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Neuronal precursor cells extend multiple neurites during development, one of which
extends to form an axon whereas others develop into dendrites. Chemical stimulation of
N-methyl D-aspartate (NMDA) receptor in fully-differentiated neurons induces projection of
dendritic spines, small spikes protruding from dendrites, thereby establishing another layer
of polarity within the dendrite. Neuron-enriched Na+/H+ exchanger NHE5 contributes to
both neurite growth and dendritic spine formation. In resting neurons and neuro-endocrine
cells, neuron-enriched NHE5 is predominantly associated with recycling endosomes
where it colocalizes with nerve growth factor (NGF) receptor TrkA. NHE5 potently acidifies
the lumen of TrkA-positive recycling endosomes and regulates cell-surface targeting of
TrkA, whereas chemical stimulation of NMDA receptors rapidly recruits NHE5 to dendritic
spines, alkalinizes dendrites and down-regulates the dendritic spine formation. Possible
roles of NHE5 in neuronal signaling via proton movement in subcellular compartments are
discussed.
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INTRODUCTION
A robust fluctuation in pHi (pH inside of the cell, or cytosolic pH)
and pHo (pH outside of the cell or extracellular pH) greatly influ-
ence synaptic transmission, which is often associated with patho-
logical conditions (Velisek, 1998; Hsu et al., 2000; Chesler, 2003).
For example, seizure leads to interstitial acidification of hip-
pocampal neurons (Somjen, 1984) and excessive acidosis inhibits
synaptic transmission and eventually causes coma (Li and Siesjö,
1997), while alkalinization may induce seizures (Schuchmann
et al., 2006). Conversely, strong synaptic stimulation initiates a
series of changes in pHo in the vicinity of the synapse beginning
with an immediate acidification lasting a few milliseconds fol-
lowed by a slower alkaline transient for several 100 ms (Chesler
and Kaila, 1992). Epileptiform activity induced by low-Mg2+ was
suppressed by acidic media (Velisek et al., 1994). While global
changes in pHi and pHo may cause perilous effects on neu-
ronal functions, transient (e.g., during neuronal development,
in response to neuronal stimuli) and localized changes in pH in
subcellular compartments (e.g., neuronal synapses and endoso-
mal lumens) occur under non-pathological states and regulate
neurological function.

Most of glutamate receptors including N-methyl-D-aspartate
(NMDA) receptors, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors (Ihle and Patneau,
2000), Kainate receptors (Mott et al., 2003), and the group III
metabotropic glutamate receptors (Levinthal et al., 2009) are
down-regulated by extracellular protons. Among them, NMDA
receptors are particularly sensitive to extracellular protons
because of the physiological pKa of 7.3–7.5 (Tang et al., 1990;
Traynelis and Cull-Candy, 1990; Banke et al., 2005). Given the
importance of NMDA receptors for synaptic plasticity, this

suggests that local pH in the vicinity of the synapse may be
important for the induction and maintenance of long-term
potentiation (LTP) and long-term depression (LTD). Consistent
with this notion, high-frequency stimulation of axon projections
from the hippocampus CA3 region, termed Schaffer collaterals,
failed to induce LTP in hippocampal CA1 pyramidal neurons
when the cells were bathed in an acidified media, likely a result
of NMDA receptor inhibition (Velisek, 1998). pHo changes at
the confined space of synaptic cleft may coordinate synaptic
excitability by synergistically regulating excitatory and inhibitory
receptors of post-synaptic neurons in a reciprocal manner. The
best-studied pHo-sensitive ion translocating mechanism would
be Acid Sensing Ion Channels (ASICs), proton-gated ion chan-
nels predominantly expressed in the nervous system, which are
involved in pain, seizure, stroke and anxiety-related neurological
disorders (Wemmie et al., 2008; Gründer and Chen, 2010; Zha,
2013). Acidic pHo facilitates the chloride conductance of certain
gamma amino butyric acid (GABA) receptors, which inhibits
firing of action potentials (Krishek et al., 1996; Dietrich and
Morad, 2010). It has been also suggested that the pre-synaptic
K+-current is regulated by pHo (Almanza et al., 2008).

