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A B S T R A C T   

Hippocampal subfields (HCsf) are brain regions important for memory function that are vulnerable to decline 
with amnestic mild cognitive impairment (aMCI), which is often a preclinical stage of Alzheimer’s disease. 
Studies in aMCI patients often assess HCsf tissue integrity using measures of volume, which has little specificity 
to microstructure and pathology. We use magnetic resonance elastography (MRE) to examine the viscoelastic 
mechanical properties of HCsf tissue, which is related to structural integrity, and sensitively detect differences in 
older adults with aMCI compared to an age-matched control group. Group comparisons revealed HCsf visco-
elasticity is differentially affected in aMCI, with CA1-CA2 and DG-CA3 exhibiting lower stiffness and CA1-CA2 
exhibiting higher damping ratio, both indicating poorer tissue integrity in aMCI. Including HCsf stiffness in a 
logistic regression improves classification of aMCI beyond measures of volume alone. Additionally, lower DG- 
CA3 stiffness predicted aMCI status regardless of DG-CA3 volume. These findings showcase the benefit of 
using MRE in detecting subtle pathological tissue changes in individuals with aMCI via the HCsf particularly 
affected in the disease.   

1. Introduction 

Alzheimer’s disease (AD) is a debilitating neuropathological condi-
tion characterized clinically by memory impairment and decline of 
additional cognitive functions. AD results in widespread neuro-
degeneration that is associated with progressive accumulation of amy-
loid plaques and tau protein misfolding and the buildup of 
neurofibrillary tangles (Petersen, 2004; Petersen et al., 1999). Amnestic 
mild cognitive impairment (aMCI) is often an early manifestation of AD 
where clinical cognitive impairment is detectable and AD pathology is 
present, but prior to the significant neurodegeneration and functional 
decline marking later AD (Albert et al., 2011; Gauthier et al., 2006). The 

hippocampus (HC) has an important functional role in memory forma-
tion and retrieval (Du et al., 2006; Pennanen et al., 2004; Petersen et al., 
2000) and is a site that preferentially harbors AD pathology and is 
structurally affected during the early symptomatic stages of the disease 
(Gauthier et al., 2006; Mueller and Weiner, 2009). However, the HC is a 
heterogeneous structure that is not affected uniformly across AD pro-
gression (de Flores et al., 2015), and thus studying the whole HC may be 
less sensitive in differentiating structural differences between aMCI and 
healthy controls. Therefore, to sensitively capture the differential effects 
of each AD stage on the HC microstructure, it is important to understand 
how the subregions of the HC are specifically affected to improve our 
ability to diagnose AD and track disease progression. 
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The HC is a non-uniform structure comprising subfields with 
cytoarchitecturally unique regions that differ in the vasculature and 
electrophysiological properties (Duvernoy, 2005; Lavenex and Lavenex, 
2013). The HC subfields (HCsf) include the dentate gyrus (DG), cornu 
ammonis 1–3 (CA1-3), and the subiculum (SUB), as well as an interface 
connecting the HC to the neocortex known as the entorhinal cortex 
(ERC) (Duvernoy, 2005). Prior volumetric studies, focusing on both 
aMCI and AD, revealed differential volume loss in the HCsf, suggesting 
specific subfields may also be affected before other HC subregions in the 
diseases (Du et al., 2001; Mueller et al., 2010). Specifically, CA1-CA2 
volumetry has previously shown vulnerability to aMCI, vascular pa-
thology, and AD-related genetic variations, with studies suggesting it 
may be a more accurate diagnostic measure of structural atrophy 
compared to the whole HC (de Flores et al., 2015; Kerchner et al., 2014; 
Mueller and Weiner, 2009; Wisse et al., 2014). Additionally, biological 
hallmarks, such as amyloid-beta deposition, are associated with tissue 
atrophy and structural degeneration in aMCI and AD progression 
(Breijyeh and Karaman, 2020; Gauthier et al., 2006). In the HCsf, am-
yloid pathology and distribution appear to affect the CA1 region before 
the other regions (Braak and Braak, 1991), while a decrease in neuronal 
firings to the DG from the ERC is associated with more dense amyloid 
distribution (Reilly et al., 2003). Imaging techniques sensitive to HCsf 
tissue microstructure and pathology can improve detection of aMCI and 
potentially the progression to AD. 

Magnetic resonance elastography (MRE) is a sensitive, noninvasive 
neuroimaging technique that can quantify brain tissue viscoelasticity. 
Viscoelastic properties reflect brain tissue microstructural integrity, 
representing the organization and distribution of neuronal, axonal, and 
glial cells and extracellular matrix in the brain (Freimann et al., 2013; 
Klein et al., 2014; Riek et al., 2012; Schregel et al., 2012). Aging and 
neurodegeneration have been shown to lead to loss of tissue structural 
integrity, as reflected by a decline in brain viscoelastic properties (His-
cox et al., 2018, 2020a). Previous MRE studies have also revealed that 
AD is associated with greater softening of brain tissue, particularly in 
regions known to be affected by AD pathology (Gerischer et al., 2018; 
Hiscox et al., 2020a; Murphy et al., 2011, 2016). Currently, only one 
MRE study has investigated the association of MCI with changes in brain 
tissue viscoelasticity, focusing specifically on stiffness changes in large 
lobar regions (Murphy et al., 2016). However, as the HC and the HCsf 
are strongly affected by the Alzheimer’s pathology, it is important to 
examine viscoelastic changes in these regions in aMCI. Our group has 
previously shown the sensitivity of MRE in detecting structural differ-
ences of the HC in aging and neurodegeneration (Delgorio et al., 2021; 
Hiscox et al., 2018; Johnson et al., 2016b), and have recently developed 
a high-resolution, MRE protocol to reliably measure the viscoelasticity 
of individual HCsf (Delgorio et al., 2022, 2021), which can be poten-
tially more sensitive to aMCI by examining the neural substrates first 
affected by the underlying pathology of aMCI. 

