasing practical runtime for constructing
strobemers remains to be explored.

Span-coverage for matching

Because strobemers are gapped sequences, it also motivates the
study ofmatch coverage and distribution ofmatches across regions
(or positions), similarly to what has been performed for gapped ex-
perimental protocols such as mate-pair or paired-end reads (Sahlin
et al. 2017). For example, one could compute the span-coverage of
matches at positions or over regions to estimate the sequence sim-
ilarity in matching regions or the confidence for further down-
stream processing.

Table 2. Comparison between MUMmer and StrobeMap (C++ implementation)

E. coli Chr 21

Tool Seed Setting Matches cov E Time (sec) Mb Matches cov E Time (sec) Mb

MUMmer 30 MEM 20,015 0.91 10,232 8.23 187 — — — — —

MUMmer 30 MUM 2087 0.89 10,219 7.08 187 — — — — —

StrobeMap 30 NAM 19,654 0.91 13,635 4.55 1046 — — — — —
StrobeMap (2, 15, 1, 100) NAM 10,132 0.91 180,981 7.15 1096 — — — — —

StrobeMap (2, 15, 16, 100) NAM 5823 0.91 156,726 6.75 1096 — — — — —

StrobeMap (3, 10, 11, 100) NAM 3537 0.91 212,973 6.7 1095 — — — — —

MUMmer 100 MEM 4907 0.91 10,232 7.37 187 61,703 0.76 1831 71.65 1266
MUMmer 100 MUM 1075 0.89 10,219 6.96 187 37,853 0.75 1831 73.68 1268
StrobeMap (2, 30, 31, 100) NAM 3786 0.91 156,192 5.41 1093 445,002 0.77 118,386 54.05 5840
StrobeMap (3, 30, 31, 100) NAM 2232 0.91 158,173 6.32 1091 63,583 0.77 150,370 55.13 6030

MUMmer 500 MEM 1331 0.9 10,231 7.29 187 16,112 0.65 1815 66.97 1266
MUMmer 500 MUM 616 0.89 10,218 6.99 187 16,057 0.65 1815 65.17 1267
StrobeMap (2, 30, 200, 400) NAM 1505 0.91 262,215 7.36 1091 111,570 0.78 263,791 66.93 5293
StrobeMap (3, 30, 200, 400) NAM 1134 0.91 265,675 9.23 1090 25,625 0.77 263,537 72.31 6258
StrobeMap (2, 30, 500, 600) NAM 1185 0.91 298,841 6.17 1092 52,893 0.78 213,845 55.64 5642

MUMmer finds all MEMs or MUMs between a set of query and reference sequences, whereas StrobeMap finds all NAMs. For MUMmer, the number in
the seed column means minimal MEM/MUM size. For StrobeMap, the four numbers indicate the randstrobe parameters. A match here refers to a
MEM, MUM, or NAM depending on which method is used. The table shows the total number of matches produced, the coverage of the optimal col-
linear chaining of the matches (cov), the expected match size from the matches included in the optimal collinear solution (E), as well as the time and
memory usage of the tools. Experiments with the smallest seed settings were excluded for the Chromosome 21 experiment owing to too many
matches generated for our Python evaluation script to perform collinear chaining (roughly 24 million for seeds of minimal length 30).

Sahlin

2088 Genome Research
www.genome.org

Subsampling

We observed that, under our subsampling approach, the more
sparsely the strobemers are subsampled, the less advantage they
have over k-mers (Supplemental Table S1). An interesting future re-
search direction would be to study whether specific subsampling
schemes are better suited for strobemers: specifically, whether
they can preserve the relative performance increase that are ob-
served without thinning. By studying themathematical properties
of hashes and minimizers (Orenstein et al. 2017; Marçais et al.
2018), we may find an effective subsampling method for
strobemers.

Generalization of strobemers

We can view the process of extracting a k-mer or a spaced k-mer at
position i in a string, s, as applying a function f (i, k, s) on s.
Similarly, the process of extracting a strobemer from s can be
viewed as applying the higher-order function f ′(i, k, s, h) on s,
where h is either some hash function or hash strategy (e.g., itera-
tive and conditionally dependent as in randstrobes). We showed

that applying f ′ on s is equally ormore efficient than f for sequence
matching for three different functions h (minstrobes, randstrobes,
and hybridstrobes), which poses the following question. Can we
further improve sampling protocols for sequence matching by de-
signing h differently?