Endosomes are membrane-bound orgaenelles that internal-
ize membrane components and external molecules. Internalized
vesicles are delivered to lysosomes for degradation or return to
the plasma membrane via endocytic recycling pathways (Maxfield
and Mcgraw, 2004). The endosomal lumen is acidic (Casey
et al., 2010; Scott and Gruenberg, 2011), which is established
by Vacuolar proton-translocating ATPases (V-ATPases) and the
counter-ion conductance by anion channels/transporters such as
the Cl− channel and Cl−/H+ exchanger ClC family (Forgac, 2007;
Stauber and Jentsch, 2013). Anion channels/transporters relieve
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the charge-imbalance by pumping anions into the lumen and
facilitate continuous action of V-ATPases to pump protons to
the lumen. In neurons and neuroendocrine cells, the neuron-
enriched Na+/H+ exchanger NHE5 seems to play an equally
important role as V-ATPases. A unique aspect of NHE5 is that
it acts in both endosomes and synapses. We discuss the potential
role of proton concentration oscillations by NHE5 in neuronal
signaling.

Na+/H+ EXCHANGERS IN NEURONS
Na+/H+ exchangers (NHEs) are a group of secondary active
antiporters that typically exchange extracellular Na+ for cytoso-
lic protons in a 1:1 ratio, thereby regulating cellular pH and cell
volume (Aronson, 1985; Wakabayashi et al., 1997; Orlowski and
Grinstein, 2004; Slepkov et al., 2007). The recovery from acute
acidification in biochemically-isolated synapses requires external
Na+ whereas HCO−

3 deprivation or inhibitors against bicarbon-
ate transporters also affect pHi of some neurons (Sauvaigo et al.,
1984; Nachshen and Drapeau, 1988; Chesler, 2003). Although
Na+-driven Cl−-HCO−

3 exchange activity was detected in freshly
dissociated hippocampal neurons (Schwiening and Boron, 1994)
and some neuronal cell populations may require bicarbonate-
dependent pH regulation mechanisms, Na+-dependent recovery
from acute cytosolic acidification occurs even in bicarbonate-
free media (Raley-Susman et al., 1991). Thus, NHEs play crucial
roles in pH regulation in neurons while HCO−

3 is also likely
an important pH regulator of certain types of neurons. NHE-
activity indeed regulates synaptic transmission at glutamatergic,
GABAergic and dopaminergic synapses (Trudeau et al., 1999;
Jang et al., 2006; Rocha et al., 2008; Dietrich and Morad, 2010)
and there is evidence suggesting that local pH contributes to
the induction and maintenance of LTP (Velisek, 1998; Ronicke
et al., 2009; Diering et al., 2011). In mammals, nine NHE iso-
forms NHE1-NHE9 have been characterized as secondary active
ion transporters (Brett et al., 2005; Donowitz et al., 2013).
NHE1-NHE5 are functionally well-defined NHEs that exhibit
the typical Na+-H+ exchange activity, of which ubiquitously
expressed NHE1 and neuron-enriched NHE5 are the two pre-
dominant isoforms in the brain (Attaphitaya et al., 1999; Baird
et al., 1999). NHE6-NHE9 exhibit “atypical” cation non-specific
organellar activity across acidic organellar membranes (Orlowski
and Grinstein, 2007; Ohgaki et al., 2011) therefore referred to as
CNO-NHEs. Since CNO-NHEs have a higher affinity to K+ than
Na+, their physiological mode of action is likely to “leak” pro-
tons from the lumen of acidic organelles driven by the influx of
K+, the major cytosolic monovalent cation. The unique cation-
nonspecific antiporter activity was reported first in NHE7 in a
heterologous expression system (Numata and Orlowski, 2001)
and a similar activity was subsequently detected in other CNO-
NHEs in an in vitro reconstitution system (Nakamura et al.,
2005). More recent studies showed that genetic depletion of
NHE6 leads to endosomal acidification (Ohgaki et al., 2010;
Xinhan et al., 2011; Ouyang et al., 2013) in neuronal and non-
neuronal cells, supporting the physiological relevance of CNO-
NHEs for proton-leak from acidic organelles. Although widely
expressed in most mammalian cell types, genetic alterations in
NHE6, NHE7, and NHE9 have been associated with X-linked

mental retardation syndrome (Gilfillan et al., 2008; Schroer et al.,
2010; Takahashi et al., 2011; Mignot et al., 2013), late-onset
Alzheimer’s disease (Meda et al., 2012), and autism spectrum
disorders and attention-deficit/hyperactivity spectrum disorder
(ADHD) (Lasky-Su et al., 2008; Morrow et al., 2008; Markunas
et al., 2010; Mick et al., 2010), respectively.