In this work, we used a high-resolution MRE protocol to measure 
viscoelasticity mechanical properties of HCsf tissue in older adults with 
and without aMCI. Our overarching goal was to test whether viscoelastic 
property differences exist between healthy older adults and those with 
aMCI. We also wanted to test whether individual HCsf viscoelastic 
properties are differentially vulnerable to aMCI, and to determine if the 
MRE metrics provide additional information about HCsf structural 
decline in aMCI beyond traditional volumetric measures of atrophy. 
Based on prior work, we hypothesized participants with aMCI will 
experience the largest viscoelastic property differences in the CA1-CA2 
region, as this region is affected first in the disease (Mueller and 
Weiner, 2009; Pluta et al., 2012). Overall, this work sought to test 
whether HCsf MRE measures are valid imaging biomarkers of disease 
and neurodegeneration. 

2. Materials and methods 

2.1. Participant recruitment and inclusion criteria 

Eighty-three older adults were recruited (age: 60–90 years) to 
participate in this study, including 20 participants with a diagnosis of 
aMCI (mean age = 72.7 ± 8.7 years, M/F = 5/15) and 63 cognitively 
normal (CN) participants (mean age = 69.1 ± 5.4 years, M/F = 19/44). 
aMCI participants were recruited via flyers, social media advertise-
ments, and direct mailings targeting older adults with self-reported 
memory complaints. For both groups, potential participants were 
asked questions to determine if they qualified for the study (e.g., age, 
general health, ability to undergo MRI testing, etc.). For potential aMCI 
participants, the Modified Telephone Interview for Cognitive Status (TICS- 
m) was administered over the phone to determine if a participant 
exhibited a high likelihood of screening positive for aMCI, defined as 
TICS-m ≤ 34 points and > 20 points (maximum score = 51 points) or a 
low score on the immediate and delayed recall memory sub-tests (≤10) 
(Cook et al., 2009). Older adults determined to be neurotypical and not 
likely to have aMCI based on their TICS-m scores and self-reported 
medical history were eligible to enroll in the study in the CN group. 
Once potential aMCI participants passed this recruitment stage, they 
were assessed in person with a neuropsychological test battery 
comprised of the Mini-Mental State Exam (MMSE-2) (Folstein et al., 
1983), Hopkin’s Verbal Learning Test-revised (HVLT-R) (Benedict et al., 
1998), and either the Brief Visuospatial Memory Test (BVMT) or the 
Wechsler Memory Scale (WMS-R) Logical Memory Test. Individuals were 
classified as having likely aMCI if they met the following criteria: (A) 
scored > 21 on the MMSE-2 (Moise et al., 2004; Petersen, 2004), but (B) 
produced at least one score < -1.5 SD of an age-matched normative 
sample on either the HVLT-R, BVMT, or WMS-R Logical Memory subtest, 
and (C) were determined to have a Clinical Dementia Rating (CDR) total 
score < 1.0 (Morris, 1993) indicating that a reliable informant confirms 
that the person has some cognitive challenges but not dementia. All 
screening instruments and the CDR were administered by trained in-
dividuals under the supervision of a clinical neuropsychologist on the 
research team, who also reviewed all cases to confirm aMCI. 182 older 
adults were considered as likely aMCI based on their phone screen and 
TICS-m score and invited for in person screening, and subsequently 61 
older adults were screened as aMCI. Individuals who were considered 
likely aMCI based on phone screen, but were not confirmed during in 
person screening, were not included in this study. Individuals who were 
confirmed as aMCI during screening may not have enrolled in this study 
and completed MRI scans for several reasons including contraindica-
tions to MRI or lack of interest in the study when enrollment was 
available. All subjects provided informed, written consent to participate 
in this study approved by our Institutional Review Board. 

2.2. High-Resolution MRE protocol 

Each participant underwent an MRI session on a Siemens 3 T Prisma, 
which included two structural scans: a 0.9 mm3 T1-weighted magneti-
zation prepared rapid gradient echo (MPRAGE) and a 0.4x0.4x2.0 mm3 

T2-weighted turbo spin echo (TSE) scan aligned to the hippocampus; and 
a high-resolution MRE scan using a 3D multiband, multishot spiral MRE 
sequence with 1.25 mm isotropic resolution (Johnson et al., 2016a; 
McIlvain et al., 2022a), which included the following imaging param-
eters: repetition time/echo time (TR/TE) = 3360/70 ms, 192x192 ma-
trix size, 240 mm × 240 mm field-of-view (FOV), 96 axial slices, with a 
total scan time of 10 min and 45 s. We used a commercial Resoundant 
pneumatic actuator (Resoundant, Rochester, MN) to generate shear 
waves in the brain via vibrations at 50 Hz, with the resulting displace-
ment fields captured by the MRE sequence. A magnetic field in-
homogeneity map was separately collected and use to correct distortion 
during image reconstruction to improve the quality of the displacement 
information (McIlvain et al., 2022b; Sutton et al., 2003). 
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HCsf regions were segmented from the TSE scan using Automated 
Segmentation of Hippocampal Subfields (ASHS) (Yushkevich et al., 
2015). The UPenn PMC Atlas was used to provide masks of the indi-
vidual HCsf regions (CA1, CA2, CA3, DG, SUB, and ERC), which were 
combined into four regions (DG-CA3, CA1-CA2, SUB, and ERC) to 
reduce potential MRE property estimation errors in very small regions. 
Left and right regions were added together to create bilateral, binary 
segmentation masks and were visually inspected to ensure no overlap 
was present between the HCsf masks. Additionally, left and right HCsf 
volumes were obtained and added together to calculate bilateral volume 
measures for each region. All segmentations were then transformed into 
MRE space using FMRIB’s Linear Image Registration Tool (FLIRT) in FSL 
and thresholded to create binary masks (Jenkinson et al., 2012; Jen-
kinson et al., 2002). Segmentations and registrations were manually 
reviewed at each step for errors. 

