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Buffering of cytosolic calcium plays a
neuroprotective role by preserving the
autophagy-lysosome pathway during
MPP™-induced neuronal death
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Abstract

Parkinson’s disease (PD) is a chronic neurodegenerative disease with no cure. Calbindin, a Ca**-buffering protein, has
been suggested to have a neuroprotective effect in the brain tissues of PD patients and in experimental models of PD.
However, the underlying mechanisms remain elusive. Here, we report that in 1-methyl-4-phenylpyridinium (MPP™)-
induced culture models of PD, the buffering of cytosolic Ca** by calbindin-D28 overexpression or treatment with a
chemical Ca*" chelator reversed impaired autophagic flux, protecting cells against MPP"-mediated neurotoxicity.

pathogenesis and future therapeutic targets of PD.

When cytosolic Ca** overload caused by MPP* was ameliorated, the MPP*-induced accumulation of
autophagosomes decreased and the autophagic flux significantly increased. In addition, the accumulation of
damaged mitochondria and p62-positive ubiquitinated protein aggregates, following MPP™ intoxication, was
alleviated by cytosolic Ca®™ buffering. We showed that MPP™ treatment suppressed autophagic degradation via
raising the lysosomal pH and therefore reducing cytosolic Ca*™ elevation restored the lysosomal pH acidity and
normal autophagic flux. These results support the notion that functional lysosomes are required for Ca**-mediated
cell protection against MPP*-mediated neurotoxicity. Thus, our data suggest a novel process in which the modulation
of Ca’* confers neuroprotection via the autophagy-lysosome pathway. This may have implications for the

Introduction

Parkinson’s disease (PD) is accompanied with a pro-
gressive loss of dopaminergic neurons in the substantia
nigra pars compacta (SNpc) and dopamine depletion in
the striatum™? Although the etiology of PD is unclear,
accumulating evidence suggests that abnormal protein
aggregation, mitochondrial dysfunction, and dysregulated
Ca®"  homeostasis may be involved in the
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neurodegeneration observed in PD*"°, Recently, advances
have been made in defining cell death modes associated
with the pathogenesis of PD”. Role of apoptosis has been
highlighted in studies using postmortem brains of PD
patients and experimental models of PD that were gen-
erated by applying familial cases of gene mutations or
treatment with neurotoxins®. Accumulating evidence
implicates other cell death modes including necrosis,
necroptosis, and parthanatos”'®. More recently, dysregu-
lated autophagic pathway has been found in postmortem
PD brains and in experimental models of PD"' ',
Because the intracellular catabolic process through which
protein aggregates and damaged subcellular organelles can
be degraded, autophagy is linked to PD pathogenesis'*"°.
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Autophagy is a lysosomal degradation pathway, which is
categorized into macroautophagy, chaperone-mediated
autophagy, and microautophagy. Macroautophagy (here-
after referred to as autophagy) involves double-membrane
vesicles called autophagosomes that sequester a portion of
the cytosol. After autophagosomes are formed and subse-
quently fused with late endosomes and/or lysosomes,
lysosomal hydrolases digest the internal cargo and the inner
membrane of autophagosomes. Autophagy is essential for
neuronal homeostasis and acts as a cytoprotective
mechanism'’~"°. Consequently, defective autophagy leads
to neurodegeneration'”'®* and cumulative evidence has
shown alterations in the autophagy-lysosome pathway in
neurodegenerative disorders'®. Notably, a tight link between
autophagy and PD is supported by the finding that many
PD-related genes are associated with the autophagy-
lysosome pathway. For instance, parkin and PINK1 play
major roles in mitophagy®’. Similarly, a-synuclein is a
substrate for chaperone-mediated autophagy, and patho-
genic mutants in this gene interfere with that process™.

Because pathophysiological changes induced by neuro-
toxins were reminiscent of those seen in PD patients,
these neurotoxins have been used for establishing
experimental models of PD and investigating the potential
pathophysiology associated with dopaminergic neurode-
generation®. Previously, we have suggested that these
neurotoxins act on distinct cell death pathways®*~**, For
example, ROS play a crucial role in 6-hydroxydopamine
(6-OHDA)-induced apoptosis, whereas treatment with 1-
methyl-4-phenylpyridinium (MPP") causes calcium-
dependent cell death. We have determined using bio-
chemical and ultrastructural criteria that these neuro-
toxins trigger autophagy”>”°. More recently, we have
indicated that a 6-OHDA triggers an excessive autophagic
flux that precedes apoptosis®’. Considering the findings
that dysregulated autophagic flux may be linked to neu-
ronal death, we questioned whether the buffering of
cytosolic Ca®" regulates the autophagy-lysosome path-
way. Here, we demonstrated that MPP"-mediated over-
load of cytosolic Ca®>" was responsible for defective
autophagy and resulted in cell death. We further identi-
fied that autophagic malfunction caused by MPP™" treat-
ment was due to impaired autophagic degradation
associated with lysosomal deficits. Accordingly, our data
suggest that limiting the increase of cytosolic Ca®" pro-
tects against MPP*-induced neuronal cell death via pre-
serving the autophagy-lysosome pathway.