Methods

Definitions

We refer to a subsequence of a string as a set of ordered letters that
can be derived from a string by deleting some or no letters without
changing the order of the remaining letters. A substring is a subse-
quence in which all the letters are consecutive. We use i to index
the position in a string s and let s[i : i+ k) denote a k-mer substring
at position i in s covering the k positions i,…, i+ k−1 in s. We will
consider one-indexed strings. If s[i : i+ k) is identical to a k-mer t[i′ :
i′ + k) in string t, we say that the k-mers match and that the match
occurs at position i in s (and i′ in t). Similarly, let f(i, k, s) be any
function to extract a subsequence of length kwith first letter at po-
sition i from s. If f (i, k, s) is identical to f(i′, k, t), we say that the

A B C

D E F

Figure 5. Dotplots and the optimal collinear chain solution produced by MEMs, MUMs, and NAMs frommapping two different E. coli genomes to each
other. Each panel shows dotplots of all matches (left) and the optimal collinear chaining solution produced by thematches (right). The chaining solution has
been put in vertical position for display. The panels showMUMmer with MUMs of a minimum size of 30 (A), MUMmer withMEMs of a minimum size of 30
(B), StrobeMapwith k-mers of a size 30 (C), StrobeMapwith (2,15,1,100) randstrobes (D), StrobeMapwith (2,15,16,100) randstrobes (E), and StrobeMap
with (3,10,11,100) randstrobes (F).

Strobemers

Genome Research 2089
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1

subsequences match and that the match occurs at position i in s
(and i′ in t). For example, for k-mers we have f (i, k, s) = s[i : i+ k).
We let |·| denote the length of strings.

We use h to denote a hash function h:
∑∗ �Z, mapping

strings to numbers. Given the two integersw>0 and k>0, themin-
imizer at position i in s is the substring of s of length k starting in
the interval of [i, i+w) that minimizes h.

Aim

We will introduce strobemers by describing the problem they aim
to solve. Consider two strings, s and t, that are identical up to m
mutations.We desire a function, f, to produce a set of subsequenc-
es from s and t that have two characteristics: (1) There should be as
few as possible placements of the m mutations that result in no
matches between s and t, and (2) the subsequences of length k
should be as unique as k-mers on s and t. Characteristics 1 and 2
relate to match sensitivity and precision, and we will discuss this
in an example below. For practical purposes, we also require that
at most one subsequence is produced per position to mimic how
k-mers are derived in a string (and limit the amount of data we
store for each string). Certainly, we could produce all possible sub-
sequences at each position to minimize criteria 1, but this is not
feasible. A similar objective to characteristic 1 was studied for mul-
tiseed design (Sun and Buhler 2005), in which the investigators
wanted to find a set of seeds so that at least one seedmatched a gap-
less alignment between two sequences.

A motivational example

Consider two strings of 100 nt with m=3 mutations between
them. This could occur, for example, in splice alignment to an
exon or in sequence clustering. If we use a k-mer of size 30 to
find matches and if the two strings differ at positions 25, 50, and
75, there will be no matching k-mers. Similarly, this holds for mu-
tations at positions 20, 48, and 73 and several other combinations.
As described, we want as few possible placements of errors leading
to the region being unmatched.

Using spaced k-mers (Ma et al. 2002) or permutations of the
string (Lederman 2013) would help if themutations were substitu-
tions.We could consider lowering k, but this would generatemore
matches to other strings as well. To achieve the same uniqueness as
longer k, we could consider coupled k-mers (Altschul et al. 1997) of
say 15 nt per pair, with some gap in between them.Note that the k-
mers would need to be coupled before searching for matches to
avoid many matches to other sequences. Furthermore, if the cou-
pled k-mers have a fixed distance fromeach other, we have just cre-
ated a specific type of spaced k-mers, which are only robust to
substitutions. We, therefore, could consider coupled minimizers
(Chin and Khalak 2019; Sahlin and Medvedev 2021) to select a
random gap size for us, but in a deterministic manner.

This brings us to the strobemers. In the scenario above, we
could pick a k-mer of size 15 at a position we want to sample and
couple it with a minimizer of length 15 derived from a window
downstream from the k-mer. Together, they have sequence length
30 and are therefore robust to false matches. They can also match
across themutations, where the mutations could be both substitu-
tions and indels. If we increase themutation density on our string,
eventually, our two k-mers of length 15 nt will also fail to produce
any matches. Therefore, we could consider triplets of a k-mer and
two minimizers of length, for example, 10 nt. Finally, we can fur-
ther reduce the sampled minimizers’ dependency, and therefore
the positional correlation of thematches, using other hashing pro-
tocols (as we will investigate here).

Strobemers

Consider a string, s. A strobemer of order n in s is a subsequence
of s composed of a set of ordered substrings m1, …mn on s of
equal length ℓ, that we call strobes. If the first strobe, m1, starts
at position i, the second strobe, m2, will be selected from a down-
stream window [i+wmin : i+wmax] with wmin <wmax. Similarly, m3

will be selected downstream from m2 in the window [i+wmin +
wmax : i+2wmax] on s. To generalize, strobe mn (n > 1) is selected
from the region [i+wmin + (n−2)wmax : i+ (n−1)wmax] in s. We
will from now on parameterize a strobemer as (n, ℓ, wmin, wmax),
denoting the order, the length of the strobe, and the minimum
and maximum window offset to the previous window,
respectively.