NHE1 null-mice exhibit neurological phenotypes including
epileptic-like seizures resulting from enhanced neuronal excitabil-
ity and loss of Purkinje cells in cerebellum (Cox et al., 1997; Liu
et al., 2013), but otherwise brain development occurs without
major complications. This suggests that while selected neurons
such as Purkinje cells are particularly sensitive to pH changes,
other neurons possess distinct mechanisms to defend against
a pH challenge. Unique NHE-activity distinct from NHE1 has
been detected in hippocampal neurons, which is relatively insen-
sitive to amiloride, highly sensitive to ATP-depletion and has
a high affinity to Li+ (Raley-Susman et al., 1991; Schwiening
and Boron, 1994; Baxter and Church, 1996). NHE5 is ∼100-
fold more resistant to amiloride than NHE1 (Masereel et al.,
2003) and has a higher affinity to Li+ than NHE1 (Szabo
et al., 2000). Moreover, ATP-depletion almost completely abol-
ishes NHE5 activity (Szabo et al., 2000) whereas NHE1 is only
partially suppressed by ATP-depletion (Kapus et al., 1994). Thus,
NHE5 is most likely the responsible molecule for non-NHE1
type NHE activity physiologically detected in hippocampal neu-
rons. The highly ATP-sensitive nature implies a possible role of
NHE5 in pathological processes such as ischemia and reperfusion.
While NHE5 is predominantly associated with recycling endo-
somes and potently acidifies the lumen in resting neuroendocrine
model cells (Diering et al., 2013), it is acutely targeted to dendritic
spines upon neuronal activation [(Diering et al., 2011) and see
below]. Movement of protons from the cytosol to the endosomal
lumen via NHE5 should theoretically affect the global cytosolic
pH (pHi), however this depends on a number of other factors
including the volume of recycling endosomes and the buffering
power, and the actual effect of NHE5 on the overall cytosolic
pH is not clear. Currently NHE5 knockout mice are not avail-
able. In summary, currently available data suggest that ubiquitous
Na+/H+ exchanger NHE1, neuron-enriched NHE5 and CNO-
NHEs across organellar membranes are the three major NHEs in
neurons.

LOCAL pH MODULATES DENDRITIC SPINE MORPHOLOGY
Most forms of LTP require activation of synaptic NMDA recep-
tors (NMDARs) (Malenka and Bear, 2004) and subsequent cal-
cium influx. This initiates a signaling program that eventually
recruits AMPA receptor to synapses (Shepherd and Huganir,
2007) and facilitates the formation of dendritic spines (Engert and
Bonhoeffer, 1999; Maletic-Savatic et al., 1999; Lang et al., 2004;
Matsuzaki et al., 2004). NMDARs have especially high proton sen-
sitivity with a pKa of 7.3–7.5 (Tang et al., 1990; Traynelis and
Cull-Candy, 1990) due to a discrete extracellular proton binding
site distinct from other ligand binding sites (Banke et al., 2005).
The proton binding site is associated with the channel gating
mechanism such that channel open probability is strongly sup-
pressed by proton binding. Unlike the voltage-dependent block
of NMDARs by Mg2+ ions (Nowak et al., 1984; Kumamoto,
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1996), this proton block is not dependent on voltage. Thus, at
resting extracellular pH close to 7.3, a tonic proton block exists,
which maintains NMDAR-activity to about 50%, which means
that any slight deviation in local pH should theoretically have a
profound impact on synaptic transmission and synaptic plastic-
ity. Therefore, synaptic pH-regulating ion transporters like NHE5
may contribute to a pH-based inhibitory tone to limit synaptic
transmission and synaptic plasticity.

