

SURGICAL NEUROLOGY INTERNATIONAL

SNI: Revista Argentina de Neurocirugia, a supplement to SNI

OPEN ACCESS

For entire Editorial Board visit:

Editor:
Marcelo Platas,
Hospital Presidente Perón,
Buenos Aires

Technical Note

Meningiomas del foramen magno: Reporte de 12 casos y revisión de la literatura

Foramen magnum meningiomas: A report of 12 cases and literature review

Álvaro Campero^{1,2}, Pablo Ajler³, Guillermo Roman⁴, Conrado Rivadeneira^{1,2}

¹Servicio de Neurocirugía, Hospital Padilla, Tucumán, Argentina, ²Servicio de Neurocirugía, Sanatorio 9 de Julio, Tucumán, Argentina, ³Servicio de Neurocirugía, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina, ⁴Servicio de Neurocirugía, Hospital Cullen, Santa Fé, Argentina

 $E-mail: *Alvaro\ Campero\ - alvarocampero\ @yahoo.com.ar; Pablo\ Ajler\ - pablo.ajler\ @gmail.com; Guillermo\ Roman\ - guillermo\ roman\ 17\ @gmail.com; Conrado\ Rivadeneira\ - conradorivadeneira\ @gmail.com$

*Corresponding autor

Received: 28 July 17 Accepted: 31 July 17 Published: 24 October 17

Abstract

Objectives: The primary aim of this study was to assess the results attained for 12 patients with an anterior or lateral foramen magnum meningioma, treated microsurgically.

Methods: Between June 2005 and December 2016, 12 patients with foramen magnum meningiomas underwent microsurgical resection. Patients' age and gender, tumor localization (anterior or lateral), symptoms, approach, and postoperative results were analyzed.

Results: Eight of the 12 patients were women. The average age of the patients was 47 years. In 8 patients, the tumor was located anteriorly and in 4 patients laterally. The main symptom was occipitocervical pain (8 patients), followed by tetraparesia (3 patients). For all the anterior foramen magnum meningiomas, an extreme-lateral transcondylar approach was performed. In cases where the tumor was lateral, an extreme-lateral retrocondylar approach was adopted. Total and subtotal resection was achieved in 10 and 2 patients, respectively. In the latter instances, a very small piece of tumor remained around the vertebral artery or inside the jugular foramen. Three patients exhibited postoperative cranial nerve XII palsy and 2 cranial nerve XI palsy. One patient experienced cerebrospinal fluid leakage.

Conclusions: Microsurgery for both anterior and lateral foramen magnum meningiomas can be performed safely and effectively. What is necessary is: (a) good anatomical knowledge of the region; (b) two-step muscle dissection to expose the suboccipital triangle and vertebral artery; (c) to adopt an extreme-lateral retrocondylar approach for lateral meningiomas, and an

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Campero Á, Ajler P, Roman G, Rivadeneira C. Meningiomas del foramen magno: Reporte de 12 casos y revisión de la literatura. Surg Neurol Int 2017:8:S25-36.

http://surgicalneurologyint.com/Meningiomas-del-foramen-magno:-Reporte-de-I2-casos-y-revisión-de-la-literatura/

extreme-lateral transcondylar approach for anterior tumors; and (d) good microsurgical techniques.

Key Words: Condyle, extreme-lateral approach, foramen magnum, meningioma

Resumen

Objetivo: El propósito del presente trabajo es presentar los resultados de 12 pacientes con diagnóstico de meningiomas del foramen magno (MFM), de localización anterior o lateral, operados con técnicas microquirúrgicas.

Método: Desde Junio de 2005 a Diciembre de 2016, 12 pacientes con diagnóstico de MFM fueron intervenidos quirúrgicamente. Se evaluó: edad, sexo, localización de la lesión (anterior o lateral), sintomatología, tipo de abordaje utilizado y resultados postoperatorios.

Resultados: De los pacientes intervenidos, 8 fueron mujeres y 4 varones. La edad promedio fue de 47 años. La localización fue anterior en 8 casos y lateral en 4 casos. La sintomatología más frecuente fue dolor occipito-cervical (8 casos), seguido de tetraparesia (3 casos). En los pacientes con MFM de localización anterior se realizó un abordaje extremo-lateral transcondilar (ELTC), mientras que en los tumores laterales el abordaje fue extremo-lateral retrocondilar (ELRC). En 10 casos la resección fue completa. En dos pacientes fue necesario dejar una pequeña lámina de meningioma sobre la arteria vertebral y a nivel del foramen yugular. Como complicaciones postoperatorias, 3 pacientes presentaron una paresia del XII nervio craneano y 2 pacientes paresia del XI nervio craneano; además, 1 paciente presentó una fístula de LCR.