We will describe three different methods for computing the
strobemers, which produce different results in terms of sequence
match metrics and computing time. First, we denote as minstrobe,
a strobemer in which strobesm2,…,mn are minimizers in their re-
spective windows under any hash function, h (Fig. 6A). That is, a
minstrobe consists of a starting strobe concatenated with n−1
consecutively concatenated minimizers.

Second, we denote as randstrobe, a strobemer in which strobe
mj is selected dependent on the previous m1, …mj−1 strobes
(Fig. 6B). Consider the function h(m′|m1, . . . , mj−1) = h(m1 ⊕ . . .

⊕mj−1 ⊕m′), where ⊕ denotes string concatenation, and let mj

be the m′ ∈ [i+wmin + (j−2)wmax : i+ (j−1)wmax] that minimizes
h. That is, previously selected strobes influence the decision of
m′ as opposed to the minstrobes method. We have here
abstracted over h as any hash function taking a string as input
and producing an integer. There are several ways to implement
the conditional dependence h(m′|m1, …, mj−1) more efficiently.
An example for compiled languages is to represent the strobes as
binary numbers and to perform bit operations to produce the
strobes. Specifically, let tj denote the binary number representa-
tion of strobe mj obtained by converting the letters A, C, G,
and T to the two-bit representations 00, 01, 10, and 11, and let
& denote the bitwise AND operator. Then we can compute
h(t ′|t1, . . . , t j−1) = ((t1 + . . .+ t j−1 + t ′)&q), where q is a bitmask
consisting of ones at the 16 lowest-order bits and remaining zeroes,
and select the t′ = tj thatminimizes h. Such an operation is efficient
in compiled languages. Finding themost efficientmethod to com-
pute randstrobes is subject for future work.

Third, we will consider a hybrid between minstrobes and
randstrobes that uses both independent minimizers and a condi-
tional dependence between strobes that we call hybridstrobes (Fig.
6C). Consider partitioning the sampling window for each strobe
into x disjoint segments of length wx = ⌊(wmax − wmin)/x⌋. That
is, the sampling window for m2 is partitioned into x disjoint sub-
windows [i+wmin : i+wmin +wx), [i+wmin +wx : i+wmin + 2wx), …
[i+wmin + (x−1)wx : i+wmax), and similarly for the sampling
windows of the other strobes. We select a strobe, mj, as the mini-
mizer in the rth window segment of length wx dependent on the
remainder, r, of the previous strobe modulo, x, namely,
r = h(mj−i) mod x. In this study, we use x=3.

An important aspect of the three protocols is the randomness
in sampling of the strobes. For two strobes with nearby starting po-
sitions, strobes m2,.., mn will most frequently be the same under
the minstrobe generation owing to independent minimizers (see
Fig. 6) and will most frequently differ in a randstrobe. This means
that under the same parameters in the protocols, the randstrobes
will (in all likelihood) contain more uniquely sampled positions
and, hence, more unique randstrobes, whereas minstrobes more
frequently share minimizers. Hybridstrobes place somewhere in
between minstrobes and randstrobes depending on the size of x.
Although the strobe selection is not as random as randstrobes,

Sahlin

2090 Genome Research
www.genome.org

having x possible candidates for each strobe produces more ran-
domly distributed matches than minstrobes.

We have described how to produce the individual strobes
for the three protocols, but we did not mention yet how to rep-
resent the actual strobemers. Similarly to k-mers, the representa-
tion of strobemers in memory is flexible and depends on the
application. For example, the concatenated strobes could be
stored as a string representing the actual sequence of a stro-
bemer. Alternatively, we could store a hash value representing
the strobemer. Similar to k-mers, if a hash value is stored repre-
senting the strobemer, the specific hash function dictates the
rate of hash collisions leading to false-positive matches. We dis-
cuss the details of how we represent a strobemer in the
Implementation section.

We also note that minstrobes of order 2 are similar to but for-
mally different from paired minimizers (Chin and Khalak 2019;
Sahlin andMedvedev 2021). Bothminstrobes of order 2 and paired
minimizers consist of two substrings. However, paired minimizers
are twominimizers that are coupled together under some distance
constraint on a sequence, whereas forminstrobes, the first strobe is
not necessarily a minimizer. Therefore, paired minimizers of
length ℓ with distance constraint wmax are a subset of minstrobes
produced with parameters (2, ℓ, 1, wmax).