Under basal conditions, NHE5 is predominantly localized
to recycling endosomes. Within minutes following NMDAR
activation by co-agonist glycine, NHE5 is recruited into den-
dritic spines and exposed onto the cell surface at excitatory
synapses. Stimulation of NMDARs by glycine is often referred
to as “chemical LTP” because this manipulation induces long-
lasting mEPSC, which is mediated by AMPA receptor compo-
nents (mEPSCAMPA) and is inhibited by NMDAR inhibitors (Lu
et al., 2001). Dendritic spines then undergo an NHE5-dependent
alkaline shift in their pHi as NHE5 transports cytosolic pro-
tons into the extracellular space (Diering et al., 2011). A model
is proposed in which NHE5 targeted to dendritic spines by
NMDAR-activation acutely mobilizes protons across the post-
synaptic membrane, which in turn down-regulates NMDAR,
thereby forming a negative-feedback loop (Figure 1). As neuro-
logical disorders such as depression, schizophrenia and autism
are associated with aberrant NMDAR activity and dendritic
spine morphogenesis (Lakhan et al., 2013; Zhou and Sheng,
2013), it is tempting to speculate that NHE5 may be involved
in pathogenic processes of these diseases. Recently, Deane and

colleagues reported that chemical LTP enhances translocation
of NHE6 to dendrites in mouse hippocampal neurons (Deane
et al., 2013), resembling the targeting behavior of NHE5 in
rat hippocampal neurons (Diering et al., 2011). Small popula-
tions of CNO-NHEs are indeed targeted to the plasma mem-
brane in non-neuronal cells (Lin et al., 2007; Kagami et al.,
2008; Ohgaki et al., 2008; Onishi et al., 2012) and in vestibu-
lar hair cells (Hill et al., 2006); however, whether CNO-NHEs
transiently delivered to the plasma membrane exhibit (Na+,
K+)/H+ exchange activity remains to be determined. Another
important unanswered question is whether NHE6 participates
in activity-dependent pH regulation of dendritic spines. Future
investigations are needed to address these important mechanistic
questions. Curiously, acid-sensing ion channel ASIC1a is present
in dendritic spines, serves as a pH-sensor and influences the den-
sity of spines (Zha et al., 2006), raising an interesting possibility
that ASIC1 in dendritic spines may be regulated by NHE5 and
possibly NHE6.

ENDOSOMAL ACIDITY IN TRK TARGETING AND SIGNALING
Binding of neurotrophins [e.g., nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF) and neurotrophin-3]
to their high affinity TrkA, TrkB and TrkC stimulates downstream
signaling, leading to neuronal differentiation and survival (Huang
and Reichardt, 2001; Chao, 2003). Vectorial targeting of the NGF-
receptor TrkA from the endosomal pool to growing neurite tips
serves as a regulatory mechanism for neurotrophin signaling
(Arimura et al., 2009; Vaegter et al., 2011) and neurite outgrowth

FIGURE 1 | Model of endosomal and synaptic functions of NHE5. At
steady state, NHE5 is primarily associated with recycling endosomes,
where it acts to acidify the lumen of this compartment. Upon activation
of NMDA receptors, recycling endosomes containing NHE5 and Trk
receptors are mobilized and recruited to active synapses. One possibility
is that signaling downstream of NMDA receptors acutely stimulates
NHE5 activity in the endosomal membrane, driving endosomal
acidification and promoting endosomal recycling. Following insertion,

NHE5 is active on plasma membrane, acting to supress further NMDA
receptor activity through localized acidification of the synaptic cleft. In
addition, active NHE5 can support the surface expression of Trk
receptors and enhance AKT signaling from recycling endosomes. These
coordinated activities may help the synapse transition from an initiation
phase of LTP into a consolidation phase, limiting excitotoxicity from
sustained NMDA receptor activation while promoting synapse
strengthening through local neurotrophin signaling.
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(Ascano et al., 2009). Similarly, endocytic recycling recruits TrkB
to the post-synaptic density during LTP that is required for den-
dritic branching (Huang et al., 2013; Lazo et al., 2013). Thus,
endocytic recycling not only regulates the cell-surface availabil-
ity of Trk proteins but also provides the accurate targeting path to
neurites.

