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The members of family Noctuidae exist in diverse environments and many species
from this group are of agriculture importance, particularly Helicoverpa spp. Helicoverpa
armigera (Hübner) (Lepidoptera: Noctuidae) is a major pest of many legumes and
cereal crops. Due to environmental and regulatory concerns, safe alternatives to broad
spectrum chemical insecticides are needed for the control of key noctuid pests such
as H. armigera. A strain of Beauveria bassiana (Cordycipitaceae: Hypocreales) was
evaluated for its ability to colonize endophytically in chickpea plants, and its effectiveness
against second (L2) and fourth (L4) larval instars of H. armigera. B. bassiana was
inoculated to chickpea plants through injection and endophytic establishment was
confirmed by re-isolating the fungi from leaf samples. A detached leaf assay was used
to evaluate pathogenicity. Bacillus thuringiensis was also applied to both larval stages
through leaf dip method. In a novel approach, combined treatments of bacteria and
endophytic fungi were compared with single-pathogen treatments. Relative to the single
treatments, the combined pathogen treatments exhibited an increase in larval mortality,
and decrease in pupation, adult emergence and egg eclosion. Specifically, synergistic
effects on mortality were observed when larvae were exposed to simultaneous
application of B. bassiana (1 × 108 conidia ml−1) with B. thuringiensis (0.75 µg
ml−1). Both instars exhibited varying level of growth, development, frass production,
diet consumption and fecundity when exposed to the chickpea leaves inoculated with
endophytic B. bassiana and dipped with sub-lethal doses of B. thuringiensis. These
findings indicate that the integrated application of endophytic colonized B. bassiana
and B. thuringiensis can be effectively used against H. armigera.

Keywords: endophytic colonization, Beauveria bassiana, Helicoverpa armigera, Bacillus thuringiensis, chickpea

INTRODUCTION

Among the leguminous crops chickpea (Cicer arietinum L.) is an important, nutritive and
inexpensive crop among the people of the developing world (Sharma et al., 2007). Moreover
chickpea plays a key role in increasing soil fertility through biological nitrogen fixation (Rao et al.,
2008). From sowing to maturity a number of insect pests attack chickpea plants. Among these insect
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pests Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is
the most serious (Chaudhary and Chaudhary, 1975; Khan,
1979; Chhabra, 1980). The insect feeds voraciously on
tender parts and young pods of the plant and in severe
cases can inflict losses up to 100% despite several rounds
chemical insecticide applications (Tay et al., 2013). Global
economic losses caused by this pest are more than $2 billion
annually. To combat this pest, insecticides continue to be
the main strategy among the chickpea growers throughout
the world. Overuse of chemical insecticides has led to
significant resistance issues (Yang et al., 2013). Indeed, low
susceptibility toward various chemicals has been reported by
a number of scientists (e.g., Cameron et al., 1995; Ahmad
et al., 1997; Gunning et al., 1998; Han et al., 1999; Martin
et al., 2000). Thus, safe and effective alternative control
measures must be sought.

Interest in the use of biopesticides is increasing due to
the promising insecticidal properties of these materials and
their safety to mammals, birds and other non-target organisms
(Inglis et al., 2001). Among biocontrol agents, entomopathogenic
fungi are promising measures for safe and long lasting control
of voracious pests such as H. armigera. Encouraging results
of several strains of Beauveria bassiana (Balsamo-Crivelli)
Vuillemin (Cordycipitaceae: Hypocreales) against different larval
stages of lepidopterous insect pests have been recorded (Nguyen
et al., 2007). The use of fungi such as B. bassiana in different crop
plants offers an alternative for the management of H. armigera
(Sandhu et al., 1993).

An intriguing aspect of entomopathogenic fungi such as
B. bassiana is that they can exist as endophytes in the
plant (Vega et al., 2008). Endophytes are microorganisms
that naturally reside within different plant parts (leaves stem
and roots) without any apparent disease symptoms (i.e.,
lesions, retarded growth, and discoloration etc.) (Schulz and
Boyle, 2005; Jalgaonwala et al., 2011). B. bassiana has been
reported worldwide in its distribution, parasitizing various
agriculturally important insect pests and has been recovered
endophytically from many plants (Vega, 2008). To the benefit
of the fungi, endophytically colonized B. bassiana receives
lifelong protection against environmental factors such as
UV light and rain. To the benefit of the plant, a key
characteristic of this fungal family (as an endophyte) is the
production of secondary metabolites (White et al., 2003), which
provide protection against plant pathogens and arthropod pests.
Endophytic relationships with entomopathogenic fungi such
as B. bassiana can be generated by artificially inoculating
flowers and or through foliar sprays, rhizome and root
immersion, soil drenching, radical dressing and seed dressing
(Parsa et al., 2013).