Construction of strobemers

We aim to produce strobemers of a string, s, in a similar manner to
how k-mers are produced, namely, one strobemer per position, i∈
[1, |s|− k+1]. This wouldmean that we extract the same amount of
k-mers and strobemers from a string, s, and, consequently, for
equal length k, the same amount of raw data. Note, however,
that the number of unique k-mers and strobemers may differ.
We construct strobemers as follows. The total possible span of a
strobemer of order n is W= (n−1)wmax +ℓ, and the total subse-
quence length is k = ∑n

j=1 mj with wmin≥ℓ (no strobe is overlap-
ping). Let us consider extraction of a strobemer at position i in s.
IfW≤ |s|− i, we use the predefinedwindows [wmin,wmax) and com-
pute the strobemers under the respective strobemer protocols as
described above. If W> |s|− i, we narrow the window sizes until
m1 to mn are all adjacent to each other, producing a substring (k-
mer) of length k. Under this construction, the same amount of k-
mers and strobemers will be extracted from a string. Here, we
choose to shorten each window [wmin, wmax] to ⌊|s| − i⌋/n.

For applications such as read mapping, narrowing the win-
dow at the end of the readmay result in different strobemers being
extracted from the endof the read and the reference. Therefore, the
narrowing of windows at the end of a sequence can be omitted

A

B

C

Figure 6. An illustration of three minstrobes (A) and three randstrobes (B) with (n=3, ℓ=3, wmin = 3, wmax =5), and one hybridstrobe (C) with (n=3, ℓ=
3, wmin = 3, wmax = 5, x = 3) generated from a DNA string of 16 letters. With parameters n =3 and ℓ=3, the strobemers will consist of three strobes (sub-
strings) each of length 3. The position of the first strobe,m1, in each of the strobemers is highlighted in blue. The rest of the strobemers are chosen from a
window of wmax−wmin + 1=3 positions based on the minimizer method of minstrobes (A), randstrobes (B), or hybridstrobes (C). The possible start posi-
tions of strobesm2 andm3 are highlighted in green and red, respectively. For the minstrobe method A, the 3-mer minimizer hash values (under a made up
hash function in the figure) are shown above the DNA string and come from computing h(m) for each 3-mer strobem. The position of the hash value cor-
responds to the first position of the 3-mer strobe. Theminimizer values in all relevant strobe windows of length 3 in the figure are indicated by gray squares.
For the minstrobe method, strobesm2 andm3 are selected independently based on the minimizer value in each strobemer window. This gives a high sim-
ilarity between nearby strobemers (sharing minimizers). The three minstrobes produced are shown to the right in A. For the randstrobe method B, strobes
m2 andm3 are selected depending on the previous strobes, namely, h(m|m1,…,mi−1). The function producing the conditional dependence is irrelevant for
the purpose of illustration. Herewe use string concatenation of previous strobes to produce the dependence, but any other function producing conditional
dependence will suffice. Because of the conditional dependence in the hash function, randstrobes are more randomly (but deterministically) distributed
across the sequence. For the hybridstrobe method C, strobes m2 and m3 are selected from one of the x subwindows depending on the remainder of the
previous strobe. Each subwindow has individually computed minimizers similar to the minstrobes. However, allowing the sampling of a strobe from one of
the x windows to depend on the remainder of the previous strobe creates more sampling variability than minstrobes.

Strobemers

Genome Research 2091
www.genome.org

from such applications. Furthermore, the protocol to extract stro-
bemers allows overlapping strobes with wmin <ℓ. For example, a
strobemer with parameterization (2, 15, 1,70) may produce stro-
bemers that span between 16 and 85 nt on the sequence, counting
the span as the leftmost to the rightmost nucleotide in the stro-
bemer. We will here consider wmin≥ℓ giving nonoverlapping
strobes, assuring that

∑n
j=1 mj = k. The pseudocode to construct

strobemers is given in Supplemental Note B.

Time complexity

If we ignore the time complexity of the hash function, the time
complexity of generating minimizers is O(|s|w) for window size
w. However, as previously noted (Li 2016), computing minimizers
is in practice close toO(|s|) if we use a queue to cache previousmin-
imizer values in the window. The expensive step is when a previ-
ous minimizer is discarded from the queue and a new minimizer
needs to be computed for the window.

Similar to computing minimizers, strobemers have a worst-
case time complexity of O(|s|n(wmax−wmin)). However, the inde-
pendence of hash values in theminstrobe and hybridstrobe proto-
colsmakes them close toO(|s|) in practice by using separate queues
for each strobe sampling window in the same manner as comput-
ing minimizers independently. The randstrobe protocol does not
have this independence under the hashing scheme we consider
in this study, which means that all hash values have to be recom-
puted at each position. This means its practical time complexity is
therefore O(|s|n(wmax−wmin)).

Implementation

The pseudocode to construct strobemers (Supplemental Note B) is
provided for the simplicity in expression, they are not efficient im-
plementations. We want to avoid string concatenation. We also
want to avoid repeated computation of minimizers for minstrobes
and hybridstrobes where minimizer values are computed
independently.