Conclusión: La cirugía de los MFM de localización anterior y lateral puede ser realizada de forma segura y efectiva. Es necesario: a) buen conocimiento anatómico de la región; b) disecar los músculos de la nuca en 2 planos, exponiendo el triángulo suboccipital y la arteria vertebral (AV); 3) realizar un abordaje ELRC en los tumores laterales, y ELTC en los tumores anteriores; y 4) buena técnica microquirúrgica.

Palabras claves: Abordaje extremo-lateral, cóndilo, foramen magno, meningioma.

INTRODUCCIÓN

Los meningiomas del foramen magno (MFM) representan del 1,8 al 3,2% de todos los meningiomas.[2] En el gran porcentaje de los casos los MFM son lesiones intradurales, y en su gran mayoría se ubican anteriores o laterales.^[7,21] Un prerrequisito para poder tratar un MFM es el perfecto conocimiento anatómico de la región del foramen magno (FM).[7] Más allá de la gran cantidad de abordajes que han sido desarrollados para tratar estos tumores, existe particular controversia en relación al tratamiento óptimo de los MFM ubicados ventral al bulbo/médula.[4] Así, en la literatura existen múltiples propuestas quirúrgicas, muchas de ellas muy parecidas. [1,3,5-7,9,10,12,13,15,16,20,21,24,26,28-32] Probablemente la mayor discusión existe entre los autores que sugieren que es mandatorio el fresado del cóndilo occipital, [2,3,5,8-10,12,29-32] y los que proponen que no es necesario. [4,7,24]

Es el propósito del presente trabajo presentar 12 casos de MFM de localización anterior o lateral, diagnosticados y tratados en un período de 11 años. Además, hacer una revisión de la anatomía de la región y del abordaje extremo-lateral.

MATERIALY MÉTODO

Desde Junio de 2005 a Diciembre de 2016, 12 pacientes con diagnóstico de MFM fueron intervenidos quirúrgicamente por los autores. Se evaluó: edad, sexo, localización de la lesión (anterior o lateral), sintomatología, tipo de abordaje utilizado y resultados postoperatorios. Además, se estudió en 5 cabezas de cadáveres adultos fijadas en formol e inyectadas con silicona coloreada la anatomía de la región del FM y el abordaje extremo-lateral.

RESULTADOS

Anatomía de la región del FM

Figura la-e

El FM en un orificio que presenta el hueso occipital y comunica el contenido intracraneano con la porción

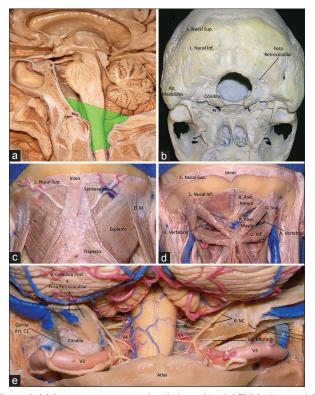


Figura 1:(a) Imagen representativa de la región del FM (color verde). (b) vista inferior del FM; se puede apreciar como el cóndilo se ubica lateral a la mitad anterior del FM, mientras que la fosa retrocondilar está lateral a la mitad posterior del FM. (c and d) músculos de la región de la nuca. El triángulo suboccipital, utilizado para encontrar de forma segura la AV, está constituido por los bordes de los músculos recto posterior mayor, oblicuo inferior y oblicuo superior. Nótese que los 3 primeros planos de músculos se insertan en la línea nucal superior, mientras que el cuarto plano (músculos rectos y oblicuos) lo hacen en la línea nucal inferior. (e) vista posterior de la región del FM. En el lado derecho se ha realizado el fresado del cóndilo occipital; así, podemos observar la diferencia de visión entre un abordaje EL-TC (lado derecho), y EL-RC (lado izquierdo). A., arteria; Ap., apófisis; Art., articular; ECM, esternocleidomastoideo; Inf., inferior; L., línea; Lig., ligamento; NC, nervio craneano; O., oblicuo; Post., posterior; R., recto; Sup., superior; V., vena

superior de la columna vertebral. Desde un punto de vista quirúrgico, debemos referirnos a la región del FM, la cual está limitada: a) anteriormente: entre el tercio inferior del clivus y el borde superior del cuerpo de C2; b) lateralmente: entre el borde superior de los tubérculos yugulares y el borde superior de las láminas de C2; y c) posteriormente: entre una línea que transcurre 1 cm por arriba del borde posterior del FM y el borde superior de la apófisis espinosa de C2. Así, un meningioma es considerado del FM si su base de inserción es localizada principalmente dentro de los límites de la región del FM [Figura 1a].^[2]