The efficacy of endophytic colonization by B. bassiana for
control of various insect pests in different field crops has gained
recent attention (Qayyum et al., 2015). The novel approach to
introducing entomopathogenic fungi into a system demonstrates
a variety of symbiotic relationships with host plants, and
exploits these interactions to open new perspectives regarding
pest management and improving plant health. Numerous
studies have confirmed the protection by endophytic fungi

against plant diseases, insects (Arnold et al., 2003; O’Hanlon
et al., 2012) or plant parasitic nematodes (Waweru et al.,
2014). A number of success stories of endophytic relationships
in banana (Akello et al., 2008), date palm (Gómez-Vidal
et al., 2006), cacao (Posada and Vega, 2005), coffee (Posada
et al., 2007), jute (Biswas et al., 2012), maize (Cherry et al.,
2004), pecan (Ramakuwela et al., 2019), potato (Jones, 1994),
sorghum (Tefera and Vidal, 2009), tomato (Leckie, 2002;
Qayyum et al., 2015) and Theobroma gileri, a close relative
of cocoa (Evans et al., 2003) has confirmed broad utility of
the approach in controlling insect pests of many important
crops. The symbiotic relation of the fungal entomopathogen
B. bassiana has become an integral part of Conopomorpha
cramerella (Snellen) (Lepidoptera: Gracillariidae) management
in Indonesia, Malaysia and Philippines (Posada and Vega,
2005). The introduction of B. bassiana as fungal endophyte in
maize had success in providing control of Ostrinia nubilalis
(Hübner) (Arnold and Lewis, 2005). Endophytic B. bassiana
has been shown to induce infection and protect against
H. armigera in prior studies though not in a chickpea system
(Qayyum et al., 2015).

Another promising group of biological control agents for
noctuid pests such as H. armigera are entomopathogenic bacteria
from the genus Bacillus. These bacteria are key antagonists
of numerous insect pests of economic importance in various
cropping systems (Salama et al., 2004). Bacillus thuringiensis is
often an integral part of products used in biological control
strategies worldwide; about 90% microbial pesticides used
globally are B. thuringiensis with annual sales of about $3
billion (although that is only 5% of total crop protection
market) (Marrone, 2014; Kumar and Singh, 2015; Olson, 2015;
Damalas and Koutroubas, 2018). Numerous species of this genus
particularly B. thuringiensis Berliner (Bt) are frequently used
against a vast array of insect pests from the orders Coleoptera,
Lepidoptera and Diptera etc; these bacteria exhibit a high degree
of specificity toward the host and specific stage of the host
(Salama et al., 2004).

Combined application of more than one biocontrol
agent can result in synergistic levels of pest control. For
example, Wraight and Ramos (2005) observed that integrated
application of B. bassiana and B. thuringiensis resulted in
synergistic interactions against some insect species. Later, in
another study, synergistic interactions between B. bassiana
and B. thuringiensis were confirmed against Colorado
potato beetle (Leptinotarsa decemlineata Say), which was
consistent under varying environmental regimes (Wraight
and Ramos, 2017). Similar results were reported from the
combined application of both agents against Mediterranean
flour moth larvae (Sandner and Cichy, 1967). However,
there is a dearth of information on using B. thuringiensis
in combination with entomopathogenic fungi in their
endophytic state. The present study targeted H. armigera
infestation in chickpea managed through endophytic
colonization of B. bassiana alone and in combination with
B. thuringiensis, impact of treatments on the development,
diet consumption, frass production and weight gain
was also assessed.
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MATERIALS AND METHODS

Helicoverpa armigera Collection and
Rearing
Larvae of H. armigera for the experiments were obtained from
the culture collection of the Microbial Control Laboratory,
Department of Entomology, University of Agriculture,
Faisalabad, Pakistan. The culture was maintained in the
laboratory for more than 30 generations on an artificial diet
(Wakil et al., 2011). The diet consists of chickpea flour (125 g),
red kidney beans (125 g), canned tomato paste (25 g), yeast (40 g),
agar (17 g), and a vitamin mixture (10 ml) mixed thoroughly in
distilled water (1300 ml). Due to their cannibalistic nature larvae
were reared individually in plastic vials (7 cm height, 3 cm in
diameter). After pupation, they were transferred to small plastic
boxes for adult emergence. The adult’s diet contained 10% honey
solution. The rearing conditions were maintained at 25◦C and
65% RH in an incubator (MIR-254, Sanyo, Japan).