Results
Buffering of cytosolic Ca®>" attenuates MPP"-induced
dopaminergic neuronal cell death

As previously demonstrated by us?®%, 1,2-Bis(2-ami-
nophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetrakis
(acetoxymethyl  ester)[BAPTA-AM] alleviated the
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elevation of Fluo-3-sensitive cytosolic Ca®*" in MN9D
cells treated with MPP™" (Fig. 1a, b). MPP " -mediated cell
death was inhibited by BAPTA-AM co-treatment (Fig.
1c). Transmission electron microscopy provided evidence
that BAPTA-AM protects cells from MPP" toxicity.
MPP" treatment resulted in the appearance of swollen
mitochondria and autophagic vacuoles (Fig. 1d and Fig.
S1). In contrast, co-treatment with BAPTA-AM main-
tained a pool of intact mitochondria. Similarly, fewer
MPP"-induced autophagic vacuoles were detected in
MNO9D cells co-treated with BAPTA-AM (Fig. 1d). To
verify the neuroprotective role of buffering of cytosolic
Ca®>*, MN9D cells were transfected with a vector con-
taining calbindin-D28K (MN9D/CB) or empty control
vector (MN9D/Neo; Fig. S2a). MPP*-induced elevation of
cytosolic Ca®>" levels observed in MN9D/Neo cells was
markedly limited in MN9D/CB #1 cells (Fig. S2b). In
agreement with previous reports>°—>*, MPP*-induced cell
death was suppressed in all three MN9D/CB cell lines
(Fig. S2c), demonstrating that the buffering of MPP™-
induced cytosolic Ca®>" surges inhibited dopaminergic
neuronal death.

MPP*-induced autophagosome accumulation is mediated
by elevated cytosolic calcium

Previous reports have demonstrated the existence of
autophagosomes in postmortem PD brain and in experi-
mental PD models*>**~*°, Consistent with these findings,
we observed double-membrane autophagosomes and
autolysosomes in MPP"-treated cells, whereas these
autophagic vacuoles were not easily detected in control
cells or MPP*- and BAPTA-AM-co-treated cells (Fig. 1d
and Fig. S1). To verify the correlation between cytosolic
Ca®" levels and autophagy during MPP"-induced neu-
rodegeneration, titration experiments were carried out
with increasing concentrations of BAPTA-AM, but a fixed
dose of MPP™". The levels of LC3-II were increased by
MPP™" treatment. However, the MPP"-induced increase
in LC3-II levels were blocked by BAPTA-AM (Fig. 2a).
Immunofluorescence studies revealed that the MPP*-
induced increase in the number and average area of LC3
puncta was decreased in MNO9D cells co-treated with
MPP" and BAPTA-AM (Fig. 2b—d). Immunoblotting and
immunofluorescence analyses showed similar results for
all three independent MNOD cell lines overexpressing
calbindin-D28K (Fig. S3a—d). Taken together, data sug-
gest that suppressing the MPP"-induced rise in cytosolic
Ca®" levels inhibited autophagosomal accumulation in
MNO9D cells.

Buffering of MPP-induced surge of cytosolic Ca®" can
normalize the autophagic flux

To investigate the mechanism underlying autophagoso-
mal accumulation following MPP" treatment, we
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Fig. 1 Buffering of cytosolic calcium attenuates MPP*-mediated toxicity in MN9D cells. a-d MNOD cells were treated with vehicle (control,
CTRL) or 50 uM MPP* in the presence or absence of 30 uM BAPTA-AM for 30 h. a MN9D cells were stained with 3 uM Fluo-3. A representative image
of cells was taken using confocal microscopy after fixation. The scale bar represents 20 um. b Cytosolic Ca®" levels were assessed using flow

cytometry. ¢ MTT reduction assays were performed to assess cell viability that is expressed as a percentage of untreated control cells (100%). Bars
represent the mean + SEM of three independent experiments in triplicate. 'p < 0.05; p<001;  p<00001. d Electron micrographs of MN9D cells

were taken after drug treatment. Lower panels are magnified images from the boxed areas. Mitochondria (white arrowheads), lysosomes (yellow
arrowheads) and autophagosomes (red arrowheads) are indicated
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Fig. 2 Reducing cytosolic calcium elevation suppresses the appearance of LC-3-positive autophagosomes caused by MPP" treatment.
MNOD cells were treated with 50 uM MPP™ in the presence or absence of the indicated concentrations of BAPTA-AM for 30 h. a Cell lysates were
subjected to immunoblot analyses using the anti-LC3 antibody. Anti-GAPDH antibody was used as a loading control. b—-d Immunocytochemical
analyses were performed using an anti-LC3 antibody (green) and nuclei counterstaining with Hoechst 33258 (blue). b Cells were then examined
using a confocal microscope. Merged images are provided. The scale bar represents 10 um. The number of LC3 puncta per cell (c) and average
puncta area of LC3 (d) were quantified using ImageJ after examining 90 cells per condition. The bar represents the mean + SEM of three independent