Músculos de la región de la nuca

Es muy importante entender la disposición de los músculos de la región posterior del cuello, ya que dicho conocimiento nos ayudará a encontrar el triángulo suboccipital y la arteria vertebral (AV). Para poder tratar

correctamente un MFM, es necesario exponer la AV; así, lograremos: a) tener control de la AV proximal al tumor; y b) exponer de forma adecuada y segura la fosa retrocondilea y el propio cóndilo occipital [Figura 1b]. Los músculos de la nuca se ubican en 4 planos, que de la superficie a la profundidad son: a) primer plano: trapecio y esternocleidomastoideo; b) segundo plano: esplenio de la cabeza; c) tercer plano: semiespinal de la cabeza y largo de la cabeza; y d) cuarto plano: recto posterior menor, recto posterior mayor, oblicuo inferior y oblicuo superior [Figura 1c and d]. Entre los músculos recto posterior mayor, oblicuo inferior y oblicuo superior se forma un triángulo llamado suboccipital en cuya profundidad se encuentra la arteria vertebral [Figura 1d]. Es importante recordar que los tres primeros planos se insertan fundamentalmente a nivel de la línea nucal superior, mientras que el cuarto plano se inserta en la línea nucal inferior [Figura 1b-d]. Así, en el abordaje extremo-lateral es necesario separar los 3 primeros grupos musculares (descienden juntos en el colgajo) del cuarto plano muscular (rectos y oblicuos); para ello utilizamos las líneas nucales, es decir, descendemos todo (piel, tejido celular y músculos) desde la parte superior de la incisión hasta la línea nucal inferior. Así, respetamos el plano de los rectos y oblicuos y podemos exponer el triángulo suboccipital.

Arteria vertebral^[11,27]

Ambas AVs son las primeras y más grandes ramas de la arteria subclavia; tienen una dirección ascendente, ingresando habitualmente por el agujero transverso de la sexta vértebra cervical. Cuando atraviesan el agujero transverso de Cl, toman una dirección medial, pasando por detrás de la articulación entre el cóndilo del occipital y la carilla articular de C1. Luego, atraviesan la duramadre para hacerse intradurales, dirigiéndose hacia delante y arriba para unirse entre sí y formar la arteria basilar. Cada AV es dividida en 4 porciones: a) V1: desde su nacimiento en la arteria subclavia hasta el ingreso al agujero transverso de C6; b) V2: desde el agujero transverso de C6 hasta el agujero transverso de C1; c) V3: desde el agujero transverso de C1 hasta el ingreso en la duramadre. Este segmento es el más importante de recordar a la hora de tratar un MFM; en su recorrido en busca de la duramadre, transcurre en un canal localizado en la parte lateral del arco posterior de Cl [Figura le]. Durante este recorrido, la AV se ubica en profundidad al triángulo suboccipital antes mencionado. Es importante mencionar que a este nivel la AV se encuentra rodeada de un plexo venoso; y d) V4: desde que atraviesa la duramadre hasta que se une con la AV contralateral.

Abordaje extremo-lateral [Figura 2a-f][9,10]

El paciente es colocado en posición semisentada, con la cabeza neutra. Es importante traccionar la cabeza hacia arriba para lograr "separar" lo más posible el cóndilo occipital de la carilla articular de C1. Se dibuja la incisión

en la piel, en forma de herradura, comenzando en la línea media a nivel de C5, llegando 1 cm por arriba del inion, doblando hacia la oreja y luego bajando a nivel de la apófisis mastoides. Comenzamos con una disección subperióstica desde arriba hacia abajo, desde el borde superior de la incisión hasta la línea nucal inferior; así, tendremos en el colgajo los tres primeros planos musculares en un solo bloque (ya que los mismos se insertan principalmente en la línea nucal superior). Cuando llegamos a la línea nucal inferior es importante identificar el plano muscular de los rectos y oblicuos, ya que dichos músculos nos permitirán en forma segura identificar y exponer la AV, gracias al triángulo suboccipital. Una vez expuesto el triángulo suboccipital, colocamos el microscopio, identificamos la AV y la exponemos en todo su segmento V3, retirando los músculos del triángulo. Luego es necesario "limpiar" de tejido blando la articulación entre el cóndilo y el atlas, la fosa retrocondilar y el arco posterior de C1, para poder exponer la parte ósea de la región. En este momento es importante reconocer y coagular en forma adecuada la vena condílea posterior. A continuación realizamos la