A nonlinear inversion (NLI) algorithm generated shear stiffness, μ =

2|G|2

G′
+|G|, and damping ratio, ξ = G′′

2G′ , property maps, calculated from the 
complex shear modulus (G = G′ + iG′′) comprising the storage modulus 
(G′) and loss modulus (G′′) (McGarry et al., 2012); higher μ and lower ξ 
indicate better tissue integrity (Hiscox et al., 2021). Additionally, indi-
vidual HCsf regions were included as spatial priors in the inversion 
through soft prior regularization (SPR) (McGarry et al., 2013) (Fig. 1). 
When estimating the HCsf property maps, NLI parameters were opti-
mized to sensitively measure HCsf μ and ξ, using two inversion schemes 
with the following NLI parameter settings: μ – SPR: α = 10-12, spatial 
filtering (SF) width: 0.9 mm; ξ – SPR: α = 10-12, spatial filtering (SF) 
width: 1.5 mm. See our prior work for complete details of imaging and 
analysis protocols (Delgorio et al., 2022, 2021). Octahedral shear strain- 
based signal-to-noise ratio (OSS-SNR) was used to confirm data quality, 
with all data from all participants over the OSS-SNR threshold of 3.0 
considered suitable for NLI (Hannum et al., 2022; McGarry et al., 2011). 
Population OSS-SNR values in both groups and all HCsf are included in 
the Supplemental Information (Table S-1). 

We also extracted total intracranial volumes (ICV) and whole HC 
segmentations using FreeSurfer 6.0 (Fischl, 2012) and added left and 
right segmentations together to create bilateral masks. HC segmenta-
tions were transformed into MRE space using FLIRT and thresholded to 

create binary masks. HC left and right volumes were also obtained from 
FreeSurfer and added together to generate bilateral HC volumes. 

2.3. Statistical analyses 

For all models, outliers were detected using a 1.5x interquartile 
range (IQR) cutoff and were removed accordingly. Additionally, we used 
the Kolmogorov-Smirnov test to assess data normality for all models 
(Lilliefors, 1967). To account for subject-specific and group-specific 
global differences, MRE measures were normalized to global brain μ 
and ξ, respectively, which has been done in prior MRE work (Murphy 
et al., 2013). Corrections were performed by adjusting both regional HC 
and HCsf measures using the analysis of covariance (ANCOVA) 
approach, which corrects regional measures based on the proportion of 
the difference between an individual’s global brain measure and the 
average global brain measure for the sample (Eq. (1)) (Jack Jr et al., 
1989). 

RMadj = RMraw − b(GBMraw − GBMraw) (1)  

where RMadj is the covariance-adjusted brain regional measure (HC or 
HCsf), RMraw is the raw measure for the respective brain region, b is the 
unstandardized beta weight of the raw brain regional measure regres-
sion on raw global brain measure, GBMraw is the global brain raw 
measure, and GBMraw is the sample mean of the raw global brain mea-
sures. These adjusted HC and HCsf measures were used for all models. 
Volume measures were corrected for ICV using the same approach. All 
statistical analyses were performed using IBM SPSS Statistics version 
28.0.0 (IBM Corp., Armonk, N.Y., USA). 

2.4. Analysis 1: Differential effects of aMCI on HCsf properties 

To establish the value of MRE metrics in detecting property differ-
ences between CN and aMCI, we used a one-way ANCOVA model, 
adjusting for age and sex, to examine HC differences between CN and 
aMCI participants. Separate μ, ξ, and volume models were run to eval-
uate group differences between aMCI and CN. To determine the group 
differences among the HCsf regions, we ran separate general linear 

Fig. 1. Overview of the HCsf regions from the MRE Pipeline (Delgorio et al., 2021). (A) Volume Segmentations of the HCsf regions of interest: Dentate Gyrus-Cornu 
Ammonis 3 (DG-CA3), Cornu Ammonis 1–2 (CA1-CA2), Subiculum (SUB), and Entorhinal Cortex (ERC) using Automated Segmentation of Hippocampal Subfields 
(ASHS). (B) Generating the shear stiffness and damping ratio property maps. Examples for both MRE metrics are shown for a CN participant (77 y, female) and an 
aMCI participant (74 y, female). 
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mixed models (LMM) models, adjusting for age and sex, for HCsf μ, ξ, 
and volume. These models were used as they allowed us to assess group 
differences on all HCsf regions in one model. All models used an un-
structured residual covariance matrix, which was chosen based on the 
simultaneous minimization of the Akaike and Bayesian information 
criteria. We included group, age, and sex as between-subject effects and 
HCsf region as a 4-level within subject factor. We primarily focused on 
the group × HCsf interaction, as it tested the hypothesis of specific 
differential effects of aMCI on the properties of the HCsf regions. Post- 
hoc tests with Bonferroni correction were also performed for each model 
to determine individual HCsf group differences. Statistical significance 
was determined at α = 0.05. 