We first precompute all the hash values in a string to work
with addition of hash values instead of string concatenations.
For minstrobes and hybridstrobes, we keep a queue data structure
with the hash values in the current sampling window for each
strobemj, j≥2 and the current minimum hash value in each win-
dow. This allows us to only recompute the minimum hash values
in the window whenever we discard the current minimum in the
queue, as described previously (Li 2016). For randstrobes, we can-
not use queues. We instead select the strobe m′ in a window that
minimizes the function (t + t ′)& q, where t and t′ are bit represen-
tations of the previous strobe m and the candidate strobe m′, re-
spectively, and q is a bit-mask of 16 ones, and “&” is the bitwise
AND operator.

For strobemers of order 2 consisting of strobesm1 andm2, the
final strobemer hash value that is stored will be h(m1)/2 +h(m2)/3.
We store the hash value to represent the strobemer and not the se-
quence of the strobemer explicitly. Similarly, for strobemers of or-
der 3 consisting of strobes m1, m2, and m3, we store h(m1)/3 +h
(m2)/4 +h(m3)/5. We divide each hash value for two reasons.
First, it makes the function asymmetric. An asymmetric function
should be used so that a permutation of the strobes within a stro-
bemer do not produce the same strobemer hash value. Second, the
division of each hash value ensures that there is no overflow when
representing the hash value in a 64-bit integer.

Spaced k-mer sampling

The spaced k-mers consist of a window of size L with k fixed posi-
tions and a set of L− k wildcard (or “don’t care”) positions. This

is commonly represented as a binary string in which ones are sam-
pled and zeros are wildcard positions. For example, in the string
AGGTCAwith L=6, the spaced k-mer 101011 isAGCA. In our eval-
uations, we choose two densities of fixed positions for the spaced
k-mers. First, we denote as spaced-dense a strategy in which 2/3 of
the positions are fixed and denote as spaced-sparse a strategy in
which 1/3 of the positions are fixed. The spaced-dense and the
spaced-sparse frequency of fixed positions roughly correspond to
the densities used by Brǐnda et al. (2015) and Leinonen and
Salmela (2021), respectively. To keep k fixed, we use L=1.5k in
the spaced-dense protocol and L=3k in the spaced-sparse protocol.
The windows’ first and last positions are always fixed (see Brǐnda
et al. 2015; Leinonen and Salmela 2021) to assure the length of
the spaced k-mer. The remaining fixed positions are randomly
chosen. In, for example, the work by Leinonen and Salmela
(2021), the sampled positions are handpicked. Although hand-
picking positionsmay bemore suitable for optimizing lower corre-
lation betweenmatches, this study focuses on designing a protocol
robust to indels. We will observe that spaced k-mers do not work
well for mutations other than substitutions.

Software availability

All the scripts used for the analysis and evaluation, as well as the
Python and C++ reference implementations of our tool
StrobeMap, together with installation and usage instructions, are
available at GitHub (https://github.com/ksahlin/strobemers) and
as Supplemental Code. The C++ version of StrobeMap used in
this study is available at GitHub (https://github.com/ksahlin/
strobemers/releases/tag/0.0.1). All scripts used for the analysis
and evaluation are available at GitHub (https://github.com/
ksahlin/strobemers/tree/main/evaluation).

Competing interest statement

The authors declare no competing interests.

Acknowledgments

We thank Wei Shen for a discussion on efficient hash computa-
tions of randstrobes in complied languages. We also thank the
anonymous reviewers, as well as Paul Medvedev, Camille
Marchet, Robert Harris, Rayan Chikhi, Lior Pachter, Karel Brǐnda,
Michael Hall, Michael Schatz, and Páll Melsted for their con-
structive comments and suggestions. The computations were
performed on resources provided by the Swedish National Infra-
structure for Computing (SNIC) at Uppsala Multidisciplinary
Center for Advanced Computational Science (UPPMAX) partially
funded by the Swedish Research Council through grant agreement
no. 2018-05973.

References

Abo RP, Ducar M, Garcia EP, Thorner AR, Rojas-Rudilla V, Lin L, Sholl LM,
HahnWC, MeyersonM, Lindeman NI, et al. 2015. BreaKmer: detection
of structural variation in targeted massively parallel sequencing data us-
ing kmers. Nucleic Acids Res 43: e19. doi:10.1093/nar/gku1211

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman
DJ. 1997. Gapped BLAST and PSI-BLAST: a newgeneration of protein da-
tabase search programs. Nucleic Acids Res 25: 3389–3402. doi:10.1093/
nar/25.17.3389

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a
new genome assembly algorithm and its applications to single-cell se-
quencing. J Comput Biol 19: 455–477. doi:10.1089/cmb.2012.0021

Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM. 2015.
Assembling large genomes with single-molecule sequencing and locali-
ty-sensitive hashing.Nat Biotechnol 33: 623–630. doi:10.1038/nbt.3238

Sahlin

2092 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
https://github.com/ksahlin/strobemers
https://github.com/ksahlin/strobemers
https://github.com/ksahlin/strobemers
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275648.121/-/DC1
https://github.com/ksahlin/strobemers/releases/tag/0.0.1
https://github.com/ksahlin/strobemers/releases/tag/0.0.1
https://github.com/ksahlin/strobemers/releases/tag/0.0.1
https://github.com/ksahlin/strobemers/releases/tag/0.0.1
https://github.com/ksahlin/strobemers/releases/tag/0.0.1
https://github.com/ksahlin/strobemers/releases/tag/0.0.1
https://github.com/ksahlin/strobemers/tree/main/evaluation
https://github.com/ksahlin/strobemers/tree/main/evaluation
https://github.com/ksahlin/strobemers/tree/main/evaluation
https://github.com/ksahlin/strobemers/tree/main/evaluation

Blanca A, Harris RS, Koslicki D, Medvedev P. 2021. The statistics of k-mers
from a sequence undergoing a simple mutation process without spuri-
ous matches. bioRxiv doi:10.1101/2021.01.15.426881

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic
RNA-seq quantification. Nat Biotechnol 34: 525–527. doi:10.1038/nbt
.3519

Brejová B, Brown DG, Vinar ̌ T. 2005. Vector seeds: an extension to spaced
seeds. J Comput Syst Sci 70: 364–380. doi:10.1016/j.jcss.2004.12.008

Brǐnda K, Sykulski M, Kucherov G. 2015. Spaced seeds improve k-mer-based
metagenomic classification. Bioinformatics 31: 3584–3592. doi:10
.1093/bioinformatics/btv419

Broder AZ. 1997. On the resemblance and containment of documents. In
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.
97TB100171), Salerno, Italy, pp. 21–29. IEEE. doi:10.1109/SEQUEN
.197.666900

Buhler J, Keich U, Sun Y. 2005. Designing seeds for similarity search in ge-
nomic DNA. J Comput Syst Sci 70: 342–363. doi:10.1016/j.jcss.2004.12
.003

Burkhardt S, Kärkkäinen J. 2002. One-gapped q-gram filters for Levenshtein
distance. In Combinatorial Pattern Matching. CPM 2002. Lecture Notes in
Computer Science (eds. Apostolico A, Takeda M), Vol. 2373, pp. 225–
234. Springer, Heidelberg.

Burkhardt S, Kärkkäinen J. 2003. Better filtering with gapped Q-grams.
Fundam Inf 56: 51–70.

Charikar MS. 2002. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thirty-fourth annual ACM symposium on theory
of computing, pp. 380–388. Association for Computing Machinery,
Montreal.

Chikhi R, Medvedev P. 2014. Informed and automated k-mer size selection
for genome assembly. Bioinformatics 30: 31–37. doi:10.1093/bioinfor
matics/btt310

Chin CS, Khalak A. 2019. Human genome assembly in 100 minutes.
bioRxiv doi:10.1101/705616

Chor B, Horn D, Goldman N, Levy Y, Massingham T. 2009. Genomic DNA
k-mer spectra: models and modalities. Genome Biol 10: R108. doi:10
.1186/gb-2009-10-10-r108

Daily J. 2016. Parasail: SIMDC library for global, semi-global, and local pair-
wise sequence alignments. BMC Bioinformatics 17: 81. doi:10.1186/
s12859-016-0930-z

Delcher AL, Kasif S, FleischmannRD, Peterson J,WhiteO, Salzberg SL. 1999.
Alignment of whole genomes. Nucleic Acids Res 27: 2369–2376. doi:10
.1093/nar/27.11.2369

Du N, Chen J, Sun Y. 2019. Improving the sensitivity of long read overlap
detection using grouped short k-mer matches. BMC Genomics 20: 190.
doi:10.1186/s12864-019-5475-x

Edgar R. 2021. Syncmers are more sensitive than minimizers for selecting
conserved k mers in biological sequences. PeerJ 9: e10805. doi:10
.7717/peerj.10805

Frith MC, Noé L, Kucherov G. 2020. Minimally overlapping words for se-
quence similarity search. Bioinformatics 36: 5344–5350. doi:10.1093/
bioinformatics/btaa1054

Giladi E, Healy J, Myers G, Hart C, Kapranov P, Lipson D, Roels S, Thayer E,
Letovsky S. 2010. Error tolerant indexing and alignment of short reads
with covering template families. J Comput Biol 17: 1397–1411. doi:10
.1089/cmb.2010.0005