Isolation of Endophytic Fungi
For isolation of endophytic fungi, chickpea fields were visited
in different chickpea growing areas of Punjab, Pakistan. The
plants were selected on the basis of cadavers lying under the
plants indicating the potential presence of endophytic fungi.
Endophytically colonized fungi were isolated following the
method of Arnold et al. (2000). Before isolation, plants were
carefully uprooted, sealed in a zipper bag, transferred to the
laboratory and stored at 4◦C until processing. For isolation, leaves
were first washed with running tap water and dried for 10 min.
A small piece (3 mm2) was cut from the center of the leaf
with sterilized scissors followed by surface sterilization with 70%
ethanol for 2 min followed by 2% sodium hypochlorite for 3 min
and then 3 rinses in distilled water. Leaf pieces were dried on
sterilized tissue paper and placed on Petri dishes containing 20 ml
of Potato Dextrose Agar (PDA) (Merck, Germany) amended
with chloramphenicol (50 µg ml−1), streptomycin sulfate (50 µg
ml−1) (Sigma, St Louis, MO, United States) and 0.5 g L−1 of
dodine (65%). After 14 days on the media plates, leaf pieces
that exhibited fungal growth were transferred to glass tubes on
Sabouraud Dextrose Agar (SDA) (BD, France) media slants for
storage and future use. The fungus was identified (Barnett and
Hunter, 1999) as B. bassiana on morphological characteristics:
conidia were produced in clusters with a characteristic snowball
shape and the conidiogenous cells had a flask shaped basal section
with a zig zag rachis.

Conidial Suspension
Beauveria bassiana isolate was mass cultured in PDA medium
enriched with 1% yeast extract (Watson et al., 1995) containing
50 µg ml−1 of chloramphenicol. The plates were incubated
at room temperature and humidity level (25◦C and 65% RH),
14 h Light: 10 h Dark photoperiod. Conidia from each plate
were harvested by scraping with a sterilized scalpel, and conidial
powder was dried and stored at 4◦C until formulation and
use. For experimentation, conidial powder was suspended in
sterile distilled water containing 0.01% (v/v) Tween-80 (Merck,

Germany). The conidia were dislodged into the suspension with
a glass rod. The suspension was filtered through a double layer
of sterile cheesecloth (mesh: 36 by 36 threads cm−2) to remove
clumps of mycelia. The conidial suspension was poured into a
sterile glass tube and vortexed for spore viability determination
(Lezama-Gutiérrez et al., 2001). Spore concentration was
determined with a hemocytometer and serial conidial dilutions
were made until required conidial concentrations were achieved.
The germination rate of B. bassiana conidia was >93%
determined prior to each bioassay.

Colonization of Endophytic Fungi in
Chickpea Plants
The B. bassiana isolate was inoculated in chickpea seedlings via
injection of a conidial suspension into the plant. The chickpeas
were grown in a glass house at the University of Agriculture,
Faisalabad. Two spore concentrations (1 × 105 and 1 × 108

conidia ml−1) for colonization were prepared in 0.01% Tween-
80. Fifteen plants were selected for each replication and three
replications were used for each treatment. Forty-day old chickpea
plants were selected for injection; injections were made to the
stem base with 1 ml of respective doses of fungal suspension using
a sterile syringe. Control plants were injected with 1 ml of sterile
water containing 0.01% Tween-80. The entire experiment was
repeated three times.

Preparation of B. thuringiensis
Spore-crystal Mixtures
The strain of B. thuringiensis isolate was obtained from
the Microbial Control Laboratory collection (Department
of Entomology, University of Agriculture, Faisalabad) and
was originally obtained from National Center for Genetic
Engineering and Biotechnology (BIOTEC) in Thailand. This
strain was then subjected to sporulation by culturing in 50 ml
nutrient broth media. Harvesting of cultures was carried out
by centrifugation at 6000 rpm for 15 min (Crecchio and
Stotzky, 2001; Hernández et al., 2005). The pellets received
three washings with cold 1 M NaCl and re-suspended. Spore
concentration was adjusted by 1:100 dilutions and optical
density was measured at 600 nm (Hernández et al., 2005),
then the samples were stored in refrigerator until used
(Wakil et al., 2013).

Mortality Assays
Bioassays were conducted to assess the endophytic efficacy of
B. bassiana against second (L2) and fourth (L4) instar larvae of H.
armigera. Fifteen leaves from inoculated (three weeks earlier) and
un-inoculated (control) plants were detached and offered to L2
and L4 instar H. armigera larvae. For B. thuringiensis treatments,
three concentrations (0.50, 0.75, and 1.0 µg ml−1) were prepared.
A piece of chickpea leaf (2 × 2 cm2) was immersed in respective
doses of B. thuringiensis suspension for 60s and offered to the
respective larval stages individually. The larvae were allowed to
feed on treated leaves for 48 h and shifted to the artificial diet for
rest of the period. In combined treatments B. bassiana inoculated
leaves were immersed in respective doses of B. thuringiensis
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suspension for 60 s and then offered to the larvae. Mortality
was recorded after every 48 h up to pupation for both larval
instars. The larvae were prodded with a blunt needle and those
unable to move in a coordinated manner were considered as
dead (Ma et al., 2008). From the surviving individuals, percentage
pupation, adult emergence and egg eclosion were also recorded.
Three replicates of fifteen larvae were used for each treatment
and same count of larvae fed on normal leaves served as the
non-treated check. All the treatments were incubated at 25◦C
and 65% RH and 14 h Light: 10 h Dark photoperiod in an
incubator (Sanyo, Japan). The entire experiment was repeated
three times.