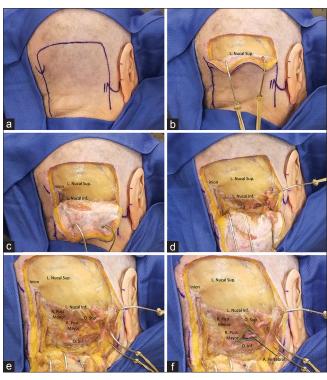


Figura 2: (a-f) Disección de partes blandas del abordaje extremolateral, exponiendo el triángulo suboccipital y la AV. (a) Incisión en forma de herradura. (b) Se comienza la disección de arriba hacia abajo, en forma subperióstica; a nivel de la línea nucal superior la disección subperióstica se hace difícil por la inserción de los 3 primeros planos musculares. Igualmente, se continúa hacia abajo en forma subperióstica. (c) La disección encuentra una nueva barrera a nivel de la línea nucal inferior, donde se inserta el cuarto plano muscular (rectos y oblicuos). A partir de ahora no seguimos en forma subperióstica sino que debemos exponer el cuarto plano muscular. (d and e) Exposición de los músculos del cuarto plano muscular. El triángulo suboccipital está representado de color verde. A., arteria; Inf., inferior; L., línea; O., oblicuo; Post., posterior; R., recto; Sup., superior

craneotomía/craniectomía, siendo necesario exponer la duramadre desde el seno sigmoideo hasta el FM, siempre abriendo ampliamente el mismo. También es necesario remover el arco posterior de Cl, siendo más extensa la resección del lado del tumor. En el caso de un MFM lateral, se realizará un abordaje ELRC, lo cual significa fresar y remover el hueso de la fosa retrocondilar, sin tocar el cóndilo occipital. Si el paciente presenta un MFM anterior, realizaremos un abordaje ELTC, para lo cual agregamos el fresado de parte del cóndilo occipital. La incisión en la duramadre tiene forma de signo de interrogación, siguiendo los márgenes de la remoción ósea. Una vez expuesto el tumor, luego de identificar las estructuras vasculares y nerviosas, procedemos a resecar el mismo, comenzando con un vaciamiento intratumoral a través del aspirador ultrasónico. La idea es vaciarlo internamente lo más posible para así poder separar luego su superficie externa del bulbo/médula, de los nervios y de la AV y sus ramas.

Pacientes operados [Tabla 1] [Figuras 3-6]

De los pacientes intervenidos, 8 fueron mujeres y 4 varones. La edad promedio fue de 47 años. La localización

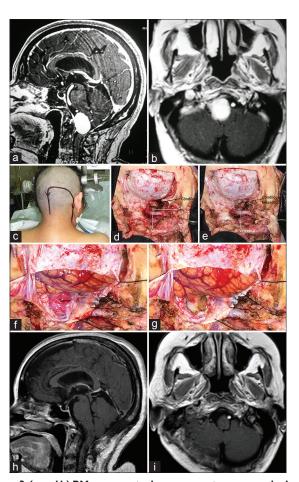


Figura 3: (a and b) RM preoperatorias que muestran un meningioma del FM anterior. (c-g) Fotos quirúrgicas de la paciente. (h and i) RM postoperatorias, con resección completa de la lesión. A., arteria; Art., articular

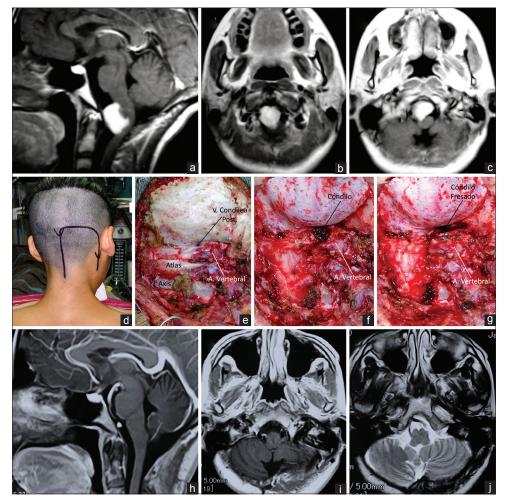


Figura 4: (a-c) RM preoperatorias que muestran un meningioma del FM anterior. (d-g) fotos quirúrgicas de la paciente. (h-j) RM postoperatorias, con resección completa de la lesión. A., arteria; V., vena