experiments. 'p <0.05; p < 0.01; NS, not significant

performed an autophagic flux assay using chloroquine
(CQ), which inhibits lysosome-mediated degradation. Co-
treatment with MPP" and CQ did not further increase
LC3-1I levels compared with CQ treatment alone (Fig. 3a,
lanes 4 and 5; Fig. 3b), suggesting that MPP*-induced
accumulation of LC3-II was not due to an increase in the
production of LC3-II. Instead, MPP"-induced accumula-
tion of LC3-II appeared to be caused by impaired autop-
hagic degradation, as there was no synergistic effect
between CQ and MPP*. However, CQ increased LC3-II
levels in cells co-treated with MPP" and BAPTA-AM (Fig.
3a, lanes 3 and 6), indicating that there is no blockage in
autophagic flux when cytosolic Ca®" is buffered. We
observed these autophagic events using endogenous
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autophagic marker LC3; however, another widely used
autophagic substrate, p62, did not exhibit a similar trend—
total cellular p62 levels were unaffected by MPP™" (Fig. 3a,
¢). Co-immunofluorescence studies showed that the cyto-
solic p62 puncta largely co-localized with LC3 puncta in
MPP*-treated cells (Fig. 3d and Fig. S4). In MN9D cells co-
treated with MPP" and BAPTA-AM, p62 puncta were
markedly reduced (Fig. 3e), suggesting that the levels of the
insoluble form of p62 were reduced after BAPTA-AM co-
treatment. p62 is an autophagic adaptor protein that can
bind to LC3 and ubiquitin (Ub) simultaneously, thereby
linking ubiquitinated targets to autophagosomes™. Indeed,
immunofluorescence studies revealed that p62-positive and
Ub-positive puncta co-localized in the cytosol in response
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Fig. 3 MPP" blocks autophagic flux as determined by an elevated calcium-dependent accumulation of insoluble p62 and Ub-positive
spots. MN9D cells were treated with 50 uM MPP™ in the presence or absence of 30 uM BAPTA-AM and/or 50 uM chloroquine (CQ) for 30h. a
Immunoblot analyses were performed using the anti-LC3 or anti-p62 antibody. b, ¢ Quantification of LC3-Il and p62 levels in each condition was
performed after normalization to GAPDH loading control. Bars represent the mean + SEM of three independent experiments. ~p < 0.01; NS, not
significant. After MPP™ treatment alone (d) or in combination with BAPTA-AM (e), cells were analyzed for the immunofluorescent localization of p62
(green) and LC3B (red) or ubiquitin (Ub; red). Cells were then examined using a confocal microscope. Merged views are provided in the right panel.
The scale bar represents (d) 5 um and (e) 10 um. f A representative immunoblot analyses of p62, ubiquitin, and LC3 in Triton X-100 (TX)-soluble or TX-
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to MPP" treatment (Fig. 3e). These p62-positive Ub
aggregates were not easily detected in cells co-treated with
MPP" and BAPTA-AM (Fig. 3e). To confirm this result, we
carried out a 1% Triton X-100 soluble/insoluble fractiona-
tion experiment and found that MPP" changed the solu-
bility of p62 from the soluble to the insoluble fraction (Fig.
3f; compared with Fig. 3a, ¢). Consistent with the immu-
nofluorescence data, immunoblot analyses indicated that
ubiquitinated proteins accumulated in insoluble fractions
following MPP™" treatment. Co-treatment with MPP" and
BAPTA-AM inhibited MPP*-induced accumulation of
ubiquitinated proteins in the insoluble fraction. Taken
together, these results indicate that MPP' treatment
impairs autophagic flux, causing the accumulation of p62
and ubiquitinated proteins in the undegraded autophago-
somes; however, the buffering of cytosolic Ca®* can nor-
malize the autophagic flux.

To verify the correlation between increased cytosolic
Ca®" levels and impairment of autophagic flux, we used
another cell death paradigm in which nigericin induces
impairment of autophagic flux in MN9D cells*. Nigericin-
induced surge of cytosolic Ca*" was attenuated by
BAPTA-AM (Fig. S5a). Nigericin-induced cell death was
significantly suppressed by co-treatment with BAPTA-AM
(Fig. S5b). Nigericin-induced accumulation of autophagic
vacuoles was significantly inhibited in the presence of
BAPTA-AM (Fig. S5c). Consistent with ultrastructural
observations, immunoblot analyses showed that nigericin-
induced increase in LC3-II levels were blocked by BAPTA-
AM (Fig. S6a). Immunofluorescence studies indicated that
co-treatment with nigericin and CQ did not further
increase in the number and area of LC3 puncta compared
with nigericin alone (Fig. S6b). However, CQ increased in
the number and area of LC3 puncta in cells co-treated
with nigericin and BAPTA-AM (Fig. S6b), supporting the
notion that there is no blockage in autophagic flux when
cytosolic Ca>" is buffered.

Normalization of cytosolic Ca>" levels reverses the
lysosomal pH deficits and impeded autophagic
degradation caused by MPP*

To explore the cause of impeded autophagic degrada-
tion by MPP", we tested whether the number of lyso-
somes were affected by MPP". The protein levels of
LAMP-1 were not altered by treatment with MPP™" alone
or in combination with BAPTA-AM (Fig. 4a, b). Immu-
nofluorescence analyses showed that the cellular dis-
tribution of LAMP-1 was unaltered in all the groups (Fig.
4c). The levels of Rab5 and Rab7 remained unchanged
regardless of drug treatment, indicating that MPP* did
not influence the distribution of the individual compo-
nents of the endosomal pathway, including lysosomes. To
study the effect of MPP" treatment on autophagosome-
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lysosome fusion®”, we analyzed the co-localization of LC3
with LAMP-1. Cells treated with Torin-1, an mTOR
inhibitor exhibited a similar degree of co-localization
between LC3 and LAMP-1 when compared with MN9D
cells treated with MPP™ (Fig. 4d, e). Similarly, expression
levels of other autophagosome-lysosome fusion markers,
including syntaxin-17, p150Glued, and dynein inter-
mediate chain was not altered regardless of MPP" treat-
ment (Fig. S7), demonstrating that MPP" did not affect
the fusion step between autophagosomes and lysosomes.