Effect of Sub-lethal Doses on
Development of H. armigera
To determine the effect of sub-lethal doses of endophytic
B. bassiana (1 × 105 conidia ml−1) and B. thuringiensis (0.20,
0.30, and 0.40 µg ml−1) on developmental parameters viz. larval
duration, larval weight, pre-pupal duration, pre-pupal weight,
adult longevity (male and female) and adult weight (male and
female) was recorded on L4 instar larvae of H. armigera. The sub-
lethal doses were selected based on preliminary assays. A piece
of endophytically colonized B. bassiana and B. thuringiensis
were applied alone and in combination against L4 instar larvae
and incubated at above mentioned conditions. The larvae were
allowed to feed on treated leaves for 48 h and then shifted
to the artificial diet for rest of the period. After pupation, the
pupae were transferred to separate small plastic jars for adult
emergence. The adults were fed on 10% honey solution. Adults
were observed on daily basis and mortality was determined
until the death of last adult. Each treatment consisted of 45
larvae with three replicates and the experiment was repeated
thrice. The environmental conditions were set at 25◦C and
65% RH and 14 h Light: 10 h Dark photoperiod inside
the incubator.

Effect of Sub-lethal Doses on Diet
Consumption, Weight Grain and Frass
Production
A new batch of 6th instar H. armigera (L6) were offered sub-
lethal doses of endophytic B. bassiana (1 × 105 ml−1) and
B. thuringiensis (0.20 µg ml−1). A piece of endophytically
colonized chickpea leaf alone and in combination with
B. thuringiensis was offered to the larvae. The larvae were allowed
to feed on treated leaves for 48 h and then shifted to the artificial
diet for rest of the period. Before exposing to the leaves each
larva was weighed and transferred to a rearing vial. Every day
until the larvae pupated or died, larvae were moved to new
vials individually and provided with fresh diet every day. Frass
produced during this period was separated from vials using the
tip of a fine camel hair brush; the frass was then weighed. Diet
left unused in each vial was recovered and dried in a drying oven
at 80◦C. Prior to the assay, diet in 30 cups was dried to obtain
an estimate of the original dry weight. Diet consumption of each
larva was determined by subtracting the weight after feeding from

before. Moreover, total frass production and weight gain during
this period were also determined.

Statistical Analysis
Percentage mortality was recorded and corrected for control
mortality using Abbott (1925) formula. The data were then
subjected to a one-way analysis of variance in Minitab statistical
package (Minitab 2003) using Tukey’s Kramer test (HSD) (Sokal
and Rohlf, 1995) at 5% significance level. The type of interaction
between combined treatments of B. thuringiensis and B. bassiana
was determined by CTF analysis; CTF = (Oc-Oe)/Oe × 100,
where CTF is the co-toxicity factor, Oc is the observed mortality
(%) in combined application, and Oe the expected mortality
(%), that is the sum of individual mortality (%) encountered in
each of the treatments used in the combination (Mansour et al.,
1966). The interactions were categorized as additive, synergistic
or antagonistic: CTF ≥ 20 indicates synergism, CTF > −20
indicates additivity, and CTF < −20 indicates antagonism
(Mansour et al., 1966; Wakil et al., 2012).

RESULTS

Mortality Assays
Treatment effects were detected in the mortality assays. Table 1
presents the statistical results from the factorial analysis
including treatment and interaction effects. Table 2 presents
mean mortalities and the multiple range distribution (HSD
test). Significant differences were recorded for mortality among
different treatments and instars (treatment: F7, 160 = 199.67,
P ≤ 0.05; instar: F1, 161 = 64.21, P ≤ 0.05) but a non-
significant interaction was recorded for instar × treatment
(F7, 161 = 1.54, P = 0.09) (Table 1). A synergistic effect
(CTF ≥ 20) on mortality was observed when larvae were
exposed to simultaneous application of endophytic B. bassiana
and 0.75 µg ml−1 of B. thuringiensis in case of both instars
tested (Table 2).

There were higher numbers of dead larvae observed when
L2 instar exposed to the treatments than L4 instar larvae
(Table 2). The combined application of endophytic B. bassiana
and B. thuringiensis proved more fatal to both instars compared
to single application of each agent. For instance, the highest
mortality (77.40%) for L2 instar larvae was observed where
simultaneous application of B. bassiana and B. thuringiensis
(0.75 µg ml−1) was applied followed by 68.38% when treated
with B. bassiana and B. thuringiensis (1.0 µg ml−1) and 49.07%
when treated with B. bassiana (1 × 108 conidia ml−1) and
B. thuringiensis (0.50 µg ml−1) (Table 2). Additive effects
(CTF ≤ 20) were recorded when the tested instars were
treated with low doses of B. thuringiensis in integration with
endophytic B. bassiana while an antagonistic effect was observed
at highest dose of B. thuringiensis and endophytic B. bassiana
(Table 2). A similar trend in mortality was recorded for both 2nd
and 4th instars.