2.5. Analysis 2: Contributions of HCsf MRE measures in classifying aMCI 

We performed stepwise logistic regression analyses, adjusting for age 
and sex, to determine if HCsf MRE metrics improved classifier perfor-
mance beyond HCsf volumes in differentiation of aMCI from CN par-
ticipants. Models were run only for the significant HCsf MRE regions 
from Analysis 1 – i.e., CA1-CA2 μ, DG-CA3 μ, and CA1-CA2 ξ – where we 
tested if the addition of the MRE measure improved classifier perfor-
mance in the model beyond volume of the same corresponding region. 
Additionally, receiver operating characteristic (ROC) curves were con-
structed to validate classification performance results from the logistic 
regressions, which is quantified by the area under the curve (AUC). ROC 
curves were calculated for individual HCsf μ, ξ, and volume classifiers as 
well as combined ‘μ and volume’ and ‘ξ and volume’ classifiers. Statis-
tical significance was determined at α = 0.05. 

2.6. Analysis 3: Interaction between HCsf MRE and volume measures in 
classifying aMCI 

In addition to testing if HCsf MRE values add information about 
aMCI classification beyond HCsf volume, we wanted to determine 
whether MRE can identify aMCI in those who do not show signs of lower 
HCsf structural integrity from HCsf volume measures. We grouped 
participants based on HCsf volumes into low- and high-volume groups 
(split at the sample mean) and performed a stepwise logistic regression 
analysis, adjusting for age and sex. In these models, we added a volume 
group × HCsf MRE measure interaction to test if the contribution of the 
MRE measure differed between lower vs higher regional volumes (e.g., 
does DG-CA3 μ significantly differ in its classification of aMCI between 
‘low DG-CA3 volume’ vs ‘high DG-CA3 volume’ groups?). Models were 
run only for significant HCsf MRE classifiers identified in analysis 2. 
Additionally, separate regression models, adjusted for age and sex, were 
fit to the data in each volume group to compare how HCsf μ was related 
to the predicted probability of aMCI in both the low- and high-volume 
groups. Statistical significance was determined at α = 0.05. 

3. Results 

There were 6 total outliers in the μ data (HC: 1 CN; DG-CA3: 1 CN; 
SUB: 2 CN, 1 aMCI; ERC: 1 CN), 5 outliers in the ξ data (HC: 2 CN; DG- 
CA3: 2 CN, 1 aMCI; CA1-CA2: 2 CN; ERC: 1 CN), and 10 outliers in the 
volume data (DG-CA3: 2 CN, 3 aMCI; CA1-CA2: 2 CN, 2 aMCI; SUB: 2 
CN, 1 aMCI; ERC: 1 CN). For each regional analysis, region-specific 
outliers were removed accordingly (ex. DG-CA3 μ outliers were 
removed in models involving DG-CA3 μ as a predictor). Table 1 below 
shows an overview of the participant demographics. 

3.1. Analysis 1: Differential effects of aMCI on HCsf properties 

In this analysis, we aimed to determine if significant HCsf MRE 
property differences existed between CN and aMCI older adults. Group 
means for each region and measure are shown in Table 2, including the 
p-values from the HC ANCOVA model and HCsf post-hoc pairwise group 

comparisons with Bonferroni correction from the LMM, as well as 
Cohen’s d effect sizes for each model (Cohen, 1992). In both HC and 
HCsf, the aMCI group had lower μ, higher ξ, and smaller volumes, each 
of which indicated poorer structural integrity of those regions. Similar 
results for the MRE outcomes without normalization to global brain 
properties are presented in the Supplemental Information (Table S-2). 

The HC ANCOVA results revealed that there were significant differ-
ences between CN and aMCI for HC volume [F(1,79) = 11.3, p = 0.001], 
while HC ξ was not significantly different [F(1,77) = 2.05, p = 0.16]. 
Levene’s test of homogeneity was not significant for the HC volume and 
ξ models (p > 0.3) but was significant in the HC μ model (p = 0.015). To 
address this, the HC μ ANCOVA model was run with HC3 errors, which 

Table 1 
Overview of the participant demographics for CN and aMCI older adult groups. 
Total number of participants are displayed for each group as well as the sex 
distribution (male/female ratio) for each group. Average and standard deviation 
for age and NIH Toolbox (v. 2.1) composite score distributions (Weintraub et al., 
2013) are shown for each group.   

CN aMCI 

Number 63 20 
Sex (M/F) 19/44 5/15 
Age (years) 69 ± 5.4 73 ± 8.7 
NIH Toolbox Cognitive Battery: Total Composite 

Score 
106.0 ±
9.0 

95.4 ±
10.8 

NIH Toolbox Cognitive Battery: Fluid Composite 
Score 

96.0 ±
11.0 

84.5 ±
13.9 

NIH Toolbox Cognitive Battery: Crystallized 
Composite Score 

115.9 ±
6.9 

108.7 ±
7.4  

Table 2 
Summary of the normalized MRE and volume measures in CN and aMCI (mean 
± standard deviation). P-values are results from the post-hoc pairwise com-
parisons with Bonferroni correction, adjusted for age and sex, and effect sizes for 
each comparison are presented as Cohen’s d. * indicates significant group dif-
ferences at p < 0.05.  