Tabla 1: Pacientes operados de un meningioma del FM

Edad Sexo	Localización	Clínica	Abordaje	Resección	Complicaciones
24, F	anterior	Tetraparesia Déficit de pares bajos	E-L TC	Total	Paresia NC XI
57, F	anterior	Dolor O-C Parestesias de MMSS	E-L TC	Total	Fístula de LCR
63, M	anterior	Dolor O-C	E-L TC	Total	Paresia NC XI
31, M	lateral	Dolor O-C Ataxia	E-L RC	Total	No
62, F	anterior	Dolor O-C Hemiparesia	E-L TC	Total	No
48, F	lateral	Hemidisestesias	E-L RC	Total	No
31, M	anterior	Dolor O-C Tetraparesia	E-L TC	Total	Paresia NC XII
55, F	anterior	Dolor O-C	E-L TC	Total	No
43, F	lateral	Alteración de pares bajos	E-L RC	Total	No
37, M	lateral	Dolor O-C Tetraparesia	E-L RC	Subtotal *	Paresia NC XII
59, F	anterior	Dolor O-C	E-L TC	Total	No
47, F	lateral	Cefalea	E-L RC	Subtotal **	Paresia NC XII

^{*:} se dejó un pequeño "pedazo" a nivel del foramen yugular, **: se dejó un pequeño "pedazo" alrededor de la AV

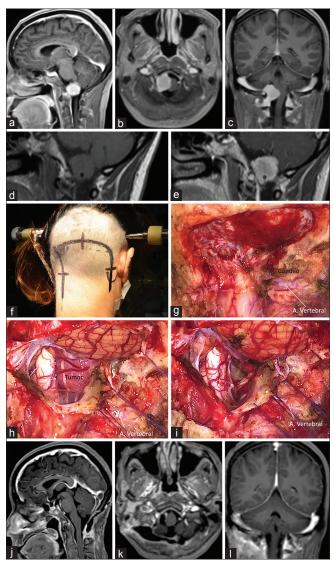


Figura 5: (a-c) RM preoperatorias que muestran un meningioma del FM lateral. (d, e) imágenes parasagitales que muestran a la AV envuelta completamente por el tumor. (f-i) fotos quirúrgicas de la paciente. (j-l) RM postoperatorias, con resección completa de la lesión. Sin embargo, la resección no fue total, ya que fue necesario dejar una delgada capa de tumor alrededor de la AV (no presentaba plano de separación). A., arteria

fue anterior en 8 casos y lateral en 4 casos. En los MFM de localización anterior se realizó un abordaje extremo-lateral transcondilar (ELTC), mientras que en los tumores localizados lateralmente el abordaje fue extremo-lateral retrocondilar (ELRC). La sintomatología más frecuente fue dolor occipito-cervical (8 casos), seguido de tetraparesia (3 casos). En 10 casos la resección fue completa. En dos pacientes fue necesario dejar una pequeña lámina de meningioma; en un caso no existía buen plano entre la arteria vertebral y el tumor, y en otro caso el meningioma invadía el foramen yugular. Como complicaciones postoperatorias, 3 pacientes presentaron una paresia del XII nervio craneano, y 2 pacientes del XI nervio craneano; en todos los casos hubo preservación

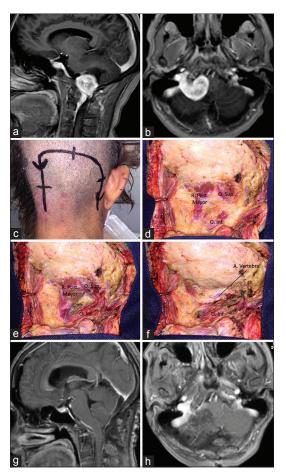


Figura 6: (a and b) RM preoperatorias que muestran un meningioma del FM lateral. (c-f) fotos quirúrgicas de la paciente. El triángulo suboccipital está representado de color verde. (g and h) RM postoperatorias. Fue necesario dejar una pequeña porción de tumor a nivel del foramen yugular, ya que no existía plano de separación entre el tumor y los nervios craneanos bajos. A., arteria; Inf., inferior; O., oblicuo; Post., posterior; R., recto; Sup., superior

anatómica de dichos nervios, y todos los pacientes excepto uno recuperaron al cabo de 3-4 meses. Además, un paciente presentó una fístula de LCR, que fue solucionada con un drenaje espinal.