Percentage pupation, adult emergence and egg eclosion from
surviving individuals generally decreased within single and
combined treatments as the dose rate of B. thuringiensis increased
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TABLE 1 | Factorial analysis of mortality, pupation, adult emergence and egg eclosion of H. armigera treated with endophytically colonized B. bassiana and
B. thuringiensis.

Source df Mortality Pupation Adult emergence Egg eclosion

F P F P F P F P

Instar 1 64.21 ≤0.05 61.37 ≤0.05 54.23 ≤0.05 36.21 ≤0.05

Treatment 7 199.67 ≤0.05 222.34 ≤0.05 213.29 ≤0.05 249.0 ≤0.05

Instar × treatment 7 1.54 0.09 0.58 0.53 0.59 0.67 0.67 0.38

Error 145 - - - - - - - -

Total 160 - - - - - - - -

TABLE 2 | Mortality (mean ± SE)% of L2 and L4 instar H. armigera treated with endophytic B. bassiana (Bb: 1 × 108 conidia ml−1) alone and in combination with
B. thuringiensis (Bt1: 0.50; Bt2: 0.75; Bt3: 1.0 µg ml−1).

Treatments Second instar Fourth instar

Observed mortality (%) Expected
mortality

CTF Type of interaction Observed mortality (%) Expected
mortality

CTF Type of interaction

Bb 27.13 ± 1.36d 19.69 ± 1.19e

Bt1 19.96 ± 1.11d 14.87 ± 1.07e

Bt2 33.64 ± 2.02d 25.74 ± 1.25de

Bt3 58.05 ± 2.80bc 49.36 ± 2.34bc

Bb + Bt1 49.07 ± 2.13c 47.09 4.03 Additive 35.92 ± 1.70cd 34.56 3.78 Additive

Bb + Bt2 77.40 ± 3.10a 60.77 21.48 Synergistic 58.82 ± 2.77a 45.43 22.76 Synergistic

Bb + Bt3 68.38 ± 3.03ab 85.18 −24.5 Antagonistic 53.45 ± 2.31ab 65.05 −21.70 Antagonistic

df 6 - - 6 - -

F 40.6 - - 31.6 - -

P ≤ 0.05 - - ≤0.05 - -

Means followed by the same letters within each column are not significantly different; HSD test P ≤ 0.05.

(Figure 1). Overall, pupation, adult emergence and egg eclosion
was lower in the combination treatments than the single-applied
treatments (Figure 1).

Effect of Sub-lethal Doses on
Development of H. armigera
When larvae were encountered different sub-lethal
concentrations of B. thuringiensis and B. bassiana (1 × 105

conidia ml−1) and endophytically colonized chickpea leaves,
significant variation was recorded for all factors including
incubation of egg period: F7, 71 = 45.4, P ≤ 0.05; larval duration:
F7, 71 = 17.3, P ≤ 0.05; pre-pupal duration: F7, 71 = 30.70,
P ≤ 0.05; pupal duration: F7, 71 = 21.90, P ≤ 0.05; total
immature period: F7, 71 = 63.1, P ≤ 0.05; pre-oviposition period:
F7, 71 = 10.8, P ≤ 0.05; oviposition period: F7, 71 = 36.4, P ≤ 0.05;
post-oviposition period: F7, 71 = 16.0, P ≤ 0.05; daily fecundity:
F7, 71 = 214.0, P ≤ 0.05; total fecundity l: F7, 71 = 1902.0,
P ≤ 0.05; adult longevity: (female: F7, 71 = 30.3, P ≤ 0.05 and
male: F7, 71 = 35.0, P ≤ 0.05). Overall, incubation of eggs, larval,
pre-pupal period, pupal duration, total immature period and pre-
oviposition period increased as the dose rate of B. thuringiensis
application increased, and these parameters tended to be shorter
for the combine treatments than the individual treatments
(Table 3). In contrast, oviposition, post-oviposition period,
fecundity daily, fecundity total and adult longevity (male and
female) decreased as the dose rate of B. thuringiensis application

increased. Here again the combined treatments were more
effective than single treatments (Table 3).