Measure Region CN aMCI p-value Cohen’s 
d       

Shear Stiffness, 
μ (kPa) 

HC 2.84 ±
0.28 

2.63 ±
0.32  

0.018*  0.68 

DG-CA3 3.04 ±
0.38 

2.78 ±
0.52  

0.034*  0.57 

CA1- 
CA2 

3.07 ±
0.28 

2.84 ±
0.38  

0.007*  0.68 

SUB 2.73 ±
0.37 

2.62 ±
0.33  

0.272  0.32 

ERC 2.79 ±
0.37 

2.71 ±
0.58  

0.442  0.17       

Damping Ratio, 
ξ 

HC 0.204 ±
0.029 

0.218 ±
0.037  

0.156  0.41 

DG-CA3 0.224 ±
0.030 

0.235 ±
0.030  

0.189  0.35 

CA1- 
CA2 

0.212 ±
0.025 

0.230 ±
0.026  

0.025*  0.70 

SUB 0.174 ±
0.031 

0.184 ±
0.036  

0.284  0.30 

ERC 0.183 ±
0.033 

0.181 ±
0.039  

0.671  0.07       

Volume (cm3) HC 7.65 ±
0.70 

6.88 ±
0.80  

0.001*  1.01 

DG-CA3 1.57 ±
0.16 

1.41 ±
0.20  

< 0.001*  0.88 

CA1- 
CA2 

2.48 ±
0.28 

2.18 ±
0.36  

< 0.001*  0.93 

SUB 0.89 ±
0.08 

0.80 ±
0.10  

< 0.001*  0.96 

ERC 0.90 ±
0.10 

0.82 ±
0.15  

0.028*  0.62  
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are robust to violations of assumptions. The HC μ model results showed 
there were significant group differences [F(1,78) = 5.88, p = 0.018]. 
Age and sex did not show significant group differences in HC μ and ξ 
models (p > 0.05), while age was significant in the HC volume model (p 
< 0.001). 

The HCsf LMM μ model showed that there were significant group 
differences between CN and aMCI [F(1,81.1) = 4.14, p = 0.045]. 
Additionally, there was a significant group × HCsf interaction, which 
indicated the individual HCsf μ measures displayed differential effects in 
aMCI [F(6,79) = 12.3, p < 0.001]. Age and sex were not significant in 
the model (p > 0.05). Post-hoc pairwise comparisons with Bonferroni 
correction revealed only DG-CA3 μ (p = 0.034) and CA1-CA2 μ (p =
0.007) were significantly different between groups, while SUB μ and 
ERC μ did not show any significant group differences (p > 0.2) (Fig. 2). 

The HCsf LMM ξ model did not display significant group differences 
[F(1,78.9) = 1.23, p = 0.271]. However, the group × HCsf interaction 
was significant [F(6,79) = 68.5, p < 0.001], indicating the HCsf ξ dis-
played significant differential effects in aMCI. Both age and sex were not 
significant in the model (p > 0.05). Post-hoc pairwise comparisons with 
Bonferroni correction showed only CA1-CA2 ξ displayed significant 
group differences (p = 0.025), while the other HCsf regions did not 
significantly differ between CN and aMCI (all p > 0.1) (Fig. 3). 

For the HCsf LMM volume model, all HCsf regions displayed signif-
icant group differences between CN and aMCI [F(1,70.8) = 20.2, p <
0.001], while the group × HCsf interaction was also significant [F 
(6,78.9) = 391.8, p < 0.001]. Age was a significant factor in the model 
[F(1,82.1) = 10.1, p = 0.002], while sex was not [F(1,74.4) = 3.93, p =
0.051]. Post-hoc pairwise comparisons with Bonferroni correction 
revealed all regions displayed significant differences between CN and 
aMCI, with the strongest group differences in DG-CA3, CA1-CA2, and 
SUB volumes (p < 0.001), followed by ERC volume (p = 0.028) (Fig. 4). 

3.2. Analysis 2: Contributions of HCsf MRE measures in classifying aMCI 

We used logistic regression and ROC analyses to determine if the HC 
and HCsf regions with significant MRE measurement group differences 
(in Analysis 1) added information beyond regional volume in aMCI 
classification. Including stiffness measures significantly improved aMCI 
classification. The CA1-CA2 μ and CA1-CA2 volume combined analysis 
showed that the overall model was significant in classifying group dif-
ferences [χ2 = 22.1, p < 0.001, Nagelkerke R2 = 0.370]. CA1-CA2 

volume was included as the first step (p = 0.007), followed by CA1- 
CA2 μ (p = 0.010), indicating that the stiffness measure added infor-
mation for classifying aMCI beyond individual HCsf volume. This 
finding was further exemplified in an ROC analysis, which showed the 
combined CA1-CA2 μ and volume ROC curve had a larger AUC of 0.85 
[95 % CI: 0.75–0.94], compared to the individual μ (AUC = 0.71 [95 % 
CI: 0.56–0.85]) and volume (AUC = 0.77 [95 % CI: 0.64–0.90]) ROC 
curves (Fig. 5A). 

Similarly, the overall model combining both DG-CA3 μ and DG-CA3 
volume significantly classified group differences [χ2 = 19.9, p < 0.001, 
Nagelkerke R2 = 0.349]. DG-CA3 volume was included as the first step 
(p = 0.002), followed by DG-CA3 μ (p = 0.026). The combined DG-CA3 
μ and volume ROC curve had a higher AUC of 0.83 [95 % CI:0.75–0.94], 
compared to the individual μ (AUC = 0.67 [95 % CI: 0.51–0.83]) and 
volume (AUC = 0.76 [95 % CI: 0.61–0.90]) ROC curves, further show-
casing the value MRE adds to aMCI classification (Fig. 5B). 