Rat pheochromocytoma PC12 cells, widely used as a neuroen-
docrine model (Greene and Tischler, 1976), have more acidic
recycling endosomal pH of ∼6.2 (Diering et al., 2013) than
recycling endosomal pH of ∼6.5 in fibroblasts (Maxfield and
Mcgraw, 2004; Scott and Gruenberg, 2011). NHE5-depletion by
shRNA or V-ATPase-inhibition by Bafilomycin lead to a similar
degree of alkalinization of recycling endosomes to pH = ∼6.5
in PC12 cells, whereas concomitant inhibition of NHE5 and V-
ATPase further alkalinizes recycling endosomes to pH = ∼6.75.
These results indicate that NHE5 acidifies recycling endosomes
as potently as V-ATPases in PC12 cells. NHE5 and TrkA colo-
calize intracellularly by double immunofluorescence microscopy
and NHE5-depletion reduces cell-surface targeting of TrkA,
and impairs NGF-induced neurite formation; while V-ATPase
inhibitor Bafilomycin has also decreased the cell-surface popula-
tion of TrkA (Diering et al., 2013). Importantly, NHE5 depletion
as well as V-ATPase inhibition has impaired endocytic recycling
of TrkA but not transferrin receptor (TfnR) or Na+/K+-ATPase.
These results suggest that endosomal acidification is important
in the polarized targeting of specific endosomal cargoes in PC12
cells. It was recently reported that NHE6 deletion impairs neu-
rotrophin signaling and affects axonal and dendritic branching
of hippocampal neurons (Ouyang et al., 2013). Genetic deple-
tion leads to excessive acidification of late endo-lysosomes and
facilitates degradation of TrkB, which in turn decreases respon-
siveness to BDNF. However, a significant population of NHE6
seems to be associated with recycling endosomes and other yet-
to-be identified intracellular compartments (Ouyang et al., 2013).
NHE6 depletion was shown to acidify recycling endosomal pH in
HeLa cells (Xinhan et al., 2011) and hepatocytes (Ohgaki et al.,
2010), and NHE6 in hepatocytes affects polarized distribution of
membrane lipids to the apical surface. Taken together, it is possi-
ble that NHE6 in neurons regulates endocytic recycling of TrkB.
We suggest that the balanced action of NHE5, NHE6 and perhaps
other CNO-NHEs in different organelles along the endocytic and
recycling pathway is needed for proper targeting of Trk proteins,
and impairment of any of their function may affect neurotrophin
signaling.

Although both phosphatidylinositol 3-kinase (PI3K)-Akt and
extracellular signal-regulated kinase (Erk) signaling pathways are
downstream of NGF-TrkA, PI3K-Akt signaling seems to be more
severely affected by luminal alkalinization, suggesting that endo-
somal pH may directly influence PI3K-Akt signaling in addition
to its role in TrkA targeting. Indeed, Akt signaling occurs in endo-
somes in various cell types (Garcia-Regalado et al., 2008; Schenck
et al., 2008; Walz et al., 2010; Nazarewicz et al., 2011) including
NGF-treated PC12 cells (Lin et al., 2006; Varsano et al., 2006).
Endosomes provide a confined space that allows for continuous
signaling from the internalized ligand-receptor complex (Gould
and Lippincott-Schwartz, 2009; Murphy et al., 2009; Platta and
Stenmark, 2011) and certain signaling may arise in endosomes

(Sorkin and von Zastrow, 2009; Scita and Di Fiore, 2010). Thus,
although the plasma membrane is undoubtedly the most impor-
tant cellular location for the initial activation of PI3K-Akt signal-
ing, sustained signaling does occur in endosomes where pH may
modulate the signaling intensity.

Trk neurotrophin receptors are likely associated with diverse
endosomal populations. Aside from the recycling endosomal
(Diering et al., 2013) and late endosomal pH (Ouyang et al.,
2013), early endosomal pH has been suggested to influence neu-
rotrophin signaling by modulating the neurotrophin-receptor
binding and cell-surface targeting that is mediated by a small
GTPase Rac1 and coffilins (Harrington et al., 2011). As such, it is
possible that non-selective perturbation of all the acidic compart-
ments by Bafilomycin or weak alkaline agents may lead to mixed
biological effects. In future studies, it will be important to dis-
sect the precise role of pH in different organellar compartments
in neurotrophin signaling.

CONCLUDING REMARKS
Compelling experimental evidence suggests that synaptic func-
tions are tightly controlled by endocytic recycling (Park et al.,
2006; Wang et al., 2008). While the importance of pH in local-
ized electrical activity, cell signaling and vesicular trafficking is
well recognized, the molecular basis underlying compartmental-
ized pH regulation in neurons has been lacking. We now suggest
that the recycling plasma membrane type NHE5 in neuroen-
docrine and neuronal cells potently acidifies recycling endosomes
and modulates signaling events occurring in endosomes and
synapses. Though still in its early stage, NHE5 offers an exam-
ple of how localized pH regulation can impact synaptic plasticity
and neuronal differentiation.
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