Effect of Sub-lethal Doses on Diet
Consumption, Weight Grain and Frass
Production
Diet consumption by 6th instar larvae was significantly
influenced by the treatments (Bt: F9, 89 = 169.0, P ≤ 0.05; Bb:
F10, 98 = 56.5, P ≤ 0.05; Bt + Bb: F12, 116 = 46.8, P ≤ 0.05;
Control: F6, 62 = 167.0, P ≤ 0.05); diet consumption was lower
in combined treatments compared with sole applications. Diet
consumption was the lowest for the endophytic B. bassiana and
B. thuringiensis while the highest consumption was recorded
in the control treatment (Figure 2). Frass production was also
significantly influenced by treatments applied (Bt: F9, 89 = 39.4,
P ≤ 0.05; Bb: F10, 98 = 44.5, P ≤ 0.05; Bt + Bb: F12, 116 = 44.7,
P ≤ 0.05; Control: F6, 62 = 178.0, P ≤ 0.05). More frass
production was recorded during the initial days of treatments and
gradually decreased to zero before pupation. On the other hand,
the highest level of frass production was found in non-treated
larvae (Figure 3). Larvae treated with sub-lethal single-treatment
concentrations of B. bassiana and B. thuringiensis gained more
weight compared to their combined application (Figure 4).
Weight gain was also significantly different among the treatments
(Bt: F9, 89 = 734.0, P≤ 0.05; Bb: F10, 98 = 529.0, P≤ 0.05; Bt+ Bb:
F12, 116 = 166.0, P ≤ 0.05; Control: F6, 62 = 175.0, P ≤ 0.05).
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FIGURE 1 | Pupation (A), adult emergence (B), and egg eclosion (C) of L2 and L4 instars (mean ± SE)% of H. armigera treated with endophytic B. bassiana
(Bb: 1 × 108 conidia ml−1) alone and in combination with B. thuringiensis (Bt1: 0.50; Bt2: 0.75; Bt3: 1.0 µg ml−1). Means followed by the same letter within each
larval instar are not significantly different; HSD test P ≤ 0.05.
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DISCUSSION

Our study indicated that B. bassiana successfully colonized
chickpea plants endophytically and caused considerable mortality
in H. armigera larvae. Similarly, successful colonization of
B. bassiana in corn plant tissue resulted in high mortality
in larvae of O. nublialis when encountering endophytically
colonized plants (Bing and Lewis, 1991, 1992a,b). In banana
plants endophytically colonized B. bassiana caused high larval
mortality in banana root borer; eggs and adults that emerged
from infected larvae showed mycosis (Akello et al., 2008). In
another example, mycosed larvae of H. zea were also reported
from tomato plants inoculated with B. bassiana (Powell et al.,
2009). The authors (Powell et al., 2009) also observed fungal
infection within H. armigera larvae and later confirmed this
by visual fungal growth on cadavers after feeding on tomato
(Powell et al., 2007). The injection of B. bassiana and subsequent
pathogenic endophyte status against the target pest, H. armigera,
has been successfully demonstrated previously (Qayyum et al.,
2015). In the current study we are not necessarily advocating
injection as a practical means where a farmer would go out
and infect every single plant in his or her field. Rather, we are
putting forth this study as a model system indicating the unique
synergistic interaction between B. thuringiensis and B. bassiana
when it is in the plant as an endophyte.

Endophytic entomopathogenic fungi mostly belong to order
Hypocreales of division Ascomycota (Roy et al., 2006). They
are classified as Class II endophytes due to the ability to
endophytically colonize both above and below the ground
tissue of the host plant (Rodriguez et al., 2009; Quesada-
Moraga et al., 2014). Entry into the plant stems from the
germ tube formed from conidia, from which fungal hyphae
produce and penetrate into the plant tissues through the
stomata or with the aid of fungal enzymes and turgor pressure
produced from the hyphae via the epidermal cells (Wagner
and Lewis, 2000). The main objective of our study was to
evaluate the effectiveness of B. bassiana endophytically colonized
into chickpea plants against H. armigera and therefore we did
not investigate the factors influencing fungal penetration and
its colonization inside the plants. However, literature reveals
that researchers have investigated different plant/leaf factors
affecting the colonization of endophytic fungi. Endophytic fungi
have been reported in every plant species examined to date
(Tejesvi et al., 2007) and colonize vegetative and reproductive
parts of their host plants (Arnold et al., 2003). Cannon and
Simmons (2002) observed that endophytic colonization of species
of Colletotrichum, Nodulisporium, Pestalotiopsis, and Phomopsis
was greater in the midrib than in laminar tissue, and slightly
greater at the tip of the lamina compared with the base of
the leaves. Some other studies have been conducted to evaluate
the richness and the distribution of endophytes in the plant
leaves and found that some taxa were leaf age specific and
composition of endophytes varied with leaf region (Hilarino
et al., 2011). Other studies indicate that old leaves support
more endophytes than younger leaves (Suryanarayanan and
Thennarasan, 2004). Fernandes et al. (2011) reported that
changes in leaf biochemistry influenced endophytic colonization
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FIGURE 2 | Diet consumption (g) in last instar H. armigera treated with endophytic B. bassiana (Bb: 1 × 105 conidia ml−1) alone and in combination with
B. thuringiensis (Bt1: 0.20 µg ml−1). Means followed by the same letter within each treatment are not significantly different; HSD test P ≤ 0.05.