Optimal function of lysosomal hydrolases requires
lysosomes to maintain a low internal pH*". To check
whether the luminal pH of lysosomes was altered by
MPP" treatment, MN9D cells were stained with Lyso-
Tracker Red. In comparison with DMSO-treated cells,
MPP " -treated cells lost fluorescence (Fig. 4f, g). Because
there were no changes in the number of lysosomes, these
results suggested that the luminal acidity was altered in
MPP"-treated cells. Notably, co-treatment with MPP"
and BAPTA-AM did not elevate the lysosomal pH. To
confirm MPP*-mediated elevation of lysosomal pH, we
performed a fluorogenic activity assay for cathepsin B, a
major lysosomal protease. Treatment with bafilomycin
Al, an inhibitor of lysosomal acidification, showed that
the elevation of lysosomal pH led to decreased activity of
cathepsin B (Fig. S8). Along with an elevated lysosomal
pH, cathepsin B activity was diminished by MPP™" treat-
ment, which implied that autophagic degradation was
defective. Buffering of cytosolic Ca®>" with BAPTA-AM
restored normal cathepsin B activity in MPP"-treated
cells. To provide additional evidence for lysosomal neu-
tralization and resultant impaired autophagy following
MPP™ treatment, we monitored autophagic flux by tran-
siently expressing a tandom fluorescent-tagged LC3 probe
(mRFP-EGFP-LC3), as described®®. Under control con-
ditions, yellow (red+/green+) puncta were barely seen,
and approximately 20 % red (red+/green—) puncta were
observed (Fig. 4h, i), suggesting that basal autophagy was
operational, because most autophagosomes fused with
lysosomes and were degraded due to low pH conditions.
In contrast, in MPP*-treated cells, the numbers of red-
only puncta were remarkably decreased and the numbers
of yellow puncta increased. Because autophagosome-
lysosome fusion is not impaired, these findings support
the view that MPP" interferes with lysosomal acidity,
which prevents the quenching of GFP fluorescence.
MNOD cells treated with MPP* and BAPTA-AM showed
a similar pattern to DMSO-treated control cells. There-
fore, our data suggest that lysosomes fail to keep the
luminal pH low in response to MPP™" treatment, which
interrupts autophagic degradation; normalization of
cytosolic Ca®" levels reverses the lysosomal pH deficits
caused by MPP*.
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(see figure on previous page)

Fig. 4 MPP*-induced impairment of autophagic degradation results from lysosomal malfunction in a calcium-dependent manner. a—c
MNO9D cells were treated with 50 uM MPP™ alone or in combination with 30 uM BAPTA-AM for 30 h. a Cell lysates were subjected to immunoblot
analyses with the indicated antibodies. b Quantification of LAMP-1 expression was performed after normalization to actin loading control. Bars
represent the mean + SEM of three independent experiments. NS, not significant. ¢ After drug treatment, cells were immunostained with anti-LAMP-
1 antibody. Representative confocal images are provided. Scale bar represents 20 um. d, @ MN9D cells were incubated with 50 uM MPP™ for 30 h or
500 nM Torin-1 for 24 h and then immunostained using anti-LC3 and anti-LAMP-1 antibodies. The scale bar represents 10 um. e Co-localization of LC3
with LAMP-1 in cells was quantified using ImagelJ. Confocal images of at least 30 randomly selected cells from each of the three independent
experiments were used for quantitation. Spots that were positive for both LC-3 and LAMP-1 were counted and expressed as a percentage of all LC3-
positive spots (100%). Bars represent the mean + SEM of three independent experiments. NS, not significant. f, g MN9D cells that were treated with
50 uM MPP™ alone or in combination with 30 uM BAPTA-AM for 30 h were stained with LysoTracker Red. Representative confocal images are
provided. The scale bar represents 10 um. g For quantitation, cells were subjected to flow cytometry. Data represent the fluorescence intensity
relative to that of control cells (value = 1). Bar represents the mean + SEM of three independent experiments. ‘p < 0.05; " p <0.01; p<0001. h
MNOD cells were transfected with mRFP-EGFP-tagged LC3B probe for 24 h and treated with 50 uM MPP™ alone or in combination with 30 uM BAPTA-
AM for 30 h. After fixation, fluorescent images were acquired using confocal microscopy. The scale bar represents 10 um. i Quantification of the
number of yellow puncta (mRFP*-EGFP™-LC3B) and red puncta (mRFP*-EGFP~-LC3B) were performed using at least 50 cells per condition. Bar

represents the mean + SEM of three independent experiments. p <0.05;  p <0.0001; NS, not significant

Lowering cytosolic Ca®>" levels has a neuroprotective effect
on MPP"-mediated cytotoxicity, independent of mTOR
activity but dependent on lysosomal activity

Elevated cytosolic Ca®" levels promote autophagy via
the calcium/calmodulin-dependent protein  kinase
(CaMK)-B-AMP-activated protein kinase (AMPK)-mam-
malian target of rapamycin (mTOR) pathway®. To
explore whether MPP*-induced cytosolic Ca®" elevation
regulates mTOR signaling in MN9D cells, we measured
mTOR activity by checking the phosphorylation status of
mTOR and p70S6K. Immunoblotting analyses showed
that the levels of p-mTOR and p-p70S6K were reduced
after 24h of MPP" incubation, whereas MPP"-induced
reduction was restored in MN9D cells co-treated with
MPP" and BAPTA-AM (Fig. 5a). To investigate whether
mTOR signaling is required for the neuroprotective effect
conferred by the buffering of cytosolic Ca®>*, MN9D cells
were treated with MPP" in the presence or absence of
rapamycin, an mTOR inhibitor. The addition of rapa-
mycin in MPP"-treated cells failed to further increase
LC3-II levels (Fig. 5b, lanes 3 and 4) and had no impact on
cell viability (Fig. 5¢, lanes 1 and 2). In MN9D cells treated
with  MPP* and BAPTA-AM, cell viability remained
unaffected regardless of rapamycin treatment (Fig. 5c,
lanes 3 and 4). Similarly, no significant reduction in cell
viability was caused by rapamycin in MN9D cells over-
expressing calbindin-D28K (MN9D/CB; Fig. S9a). Col-
lectively, these data demonstrate that cytosolic Ca*"
elevation by MPP™" inactivates mTOR signaling. However,
the lowering of cytosolic Ca*" levels had a protective
effect on MPP™ toxicity, which was independent of
mTOR activity.