Harris RS, Medvedev P. 2020. Improved representation of sequence bloom
trees. Bioinformatics 36: 721–727. doi:10.1093/bioinformatics/btz662

Haubold B, Pierstorff N,Möller F,Wiehe T. 2005.Genome comparisonwith-
out alignment using shortest unique substrings. BMC Bioinformatics 6:
123. doi:10.1186/1471-2105-6-123

Hozza M, Vinar ̌ T, Brejová B. 2015. How big is that genome? Estimating ge-
nome size and coverage from k-mer abundance spectra. In String process-
ing and information retrieval (ed. Iliopoulos C, et al.), SPIRE 2015, Lecture
Notes on Computer Science Vol. 9309, pp. 199–209. Springer
International Publishing, Cham, Switzerland. doi:10.1007/978-3-319-
23826-5_20

Jain C, Dilthey A, Koren S, Aluru S, Phillippy AM. 2018. A fast approximate
algorithm for mapping long reads to large reference databases. J Comput
Biol 25: 766–779. doi:10.1089/cmb.2018.0036

Jain C, Rhie A, Hansen N, Koren S, Phillippy AM. 2020a. A long read map-
ping method for highly repetitive reference sequences. bioRxiv doi:10
.1101/2020.11.01.363887

Jain C, Rhie A, Zhang H, Chu C, Walenz BP, Koren S, Phillippy AM. 2020b.
Weighted minimizer sampling improves long read mapping.
Bioinformatics 36: i111–i118. doi:10.1093/bioinformatics/btaa435

Keich U, Li M, Ma B, Tromp J. 2004. On spaced seeds for similarity search.
Discrete Applied Mathematics 138: 253–263. doi:10.1016/S0166-218X
(03)00382-2

Khorsand P, Hormozdiari F. 2021. Nebula: ultra-efficient mapping-free
structural variant genotyper. Nucleic Acids Res 49: e47. doi:10.1093/
nar/gkab025

Kucherov G, Noe L, Roytberg M. 2005. Multiseed lossless filtration.
IEEE/ACM Trans Comput Biol Bioinform 2: 51–61. doi:10.1109/TCBB
.2005.12

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. 2004. Versatile and open software for comparing large ge-
nomes. Genome Biol 5: R12. doi:10.1186/gb-2004-5-2-r12

Lederman R. 2013. A random-permutations-based approach to fast read
alignment. BMC Bioinformatics 14: S8. doi:10.1186/1471-2105-14-S5-S8

Leinonen M, Salmela L. 2021. Extraction of long k-mers using spaced
seeds. IEEE/ACM Trans Comput Biol Bioinform doi:10.1099/
TCBB.2021.3113131

Li H. 2016. Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences. Bioinformatics 32: 2103–2110. doi:10.1093/bioin
formatics/btw152

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34: 3094–3100. doi:10.1093/bioinformatics/bty191

Liu B, Guo H, Brudno M, Wang Y. 2016. deBGA: read alignment with de
Bruijn graph-based seed and extension. Bioinformatics 32: 3224–3232.
doi:10.1093/bioinformatics/btw371

Ma B, Tromp J, Li M. 2002. PatternHunter: faster andmore sensitive homol-
ogy search. Bioinformatics 18: 440–445. doi:10.1093/bioinformatics/18
.3.440

Marçais G, DeBlasio D, KingsfordC. 2018. Asymptotically optimalminimiz-
ers schemes. Bioinformatics 34: i13–i22. doi:10.1093/bioinformatics/
bty258

Marchet C, Iqbal Z, Gautheret D, Salson M, Chikhi R. 2020. REINDEER:
efficient indexing of k-mer presence and abundance in sequencing
datasets. Bioinformatics 36: i177–i185. doi:10.1093/bioinformatics/
btaa487

Marchet C, Boucher C, Puglisi SJ, Medvedev P, Salson M, Chikhi R.
2021. Data structures based on k-mers for querying large collections of
sequencing data sets. Genome Res 31: 1–12. doi:10.1101/gr.260604.119

Noé L, Kucherov G. 2004. Improved hit criteria for DNA local alignment.
BMC Bioinformatics 5: 149. doi:10.1186/1471-2105-5-149

Nurk S, Koren S, Rhie A, Rautianinen M, Bzikadze AV, Mikheenko A,
Vollger MR, Altemose N, Uralsky L, Gershman A, et al. 2021. The com-
plete sequence of a human genome. bioRxiv doi:10.1101/2021.05.26
.445798

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S,
Phillippy AM. 2016. Mash: fast genome and metagenome distance esti-
mation using MinHash. Genome Biol 17: 132. doi:10.1186/s13059-016-
0997-x

Orenstein Y, Pellow D, Marçais G, Shamir R, Kingsford C. 2017. Designing
small universal k-mer hitting sets for improved analysis of high-
throughput sequencing. PLoS Comput Biol 13: e1005777. doi:10.1371/
journal.pcbi.1005777