FIGURE 3 | Frass production (g) in last instar H. armigera treated with endophytic B. bassiana (Bb: 1 × 105 conidia ml−1) alone and in combination with
B. thuringiensis (Bt1: 0.20 µg ml−1). Means followed by the same letter within each treatment are not significantly different; HSD test P ≤ 0.05.

with consequences for endophyte distribution. On the other
hand, Arnold and Herre (2003) argued that leaf chemistry
has a minor role in endophyte colonization. The relation of
a polyphenolic biomolecule “tannin” with endophytic fungal
colonization in the leaves of Bauhinia brevipes (Fabaceae) has also
been studied (Cornelissen and Fernandes, 2001). It would indeed
be interesting to know what other fungi colonize the plant along
with B. bassiana, which is an interesting point for further study.

The mode of action of endophytic entomopathogenic fungi
is still unclear but most of the researchers believe that
the endophytic entomopathogenic fungi do not cause direct
infection rather mortality results from feeding deterrence or
antibiosis through inducing systemic plant defenses. There are
many studies involving the artificial colonization of endophytic
fungi in different plants and subsequent mortality of target
insect species. For example, two strains of B. bassiana were
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FIGURE 4 | Weight gain (g) in last instar H. armigera treated with endophytic B. bassiana (Bb: 1 × 105 conidia ml−1) alone and in combination with B. thuringiensis
(Bt1: 0.20 µg ml−1). Means followed by the same letter within each treatment are not significantly different; HSD test P ≤ 0.05.

successfully established as endophytes in Citrus limon (L.)
Osbeck plants as indicated through systemic colonization of
the various citrus plant parts i.e., leaves, stems and roots
by BB Fafu-13 strain. Endophytic B. bassiana induced 10%
to 15% mortality within 7 days of exposure when adult
psyllids that were allowed to feed on the leaves of treated
plants, and there was no mycosis detected on any of the
dead psyllids (Bamisile et al., 2019). In another study,
very low levels of mycosis (5.4–9.2%) was detected from
cadavers of horse-chestnut leaf miner Cameraria ohridella
Deschka & Dimić from two different strains of B. bassiana
AM-EF0111 and AM-EP0715 (Barta, 2018). Jaber et al.
(2018) reported no fungal outgrowth in sweetpotato whitefly
Bemisia tabaci Gennadius when exposed to endophytically
colonized B. bassiana and Metarhizium brunneum. Similar
findings have already been reported by other researchers
where no fungal outgrowth was discovered in cadavers of
insects fed with endophytically colonized plants (Resquín-
Romero et al., 2016; Sánchez-Rodríguez et al., 2018). Many
other studies showed no mycosis or only rare instances of
mycosis from the cadavers (Cherry et al., 2004; Quesada-
Moraga et al., 2009; Resquín-Romero et al., 2016; Sánchez-
Rodríguez et al., 2017). In our study we also did not
observe fungal outgrowth in H. armigera colonized with
B. bassiana; therefore, we hypothesize that toxins produced
by B. bassiana are responsible for the mortality of test
insect species. Beauveria bassiana produces beauvericins and
bassianolide, beauveriolides, oosporein, tenellin, pyridovericin,
pyridomacrolidin, bassiacridin and bassianin. By forming
complexes with cations, beauvericin causes an increase in
permeability of natural and artificial membranes. Beauvericin
also induces programmed cell death similar to apoptosis
(Waetjen et al., 2014). The toxin was cytotoxic (IC50 0.5 µM)
to a Spodoptera frugiperda (SF-9) cell line (Fornelli et al., 2004)

and on the Colorado potato beetle (LC50 633 ppm) (Roberts
et al., 1992). Feng et al. (2015) verified the role of oosporein in
fungal virulence to host insects through the inhibition of insect
defense mechanisms.

Bacillus thuringiensis toxins have also been found to be lethal
to a vast array of insect pests belonging to the orders Coleoptera,
Diptera, and Lepidoptera (Feitelson et al., 1992; Schnepf et al.,
1998), and hence B. thuringiensis-spore crystal mixtures have
been in used widely as bio-pesticides. For infection to occur
B. thuringiensis toxins attach to the specific bindings sites of
the insect’s midgut which then leads to cell lysis. This lysis
may result in the insect’s cessation of feeding, lethargy and
ultimately death (Marzban et al., 2009). The integrated use of
entomopathogenic fungi and Bt has depicted effective control
of insect pests (Mwamburi et al., 2009; Wakil et al., 2013),
however, no comparable literature is available regarding the
combination of endophytic fungi with B. thuringiensis against
any insect species.