Next, we addressed whether lysosomal integrity was
critical for Ca®*-mediated cell protection against MPP*-
mediated neurotoxicity. Hence, we analyzed the viability
of cells treated with MPP™" alone or in combination with
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BAPTA-AM, in the presence or absence of CQ. CQ did
not influence the cell viability of MPP " -treated cells (Fig.
5d). However, CQ decreased the viability of cells co-
treated with MPP* and BAPTA-AM to a level similar to
that of cells treated with MPP" alone. Consistent with
this, the protective effect of calbindin-D28K on MPP"
toxicity was dependent on lysosomal functionality (Fig.
S9b). Mitochondrial dysfunction is one of the most
characteristic features of MPP"-induced neurodegenera-
tion. Mitochondrial staining with MitoTracker Red
revealed that MPP™" treatment resulted in the loss of
mitochondrial membrane potential (MMP), but not when
cytosolic Ca>" levels were buffered with BAPTA-AM (Fig.
5e, upper panels). Moreover, we observed that the addi-
tion of CQ disrupted MMP in cells co-treated with MPP*
and BAPTA-AM, suggesting that autophagy—lysosomal
degradation is required for mitochondrial integrity under
conditions of MPP" and BAPTA-AM co-treatment (Fig.
5e, lower panels). Treatment with CQ alone did not
depolarize mitochondria, suggesting that lysosomal defi-
cits may be insufficient for mitochondrial rupture. These
findings imply that under normal conditions, defective
lysosomes are tolerated by cells: however, because MPP™
disrupts mitochondria by inhibiting the mitochondrial
electron transport complex I, lysosomal activity and
subsequent functional autophagic processes become
crucial for preserving healthy mitochondria and main-
taining cell viability in cells treated with MPP" and
BAPTA-AM.

Buffering of cytosolic Ca>" suppresses autophagosome
accumulation and lysosomal pH neutralization in MPP -
treated mouse cortical neurons

To validate our data obtained from MN9D cells, pri-
mary cultures of cortical neurons were treated with
MPP™. Fluo-3 fluorescence staining showed that MPP"
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independent experiments in triplicate. "p < 0.05; ~“p < 0.001; NS, not significant. e After treatment with the indicated combination of drugs, MN9D
cells were stained with 0.75 uM MitoTracker Red CMXRos and imaged using fluorescence microscopy. The scale bar represents 200 um

Official journal of the Cell Death Differentiation Association



Jung et al. Cell Death Discovery (2019)5:130

treatment caused a surge in cytosolic Ca>" levels in cor-
tical neurons (Fig. 6a). The calcium-activated calpain-
cleaved form of fodrin was detected (Fig. 6b). Dose-
dependent increase in the LC3-II form was found. Addi-
tion of BAPTA-AM inhibited MPP"-induced cortical
neuronal death, thus confirming the neuroprotective
effect of buffering of cytosolic Ca®>" (Fig. 6c). Similarly,
BAPTA-AM inhibited MPP*-induced accumulation of
LC3-1I (Fig. 6d, e). Interestingly, levels of LAMP-1
increased in cortical neurons treated with MPP" (Fig.
6d, f). Addition of BAPTA-AM reduced the MPP™-
induced levels of LAMP-1, but these levels were still
higher than those in untreated control cortical neurons.
To determine lysosomal integrity in cortical neurons,
lysosomal acidity was checked using the LysoTracker dye
(Fig. 6g). Similar to cells treated with bafilomycin A1, cells
treated with MPP™" almost lost the fluorescence despite
containing high levels of LAMP-1, thus indicating ele-
vated lysosomal pH. Functional lysosomes were preserved
in cells co-treated with MPP" and BAPTA-AM. These
data suggest that cytosolic Ca>" buffering protects cortical
neurons from MPP"-mediated cytotoxicity by restoring
normal lysosomal pH and autophagic flux.

Discussion

Cytosolic Ca*" is crucial for maintaining homeostasis of
the nervous system by regulating neurotransmitter release
and post-synaptic activity. Dysregulation of cytosolic Ca*"
is linked to pathological neurodegeneration**~*’. Recent
evidence implicates Ca>" in the pathogenesis of PD and
the regulation of Ca®>" may comprise a potential ther-
apeutic target for neuroprotection in PD**, Among
many hypotheses proposed to explain selective vulner-
ability of dopaminergic neurons in the SNpc, the main-
tenance of cytosolic Ca>" homeostasis has drawn much
attention”’. Dopaminergic neurons in this region harbor
the Ca”—binding protein, calbindin-D28k that can buffer
cytosolic Ca®"*%, thus substantiating the role of cytosolic
Ca”" buffering in PD pathogenesis. Interestingly, calbin-
din- D28K-positive neurons of SNpc are relatively pre-
served in PD postmortem samples and in monkey and
mouse PD models, which were produced by the admin-
istration of the neurotoxin, MPTP*52, Similarly, the
membrane permeable Ca®' chelator, BAPTA-AM, sig-
nificantly protects cells from oxidative stress>>. Preloading
of BAPTA-AM and a calcium channel blocker suppress
alpha-synuclein aggregates in HEK293T cells and SHSY-
5Y cells treated with KCI**, supporting the notion that
dysregulation of cytosolic Ca>" contributes to dopami-
nergic neurodegeneration. Although studies involving the
ectopic expression of calbindin-D28K and co-treatment
with BAPTA-AM have provided additional evidence for
the potential neuroprotective effects of cytosolic Ca*"°7%,
the underlying mechanism remains to be determined.
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We have demonstrated that MPP" induces Ca>*-
dependent cell death in the MN9D cells and primary
cultures of cortical and mesencephalic neurons*>**>>=>?,
Consequently, overexpression of calbindin-D28K or co-
treatment with BAPTA-AM prevents MPP " -induced cell
death®’. MPP*-induced cell death is not accompanied by
biochemical and morphological features typical of apop-
tosis. Rather, autophagic processes is involved in MPP"
toxicity®>?®. Our present study provides novel insights
into the mechanism underlying the neuroprotective
effects of calcium buffering in the experimental PD
models. Here, we demonstrated that MPP*-induced
autophagic alterations were a consequence of impaired
autophagic degradation resulting from increased lysoso-
mal pH. Buffering of cytosolic Ca*" by BAPTA-AM co-
treatment or by the overexpression of calbindin D28K
preserved physiological lysosomal pH and thereby, lyso-
somal activity. Therefore, inhibition of a drug-induced
surge of cytosolic Ca®' is crucial for maintaining autop-
hagic flux, eventually preventing MPP™ toxicity. Typical
pathological features of PD, namely abnormal protein
aggregation and mitochondrial rupture, seemed to be
relieved by lowering cytosolic Ca®' elevation. Taken
together, our study raises the possibility that lysosomal
integrity plays a crucial role in preventing MPP " -induced
neuronal death.