Considering the whole HC, the overall model combining both HC μ 
and HC volume significantly classified group differences [χ2 = 21.4, p <
0.001, Nagelkerke R2 = 0.342]. HC volume was included as the first step 
(p = 0.003), followed by HC μ (p = 0.020). The combined HC μ and 
volume ROC curve had a higher AUC of 0.84 [95 % CI:0.75–0.93], 
compared to the individual μ (AUC = 0.72 [95 % CI: 0.57–0.86]) and 
volume (AUC = 0.76 [95 % CI: 0.63–0.88]) ROC curves. 

While stiffness measures improved classification, stepwise regression 
analysis showed CA1-CA2 ξ did not significantly improve classification 
performance beyond CA1-CA2 volume (p = 0.051). Similar results for 
the MRE outcomes without normalization to global brain properties are 
presented in the Supplemental Information (Tables S-3 and S-4). 

3.3. Analysis 3: Interaction between HCsf MRE and volume measures in 
classifying aMCI 

Here, our goal was to expand on the results in Analysis 2 and show 
that even in the presence of high HCsf volumes, HCsf MRE metrics 
improve aMCI classification. After splitting the HCsf volume data into a 
low-volume group and high-volume group, the stepwise logistic 
regression analysis for DG-CA3 μ revealed a significant DG-CA3 volume 
group × DG-CA3 μ interaction (p = 0.046). Furthermore, lower DG-CA3 
μ was significantly, linearly associated with a higher predicted proba-
bility for aMCI in the low DG-CA3 volume group [model R2 = 0.99, B =
-0.11, p < 0.001] (Fig. 6, purple line). These results show that at low DG- 

Fig. 2. HCsf μ differences between CN and aMCI groups. (A) Normalized HCsf μ plots showing significant differences in both the CA1-CA2 μ (p = 0.007) and DG-CA3 
μ (p = 0.034) regions between groups. Cohen’s d effect sizes for each region are shown on the plot, with medium effect sizes shown for the DG-CA3 and CA1-CA2 
regions, while SUB displayed a small-medium effect size and ERC displayed a small effect size. *: p < 0.05; **: p < 0.01. (B) Illustration of significant group × HCsf 
interaction where group μ differences significantly varied between regions. 
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CA3 volumes, low μ values can predict aMCI diagnosis. In the high DG- 
CA3 volume group, a quadratic regression found that lower DG-CA3 μ 
was significantly, nonlinearly associated with a higher predicted prob-
ability of aMCI classification [model R2 = 0.99, (DG-CA3 μ: B = -2.94, p 
< 0.001); (DG-CA3 μ2: B = 0.43, p < 0.001)] (Fig. 6, turquoise line). This 
signifies that despite high DG-CA3 volumes, the likelihood of an aMCI 
diagnosis is much higher with lower DG-CA3 μ, and further exemplifies 
the value of the information added by MRE compared to volume. The 
CA1-CA2 volume group × CA1-CA2 MRE interaction term for both CA1- 
CA2 μ and ξ models were not significant in their respective models (p >
0.2). Similar results for the MRE outcomes without normalization to 
global brain properties are presented in the Supplemental Information 
(Table S-5). 

4. Discussion 

In this work, we sought to evaluate the value of using MRE to assess 
HCsf viscoelastic property differences between older adults with and 

without aMCI. We showed that HCsf MRE measures add value in 
assessing differences between cognitively normal (CN) and aMCI par-
ticipants, even beyond established HCsf volume measures. There were 
significant group differences observed in HC μ, which aligns with prior 
MRE work related to the decline in brain viscoelasticity in both aging in 
older adults (Arani et al., 2015; Hiscox et al., 2018; Sack et al., 2011) and 
neurodegeneration (Gerischer et al., 2018; Hiscox et al., 2020a; Murphy 
et al., 2011, 2016), as well as in individual HCsf regions, consistent with 
the expectation that differences in tissue viscoelasticity measured with 
MRE will be in regions primarily affected by AD pathology (Gerischer 
et al., 2018; Hiscox et al., 2020a; Murphy et al., 2016). Pathological 
hallmarks such as neurofibrillary tangle (NFT) and amyloid-beta plaque 
accumulation often occurs in the hippocampus and its subregions during 
aMCI and future progression of AD (Braak and Braak, 1991; Lace et al., 
2009). Stiffness, μ, is thought to reflect tissue composition, while 
damping ratio, ξ, is thought to reflect tissue organization (Hiscox et al., 
2021, 2016; Sack et al., 2013), both of which may reflect changes to the 
underlying tissue microstructure in aMCI. While properties of the whole 

Fig. 3. HCsf ξ differences between CN and aMCI groups. (A) Normalized HCsf ξ plots showing significant differences in CA1-CA2 ξ (p = 0.025) between groups. 
Cohen’s d effect sizes for each region are shown on the plot, with a medium-large effect size shown for CA1-CA2, while the other HCsf regions displayed small- 
medium effect sizes. *: p < 0.05. (B) Illustration of significant group × HCsf interaction where group ξ differences significantly varied between regions. 