Integration of two or more entomopathogens to control
insect pests may increase efficacy and the chances of targeting
multiple hosts (Pingel and Lewis, 1999). Marzban et al. (2009)
reported that the integration of two or more myco-pathogens
interact positively relative to their individual effect. In many
combinations, the virulence of an agent is enhanced by the
action of the other agent, which resultantly increases the speed
or magnitude of kill, and causes retarded growth and reduced
feeding in the host. In combined treatments of B. thuringiensis
and B. bassiana, both agents work synergistically weakening
the insect and affecting the insect immune response to allow
entomopathogens to infect the host more efficiently. When
B. bassiana gains access to the insect gut, it boosts the infection
of B. thuringiensis toxins. In this way both agents help each other
in retardation of normal physiological functions of an insect host.
These findings are further supported by Allee et al. (1990) who
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reported that B. bassiana germinating and invading the insect
favors the activity of B. thuringiensis toxins to increase pathogenic
severity in grubs of Colorado potato beetle.

The findings of our study revealed higher mortality levels
of H. armigera larvae in combined treatments of B. bassiana
inoculated chickpea leaves and B. thuringiensis compared to
their sole applications. Synergistic interactions were recorded
at intermediate doses of B. thuringiensis while, additive at low
doses and antagonistic effects were observed at high dose rates.
It would be interesting to explore why antagonism was observed
at the highest dose that investigation is beyond the scope of
this current study. Thus, as observed previously, interactions
among entomopathogens can vary depending on the dosage
of the microbial agents applied (Shapiro-Ilan et al., 2004).
Synergistic interactions were reported by Wraight and Ramos
(2005) when B. bassiana (GHA) and B. thuringiensis (Bt-k)
were sprayed on potatoes to protect against L. decemlineata.
Identical findings with dual applications of B. thuringiensis
and B. bassiana were also reported in the same host by
Furlong and Groden (2003). Other researchers observed similar
results when combining B. thuringiensis and B. bassiana with
synthetic insecticides (Fargues, 1975; Lewis and Bing, 1991).
Contrarily, no synergism was observed between B. thuringiensis
and B. bassiana against 4th stage larvae of L. decemlineata
(Costa et al., 2001). In such cases the method of fungal
spore application may retard the synergistic effect and cause a
differential response in terms of the level of mortality. Different
responses of Chilo partellus were reported when fungal spores
were applied on leaf disk compared to spray and dipping
(Tefera and Pringle, 2003).

Developmental parameters of H. armigera were greatly
affected by the treatments applied and were associated with rate
of application. Similar to our findings, Khalique and Ahmad
(2002) reported extended larval durations with increased Bt-k
concentrations. The studies of Ma et al. (2008) and Marzban et al.
(2009) also reported growth retardation of Ostrinia furnacalis and
H. armigera when challenged with Cry1Ac from B. thuringiensis-
treated diets and combined action of B. thuringiensis (Cry1Ac)
and HaCPV, respectively. In the larval development assay, our
findings indicated toxic effects of the pathogen as indicated by
decreased frass production. These findings corroborate those of
Marzban et al. (2009) who reported more food uptake in check
treatments as compared to the treatments applied. Similarly,
reduced frass production in Trichoplusia ni were reported with
the increase of treatment concentrations (Janmaat et al., 2014).
Surprisingly, we observed a peak in frass production in the

combined treatment on day 11. It is not clear why this occurred
yet it is known that food ingestion and thus frass production
can be variable over an insect’s life cycle (Moore et al., 1992;
Hernández-Velázquez et al., 2002; Mohammadbeigi and Port,
2015). Nonetheless, overall we observed negative impacts of the
treatments on larval fitness. These responses may be attributed
to increased B. thuringiensis concentrations altering the protein
to carbohydrate ratio of the diet, which resultantly disturbs the
insect’s growth response (Simpson and Raubenheimer, 1995).
Reduced food consumption with B. thuringiensis treatments
(Nathan et al., 2005; Ramalho et al., 2011), food utilization (Prutz
and Dettner, 2005; Ramalho et al., 2011) and reduced larval
weight has been reported previously.

This study provides evidence from the laboratory that
combining B. bassiana and B. thuringiensis may provide high
levels of synergistic control of H. armigera. A unique aspect of
the study is that we utilized B. thuringiensis in combination with
endophytic B. bassiana rather than aqueous fungal applications
(as has been used in prior studies). Our laboratory findings of
efficacy must be extended to field conditions in future research.
Also, this novel approach of combining endophytic fungi with
other microbial control applications should be investigated in
other pest and cropping systems. This paper is fundamental and
meant as proof of concept. As far as practical use, other methods
for inoculating the plants with B. bassiana (such as foliar spray or
seed dressing etc.) can be used on a larger scale.
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