Ca®" is an autophagy modulator, but its effects show
duality, necessitating further interpretation®. For exam-
ple, based on the findings that inhibition of inositol 1,4,5-
triphosphate receptors (IP;Rs) promotes autophagy®"“?, it
has been suggested that Ca®" suppresses autophagy. In
contrast, elevation of cytosolic Ca®" stimulates autophagy
via the CaMKKB-AMPK-mTOR pathway®. In addition,
calcineurin is required for the nuclear translocation of
transcription factor EB (TFEB), triggering autophagy and
lysosomal biogenesis®®. Here, we observed that elevated
cytosolic Ca>* correlated with mTOR signaling in MPP™-
treated cells, without apparent promotion of autophagy.
Rather, MPP*-induced elevation cytosolic Ca*" elevation
was associated with autophagy impairment, causing
lysosomal defects. In support of this argument, we
demonstrated that lysosomal pH is increased by MPP™ in
a Ca*"-dependent way. Lysosomal membrane permeabi-
lization (LMP) upon MPP" treatment is a cause of ele-
vated lysosomal pH?>. Meanwhile, cytosolic Ca*"
overload may lead to the continuous use of ATP by Ca*"
ATPases in an attempt to remove Ca>" from the cytosol,
thus depleting intracellular ATP. Because lysosomal
acidification is conducted by v-ATPases, which pump
protons into lysosomes using the energy from ATP
hydrolysis, lowered ATP levels can cause incomplete
acidification of the lysosomal lumen. In line with this
possibility, we found that the protein levels of TFEB were
diminished by MPP™, but not by MPP" and BAPTA-AM
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co-treatment (unpublished data). Given that v-ATPase
subunits are targets of TFEB®, we believe the Ca?
*_dependent decrease in TFEB protein levels may con-
tribute to the neutralization of lysosomal pH by influen-
cing v-ATPases. Using the MitoTracker Red staining and
the MTT reduction assays, we showed that cytosolic Ca*"
buffering prevents loss of MPP"-induced mitochondrial
membrane potential and cell death, respectively. How-
ever, we found that this protective effect was abrogated
when CQ inhibited lysosomal degradation (Fig. 5).
Because CQ treatment does not lead to mitochondrial
depolarization or decreased cell viability, lysosomal defi-
cits may be insufficient for mitochondrial rupture or cell
death. These findings imply that under normal conditions,
defective lysosomes are tolerated by cells; however, lyso-
somal activity and functional autophagy become crucial
for preserving a pool of healthy mitochondria in MPP*-
treated cells. Under conditions in which mitochondria are
damaged by treatment with MPP", removing damaged
mitochondria through mitophagy might be important for
mitochondrial homeostasis. Therefore, the buffering of
cytosolic Ca*" may protect cells from MPP" toxicity by
rescuing the autophagy-lysosome pathway.

Among several features that contributes to selective
vulnerability of dopaminergic neurons in SNpc, electro-
physiological, epidemiological, and neuropathological
studies have implicated that Ca*" entry through Cavl
channels is amenable to phamacotherapy®. Conse-
quently, accumulating evidence suggests that regulating
cytosolic Ca>" levels through these channels has a neu-
roprotective effect in animal models of PD*>**%° For
example, systemic administration of isradipine, a dihy-
dropyridine antagonist of L-type Ca®>" channels, forces
dopaminergic neurons in rodents to revert to a juvenile,
Ca2+—independent mechanism to generate autonomous
activity. More importantly, antagonist-induced reversion
confers protection against dopaminergic neurotoxins. It is
noteworthy that isradipine is currently being evaluated in
a phase III clinical trial study for patients with early PD,
showing that dysregulated Ca®" homeostasis is an
attractive potential target for PD drug development.
Accordingly, our study may shed light on the mechanisms
underlying future Ca®'-modulating therapies for PD,
highlighting the vital role of the autophagy-lysosome
pathway.