Fig. 4. HCsf volume differences between CN and aMCI groups. (A) Normalized HCsf volume plots showing significant differences in all HCsf (p < 0.05) between 
groups. Cohen’s d effect sizes for each region are shown on the plot, with large effect sizes shown for DG-CA3, CA1-CA2, and SUB, while ERC displayed a medium 
effect size. *: p < 0.05; ***: p < 0.001. (B) Illustration of significant group × HCsf interaction where group volume differences significantly varied between regions. 

P.L. Delgorio et al.                                                                                                                                                                                                                              



NeuroImage: Clinical 37 (2023) 103327

7

HC are different between groups, examining individual HCsf may pro-
vide metrics related to the spatial distribution of pathological changes to 
tissue microstructure. 

Both μ and ξ of the CA1-CA2 region were significantly different be-
tween groups, with aMCI exhibiting lower stiffness and higher damping 
ratio, both indicative of poorer tissue integrity. This finding agrees with 
our initial hypothesis, as several studies have cited significant structural 
changes in the CA1-CA2 region in aMCI and AD before the other sub-
fields (Chételat et al., 2008; de Flores et al., 2015; La Joie et al., 2013; 

Mueller et al., 2010; Mueller and Weiner, 2009). Other studies cite 
similar structural and functional changes in this region, with one lon-
gitudinal study finding a reduction in functional connectivity in both the 
right CA1 and left CA2 regions in aMCI (Li et al., 2018), while another 
study found that amyloid positive individuals with aMCI exhibited 
greater shape deformation in the CA1 region (Ye et al., 2014). These 
findings point to further microstructural degradation in this region, 
which aligns with our observation of lower CA1-CA2 stiffness. 
Furthermore, the CA1-CA2 region contains pyramidal cells that have a 
diffusive branch-like organization that may be disrupted in neuro-
degeneration (Duvernoy, 2005). In the progression of AD, the accumu-
lation of the NFTs in this region could potentially cause the dendritic 
organization to breakdown (Braak and Braak, 1991), leading to more 
energy dissipation in this region in aMCI, which could explain the 
greater CA1-CA2 damping ratio, indicating more viscous tissue 
behavior. Recent works have sought to examine the effects of amyloid- 
beta protein on MRE measures, and found it may cause higher damping 
ratio with minimal to no effect on stiffness (Bigot et al., 2020; Palotai 
et al., 2022), which is a potential mechanism for the greater CA1-CA2 
damping ratio observed here in aMCI patients. 

We also found significant group differences in DG-CA3 μ, with aMCI 
exhibiting lower stiffness. Some imaging studies observed significant 
volumetric decline in the DG region in the course of AD (Pluta et al., 
2012; Yassa et al., 2010) and large shape deformations in this region in 
aMCI (Yassa et al., 2010). This may cause disruption in the tightly 
organized granule cells and its unmyelinated mossy fibers of the DG-CA3 
(Duvernoy, 2005). One in vivo study looked at subfield diffusion neurite 
orientation dispersion and density imaging (NODDI) metrics and found 
the DG region was significantly affected in MCI individuals compared to 
healthy controls. Furthermore, associations between DG microstructural 
changes and an increase in the AD-related neurofilament light 
biomarker, which is a measure of axonal damage, may lead to structural 
changes observed in this region (Shahid et al., 2022), which aligns with 
our findings. In this study, we did not find significant group differences 
in SUB or ERC in either MRE measure. On the AD spectrum, all HCsf 
regions are ultimately affected and experience structural degeneration 
(de Flores et al., 2015), but as aMCI is an early stage of disease pro-
gression, these regions may be on a different time course compared to 
CA1-CA2 and DG-CA3. Longitudinal progression to the later stages of AD 
may result in significant structural decline in SUB and ERC, as quantified 

Fig. 5. Receiver operating characteristic (ROC) curves for significant HCsf predictors in classifying group differences between CN and aMCI, with area under the 
curve (AUC) included as a measure of predictive performance. (A) CA1-CA2 ROC curves: CA1-CA2 μ, CA1-CA2 volume, and combined CA1-CA2 μ and volume 
predictors from the logistic regression, with the combined ROC curve performing the best of the three (AUC = 0.85). (B) DG-CA3 ROC curves: DG-CA3 μ, DG-CA3 
volume, and combined DG-CA3 μ and volume predictors from the logistic regression, with the combined ROC curve performing the best of the three (AUC = 0.83). 

Fig. 6. Overview of the relationship between predicted probability of aMCI 
classification and DG-CA3 μ for both the low-volume group (purple line) and 
high-volume group (turquoise line). Both groups show that higher predicted 
probabilities significantly associated with lower DG-CA3 μ for both groups. The 
low volume group displayed a significant, linear relationship between predicted 
probability of aMCI (Pr-aMCI) and DG-CA3 μ (B = -0.11, p < 0.001), while the 
high volume group displayed a significant non-linear relationship between Pr- 
aMCI and DG-CA3 μ ([DG-CA3 μ: B = -2.94, p < 0.001]; [DG-CA3 μ2: B = 0.43, 
p < 0.001]). 
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by significant changes in MRE measures. 
MRE studies focusing on brain tissue viscoelasticity in AD showed 

that the brain appears softer on average (Murphy et al., 2011), with the 
most pronounced effects in frontal, parietal, and temporal lobes (Mur-
phy et al., 2016), specific cortical regions (Hiscox et al., 2020a), and the 
HC (Gerischer et al., 2018) – all of which are particularly affected in AD. 
Prior MRE animal work has attributed tissue softening to neuronal loss 
(Freimann et al., 2013) and demyelination (Schregel et al., 2012), which 
shows that brain stiffness may reflect composition changes in the tissue 
during disease progression. In corresponding MRE studies on animal 
models, tissue softening occurred in animals with AD (Majumdar and 
Klatt, 2021; Murphy et al., 2012), further supporting the results pre-
sented in this study. To date, the sole MRE study that investigated MCI 
effects on tissue viscoelasticity showed no significant changes between 
MCI and cognitively normal individuals (Murphy et al., 2016); however, 
the small sample size could explain the failure to find significant dif-
ferences between groups. Overall, our results complement prior MRE 
work on AD patients, where we show similarly lower tissue stiffness but 
in an earlier stage of the disease. Furthermore, these findings show our 
high-resolution MRE protocol can capture the effects of aMCI on indi-
vidual HCsf viscoelasticity, which are regions that are expected to 
differentially experience pathology at this disease stage. 