Patro R, Mount SM, Kingsford C. 2014. Sailfish enables alignment-free iso-
form quantification from RNA-seq reads using lightweight algorithms.
Nat Biotechnol 32: 462–464. doi:10.1038/nbt.2862

Pevzner PA. 1989. 1-Tuple DNA sequencing: computer analysis. J Biomol
Struct Dyn 7: 63–73. doi:10.1080/07391102.1989.10507752

Pevzner PA, Waterman MS. 1995. Multiple filtration and approximate pat-
tern matching. Algorithmica 13: 135–154. doi:10.1007/BF01188584

Rangavittal S, Stopa N, Tomaszkiewicz M, Sahlin K, Makova KD, Medvedev
P. 2019. DiscoverY: a classifier for identifying Y chromosome sequences
in male assemblies. BMC Genomics 20: 641. doi:10.1186/s12864-019-
5996-3

Ritz A, Bashir A, Raphael BJ. 2010. Structural variation analysis with strobe
reads. Bioinformatics 26: 1291–1298. doi:10.1093/bioinformatics/
btq153

Roberts M, HayesW, Hunt BR, Mount SM, Yorke JA. 2004. Reducing storage
requirements for biological sequence comparison. Bioinformatics 20:
3363–3369. doi:10.1093/bioinformatics/bth408

Sahlin K, Medvedev P. 2020. De novo clustering of long-read transcriptome
data using a greedy, quality value-based algorithm. J Comput Biol 27:
472–484. doi:10.1089/cmb.2019.0299

Sahlin K, Medvedev P. 2021. Error correction enables use of Oxford
Nanopore technology for reference-free transcriptome analysis. Nat
Commun 12: 2. doi:10.1038/s41467-020-20340-8

Sahlin K, Frånberg M, Arvestad L. 2017. Structural variation detection with
read pair information: an improved null hypothesis reduces bias. J
Comput Biol 24: 581–589. doi:10.1089/cmb.2016.0124

Salmela L, Walve R, Rivals E, Ukkonen E. 2016. Accurate self-correction of
errors in long reads using de Bruijn graphs. Bioinformatics 33: 799–
806. doi:10.1093/bioinformatics/btw321

Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ,
Schatz MC, Delcher AL, Roberts M, et al. 2012. GAGE: a critical evalua-
tion of genome assemblies and assembly algorithms. Genome Res 22:
557–567. doi:10.1101/gr.131383.111

Schleimer, S,WilkersonDS, AikenA. 2003.Winnowing: local algorithms for
document fingerprinting. In Proceedings of the 2003 ACM SIGMOD

Strobemers

Genome Research 2093
www.genome.org

International Conference on Management of Data, SIGMOD ‘03, pp. 76–85.
Association for Computing Machinery, San Diego.

Shaw J, Yu YW. 2021. Theory of local k-mer selection with appli-
cations to long-read alignment. bioRxiv doi:10.1101/2021.05.22
.445262

Solomon B, Kingsford C. 2016. Fast search of thousands of short-read se-
quencing experiments. Nat Biotechnol 34: 300–302. doi:10.1038/nbt
.3442

StandageDS, BrownCT,Hormozdiari F. 2019. Kevlar: amapping-free frame-
work for accurate discovery of de novo variants. iScience 18: 28–36. doi:10
.1016/j.isci.2019.07.032

Steinegger M, Söding J. 2018. Clustering huge protein sequence sets in lin-
ear time. Nat Commun 9: 2542. doi:10.1038/s41467-018-04964-5

Sun Y, Buhler J. 2005. Designing multiple simultaneous seeds for
DNA similarity search. J Comput Biol 12: 847–861. doi:10.1089/cmb
.2005.12.847

Vaser R, Sovic ́ I, Nagarajan N, Šikic ́ M. 2017. Fast and accurate de novo ge-
nome assembly from long uncorrected reads. Genome Res 27: 737–
746. doi:10.1101/gr.214270.116

Wang Y, Fu L, Ren J, Yu Z, Chen T, Sun F. 2018. Identifying group-specific se-
quences for microbial communities using long k-mer sequence signa-
tures. Front Microbiol 9: 872–872. doi:10.3389/fmicb.2018.00872

Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments.Genome Biol 15: R46. doi:10.1186/gb-
2014-15-3-r46

Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with
Kraken 2. Genome Biol 20: 257. doi:10.1186/s13059-019-1891-0

Zheng H, Kingsford C, Marçais G. 2020. Improved design and analysis of
practical minimizers. Bioinformatics 36: i119–i127. doi:10.1093/bioin
formatics/btaa472

Received April 13, 2021; accepted in revised form August 20, 2021.

Sahlin

2094 Genome Research
www.genome.org