Materials and methods
Cell culture and drug treatment

All experimental procedures were approved by the
Institutional Animal Care and Use Committee of Yonsei
University (permissions: IACUC 2017-10-647-01 and
2018-01-689-01). The MNID neuronal cell line was
established by somatic fusion between embryonic

mesencephalic neurons and N18TG neuroblastoma®®~??,
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and cultured as previously described*>>°. Briefly, MN9D
cells were grown at 37 °C in Dulbecco’s modified Eagle’s
medium (DMEM; Sigma-Aldrich, D5648) supplemented
with 10% fetal bovine serum (FBS; Gibco, 26140-079) on
culture dishes coated with 25 pg/ml poly-D-lysine (Sigma-
Aldrich, P0899) in an atmosphere of 90% air and 10%
CO,. MNO9D cells were either left untreated or treated for
the indicated time periods with 50 uM 1-methyl-4-
phenylpyridinium (MPP™; Sigma-Aldrich, D048) alone
or in combination with 30 uM 1,2-Bis(2-aminophenoxy)
ethane-N,N,N’,N’-tetraacetic acid tetrakis(acetoxymethyl
ester) (BAPTA-AM; Life Technologies, B6769), 50 uM
chloroquine (CQ; Sigma-Aldrich, C6628), 25 nM bafilo-
mycin A; (Sigma-Aldrich, B1793), 750 nM rapamycin
(Sigma-Aldrich, R-5000), or 500 nM Torin-1 (Cell Sig-
naling Technology, 14379). Concentrations and durations
of drug treatment were empirically determined. Pre-
viously established MN9D stable cell lines overexpressing
calbindin-D28K>> were maintained in culture medium
containing 250 pg/ml G418(A.G. Scientific, G1033). For
preparing primary cultures of cortical neurons, cerebral
cortices were removed from gestational day 14.5 mouse
embryos (Orient, Gyeong-gi, Republic of Korea) and
mechanically dissociated as previously ~described®®.
Briefly, dissociated cortical cells were plated at a density of
5 x 10° cells per well of six-well plates or at 1 x 10° cells
per well of 24-well plates pre-coated with 100 pg/mL
poly-D-lysine and 1 pg/mL laminin (Invitrogen, 23017-
015). Cortical neurons were incubated at 37°C in MEM
(Gibco, 11090-081) containing 0.6% glucose (Gibco,
15023-021), 1mM sodium pyruvate (Sigma, P5280),
2mM L-glutamine (Sigma, G8540), 100 units/ml
penicillin-streptomycin ~ (Thermo  Fisher  Scientific,
15140122), and 10% FBS in the atmosphere of 95% air and
5% CO,. At 24 h, culture medium was changed to Neu-
robasal medium (Invitrogen, 21103049) supplemented
with 2% B-27 (Gibco, 17504044), 0.5 mM L-glutamine and
10 uM cytosine p-p-arabinofuranoside (Ara-C, Sigma-
Aldrich, C1768). At 4 days in vitro (DIV), cultures were
treated with the indicated drugs that were dissolved in the
same medium.

Measurement and imaging of intracellular Ca*

Cells were stained with 3 uM Fluo-3 (Life Technology,
F1242) mixed with pluronic acid (Life Technology,
P3000MP) for 30min at 37°C and washed twice with
DMEM. For flow cytometry, cells were trypsinized, and
20,000 cells per condition per experiment were analyzed
using FACSCalibur and CellQuest (BD Biosciences). For
obtaining fluorescent images, Fluo-3 loaded cells were
mounted with Vectashield mounting medium (Vector
Laboratories, H1000). Fluorescence images were acquired
using a confocal microscope equipped with epifluorescence
and a digital image analyzer (LSM 700, Carl Zeiss).
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Cell viability assay

Following drug treatment, the rate of cell viability was
measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) reduction assay, as
described previously®’. Briefly, cells cultured on 24-well
plates were incubated with 1mg/ml MTT solution
(Sigma-Aldrich, M2128) at 37 °C for 1 h and lysed for 18 h
in an extraction buffer containing 20% sodium dodecyl
sulfate (SDS) in 50% aqueous dimethylformamide. The
optical densities of formazan were measured at 590 nm
and 650nm as test and reference wavelengths, respec-
tively, using a VICTOR™ X5 Multilabel Plate Reader
(PerkinElmer). Cell viability was expressed as a percentage
relative to the value in untreated control (100%).

Transmission electron microscopy

Electron microscopy was performed as previously
described””. Briefly, MNOD cells grown in petri dishes
were treated with 50 uM MPP™ alone or in combination
with 30 uM BAPTA-AM for 30h followed by fixation
with a mixture of 2% formaldehyde and 0.2% glutar-
aldehyde (Polysciences, Inc., 01909) in 0.1 M cacodylate
buffer (pH 7.2) for 30 min at 37 °C. Free aldehyde groups
were blocked for 1h by soaking the cells in 50 mM
ammonium chloride in 0.1 M cacodylate buffer. Cells
were mechanically removed, sedimented by centrifuga-
tion, enclosed in liquefied 2% agarose, and then post-fixed
for 1h with 1% osmium tetroxide (Electron Microscopy
Sciences, EMS, 19152) in distilled water. This step was
followed by en bloc staining with 1% aqueous uranyl
acetate for 1h. Cells were then subjected to dehydration
in a graded ethanol series and embedded in Epon-Araldite
(Fluka, Germany, 45345). Ultrathin sections (80 nm
thickness) were prepared on cupper slot grids, stained
with uranyl acetate and lead citrate, and observed at 80 kV
with a Hitachi H-7650 electron microscope (Hitachi).
Electron micrographs were taken with an 11-megapixel
CCD XR611-M digital camera (Advanced Microscopy
Techniques).