The second portion of this study focused on evaluating MRE as a 
useful metric in classifying aMCI beyond volume. Both CA1-CA2 μ and 
DG-CA3 μ improved aMCI classification beyond the CA1-CA2 and DG- 
CA3 volume measures. Prior MRE work in neurological diseases show 
the benefit of combining volume and MRE metrics to improve classifi-
cation (Gerischer et al., 2018; Huesmann et al., 2020). Specifically, 
when adding HC stiffness to diffusion and volume MRI metrics, there 
was a significant improvement in the accuracy of AD diagnosis (Ger-
ischer et al., 2018). This indicates that regional MRE measures are not 
overly biased by differences in regional volume between individuals, 
which is consistent with prior MRE work that showed MRE measures 
were significantly different in AD patients even when controlling for 
volume (Hiscox et al., 2020a), while cognitive measures were not 
correlated with volume but were associated with MRE metrics (Hiscox 
et al., 2020b; Johnson et al., 2018; Schwarb et al., 2016). Instead MRE 
measures add unique information beyond volumetrics indicating addi-
tional value in detecting aMCI and potentially early detection of AD. 
This is further exemplified by our finding that low DG-CA3 μ is associ-
ated with a higher probability of aMCI diagnosis regardless of DG-CA3 
volume atrophy measures. There is a non-linear relationship between 
aMCI and DG-CA3 μ in the high-volume group, such that individuals 
with high volume and high stiffness are not likely to have aMCI, though 
that probability becomes significantly greater with lower stiffness – even 
if there is still high volume. 

The findings in this work hint that MRE and volumetric measures of 
HCsf structures may detect structural integrity with different underlying 
mechanisms. Volume is a measure of regional structural decline and 
atrophy (Mueller et al., 2010), while MRE viscoelastic measures are 
thought to reflect tissue organization and composition changes, which 
may occur in neurodegeneration prior to measurable tissue atrophy 
(Murphy et al., 2019). aMCI leads to atrophy in the HCsf due to neuronal 
cell breakdown (Khan et al., 2015), which can ultimately lead to a 
decline in the size of all HCsf regions. However, since MRE metrics 
reflect cellular and matrix organization and composition through me-
chanical properties, that may occur without or before atrophy of the 
HCsf. This may explain why we see strong differences in tissue stiffness 
between CN and aMCI in isolated regions of the HCsf even in the absence 
of volumetric differences, which could be due to early stages of pa-
thology. Previous MRE studies have cited brain tissue stiffness decline 
reflecting microstructural events such as altered synaptic connectivity, 
cytoskeletal architectural breakdown, and extracellular matrix degen-
eration (Hiscox et al., 2020a; Huston et al., 2016; Murphy et al., 2019, 
2011). This is further supported in studies that found changes in syn-
aptic dysfunction (Scheff et al., 2007; Scheff et al., 2006) and 

mechanical signaling changes (Hall et al., 2021) in the HC and its sub-
field regions in neurodegeneration. In all, these structural changes may 
lead to a decrease in the viscoelastic behavior of tissue that may not be 
reflected in volumetric atrophy. 

This study has several limitations. The current work is based on a 
cross-sectional analysis while a longitudinal analysis may provide more 
insight into the how HCsf viscoelastic properties change differently with 
age and in relation to volume changes with aMCI and further AD pro-
gression. Longitudinal studies may also allow the analysis of HCsf 
viscoelasticity in participants who develop aMCI and those who convert 
from aMCI to dementia status. Prior work found that participants who 
converted from aMCI to dementia experienced structural decline in the 
CA1 region before the other subfields (Chételat et al., 2008). Further-
more, no apolipoprotein E carrier status or positron emission tomogra-
phy (PET) imaging data for amyloid and tau were collected. Inclusion of 
these data in future work may provide more insight into the specific 
HCsf viscoelastic changes we observed in this study. We also did not 
have complementary histopathological studies to understand the spe-
cific cellular pathology that is occurring in these regions and its relation 
to MRE metrics. These studies should be considered in future work. 

5. Conclusion 

The goal of this study was to evaluate group differences between CN 
and aMCI using HCsf MRE viscoelastic property measures. We showed 
that we can detect group differences in both μ and ξ in individual HCsf, 
indicating reduced tissue integrity in aMCI. We also found that 
combining both HCsf MRE and volume measures improved group clas-
sification, showcasing the value of HCsf metrics in identifying differ-
ences in health and disease, and that MRE metrics are still predictive of 
aMCI even when HCsf volume is high, suggesting a potential for early of 
disease. Overall, this work established HCsf MRE metrics as potential 
clinical imaging biomarkers for detecting structural decline in neuro-
degenerative diseases. Future work will involve longitudinal studies to 
understand how HCsf MRE properties may change throughout AD 
progression. 
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