Immunoblot analyses and immunofluorescence staining
At various times after drug treatment, cells were lysed
on ice in phosphate-buffered saline (PBS; Lonza, 17-
517Q) containing 1% Triton X-100 (Sigma, T8787), 1%
SDS, and complete protease inhibitor cocktail (Roche,
1873580), and sonicated for homogenization. Cell lysates
were centrifuged at 13,000 x g for 15 min at 4 °C. Super-
natant proteins were collected and quantified using the
Bradford protein assay reagent (Bio-Rad, 500-0006). For
preparing Triton X-100 (TX)-soluble and -insoluble
fraction, cells were lysed on ice in PBS containing 1%
Triton X-100 and complete protease inhibitor cocktail for
30 min, and then homogenized using a 1-ml syringe with
a 26-gauge needle. After centrifugation at 15,000xg for
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30 min at 4 °C, supernatants were collected as TX-soluble
fractions. After four washes with PBS containing 1%
Triton X-100, the pellets were resuspended in 8 M urea
buffer containing 1% SDS, 1% Triton X-100, and complete
protease inhibitor, and sonicated. TX-insoluble fractions
were collected by centrifugation at 15,000 x g for 15 min
at 4°C. Approximately 10-50 pg of protein per sample
was separated by electrophoresis on 8-15% SDS-
polyacrylamide gels and transferred to polyvinylidene
fluoride membranes (Pall Corp., 66543). Membranes were
probed with primary antibodies overnight at 4°C and
washed with Tris-buffered saline containing 0.1% Tween-
20 (TBST). The following primary antibodies were used:
rabbit anti-LC3 (Cell Signaling Technology, 2775), guinea
pig anti-p62 (Progen, GP62-C), mouse anti-ubiquitin
(P4D1, Santa Cruz, SC-8017), rat anti-LAMP-1 (Devel-
opmental Studies Hybridoma Bank, 1D4B), rabbit anti-
rab5 (Cell Signaling, 2143), rabbit anti-rab7 (Cell Signal-
ing Technologies, 9367), rabbit anti-p-mTOR (S2448; Cell
Signaling Technology, 2971), rabbit anti-mTOR (Cell
Signaling Technology, 2972), rabbit anti-p-p70S6K (T389;
Cell Signaling Technology, 9234), rabbit anti-p70S6K
(Cell Signaling Technology, 2708), mouse anti-fodrin
antibody (ENZO Life Sciences, BML-FG6090), rabbit
anti-calbindin-D28K (Swant, 300), mouse anti-GAPDH
(EMD Millipore, mab374), and rabbit anti-actin antibody
(Sigma-Aldrich, A2066). After extensive washes with
TBST, blots were incubated with the appropriate horse-
radish peroxidase (HRP)-conjugated secondary antibodies
for 1h at room temperature. The secondary antibodies
used included HRP-conjugated anti-rabbit (Santa Cruz,
sc-2004), HRP-conjugated anti-mouse (Santa Cruz, sc-
2005), HRP-conjugated anti-guinea pig (Sigma-Aldrich,
A5545), and HRP-conjugated anti-rat antibody (Santa
Cruz, sc-2006). Specific bands were visualized using an
enhanced chemiluminescence kit (ECL; PerkinElmer
Waltham, NEL105). The relative intensity of each band
was measured using Image] Imaging Software (National
Institute of Health, Bethesda, MD). For immuno-
fluorescence staining, cells were grown on coverslips, and
treated, fixed with 4% paraformaldehyde (EMS, 15170) at
room temperature for 15min, and permeabilized with
0.1% saponin (Sigma, S4521) for 10 min. Coverslips were
washed and incubated in PBS containing 0.2% Triton X-
100 and 5% normal goat serum (Invitrogen, 16210) for 1 h
to block nonspecific sites. Subsequently, cells were incu-
bated overnight at 4°C with primary antibody in PBS
containing 0.2% Triton X-100 and 1% normal goat serum.
After washing with PBS, cells were incubated at room
temperature for 1 h with the appropriate secondary anti-
body. These included Alexa488-conjugated goat anti-
guinea pig IgG (Invitrogen, A11073), Alexa 488-
conjugated goat anti-rabbit IgG (Invitrogen, A11008),
Alexa 568-conjugated goat anti-rabbit IgG (Invitrogen,
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A11011), and Alexa 568-conjugated goat anti-mouse IgG
(Invitrogen, A11004). For counterstaining nuclei, 1 pg/ml
Hoechst 33258 (Molecular Probes, H-1398) was used.
Cells were then mounted with Vectashield (Vector
Laboratories, H1000). Fluorescent images were acquired
using a confocal laser scanning microscope (Zeiss LSM
700). As previously described®*®, acquired images were
analyzed for LC3 puncta using Image] Imaging Software.

Analyses of lysosomal acidification and mitochondrial
membrane potential

Following drug treatment, cells were incubated with
0.5uM LysoTracker Red DND-99 (Life Technologies,
L7528) or 0.75uM MitoTracker Red CMXRos (Life
Technologies, M7512) for 30 min at 37 °C. Subsequently,
cells were washed twice with PBS. Fluorescent images of
live cells were observed under an Axio Observer Al
microscope (Carl Zeiss). Cathepsin B activity was exam-
ined using the Magic Red Cathepsin B detection kit
(ImmunoChemistry Technologies, 937). Briefly, Magic
Red Cathepsin B reagent was added to the cell medium,
and after 1h, cells were washed twice with PBS. Fluor-
escent images were taken using an Axio Observer Al
microscope. For monitoring autophagic flux, MN9D cells
plated on poly-D-lysine-coated culture dishes were culti-
vated for 2 days and subjected to transient transfection
with an mRFP-EGFP tandem fluorescent-tagged LC3
probe (a generous gift from Prof. Tamotsu Yoshimori at
Osaka University, Japan) for 24 h using Lipofectamine
2000 (Thermo Fisher Scientific, 11668019) as recom-
mended by the supplier. Drug treatment was performed
24 h post-transfection.

Statistics

Data were expressed as means + standard error of the
mean (SEM). from at least three independent experi-
ments. The differences were determined by one-way
ANOVA or two-tailed unpaired ¢-test using GraphPad
Prism 5. Values of ~ p <0.0001, " p < 0.001, p < 0.005, or
“p <0.05 were considered statistically significant.
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