DISCUSIÓN

La primera cirugía exitosa de un MFM fue realizada en 1927 por Elsberg y Strauss a través de una craneotomía suboccipital acompañada de una laminectomía C1-C3. [14] En 1986 Heros introdujo el abordaje extremo-lateral para el manejo de aneurismas de la arteria vertebral. [18] En 1988 George y cols. describieron el abordaje extremo-lateral para tratar lesiones del FM. [15]

Existen muchas formas de nombrar al abordaje extremo-lateral, con un sinnúmero de variantes; además, según los autores, se puede observar en la literatura numerosas formas de realizarlo. Solo para mencionar la incisión, esta puede ser vertical, en forma de letra "S", en forma de palo de hockey, en forma de herradura (más

larga la parte medial o la parte lateral), etc., Para simplificar las cosas, los autores proponen diferenciar dos tipos de abordaje extremo-lateral: a) sin remoción del cóndilo occipital (abordaje ELRC), y b) con remoción del cóndilo occipital (abordaje ELTC). Más allá de estos detalles, lo más importante es entender en que nos ayuda un abordaje extremo-lateral. Desde el punto de vista de los autores, un abordaje extremo-lateral ofrece los siguientes beneficios: 1) exponer en forma segura el segmento V3 de la AV. Para ello es necesario exhibir el triángulo suboccipital (se explicó previamente la manera de hacerlo utilizando la línea nucal inferior); 2) "limpiar" de tejido graso y muscular la fosa retrocondilar y la articulación entre el cóndilo y la carilla articular de Cl; 3) abrir ampliamente el FM, y remover de acuerdo al tipo de abordaje la fosa retrocondilar (ELRC) o el cóndilo occipital (ELTC); y 4) exponer el sector lateral (ELRC) o anterior (ELTC) del FM.

De acuerdo a la zona de implante, los MFM pueden ser clasificados en anteriores, laterales y posteriores. La forma de abordarlos y la complejidad de la resección va a ser completamente diferente. Los meningiomas que se ubican en el sector posterior del FM van a encontrarse por detrás del bulbo/médula y también por detrás de los nervios y la AV, por lo tanto con una craneotomía suboccipital medial acompañada de la resección del arco posterior de C1 será suficiente para realizar una resección efectiva y segura del tumor. Como el abordaje y la complejidad es diferente a los MFM anteriores y laterales, no se tuvo en cuenta los pacientes con este tipo de lesiones en el presente trabajo.

Los meningiomas que se ubican predominantemente en el sector lateral del FM van a desplazar el bulbo/ médula, los nervios y la arteria vertebral en general hacia medial y hacia delante, ofreciendo un buen corredor de trabajo sin necesidad de gran remoción ósea durante el abordaje. Sin embargo, estas lesiones laterales presentan 2 potenciales problemas: 1) cuando engloban a la arteria vertebral, y 2) cuando infiltran el foramen yugular. Por lo tanto, los autores consideran que en este tipo de tumores es necesario exponer la AV para tener un control de la misma proximal a la lesión y para poder también hacer la remoción ósea adecuada durante el abordaje. Así, con un abordaje extremo-lateral, sin necesidad de fresar el cóndilo del occipital, es suficiente para realizar una cirugía correcta.

Sin duda los MFM más difíciles de abordar y extraer son los que nacen del sector anterior. En estos casos los autores sugieren realizar un abordaje ELTC. Los MFM anteriores desplazan el bulbo/médula hacia atrás, de tal manera que el corredor quirúrgico debe ser agrandado a través del fresado de la fosa retrocondilar y del propio cóndilo del occipital. Es importante también mencionar que los MFM anteriores pueden ubicarse en su mayor parte por arriba o por abajo del plano de la arteria

vertebral. Son más frecuentes los MFM ubicados por debajo de la AV; en ese caso, los pares bajos se encuentran desplazados hacia arriba. Por el contrario, si el tumor creció por arriba de la AV, la posición de los nervios no puede ser anticipada y la cirugía es más dificultosa.^[7] El fresado del cóndilo implicaría el riesgo potencial de inestabilidad cráneo-cervical, lesión del nervio hipogloso, lesión de la vena condílea y aumento del tiempo quirúrgico. [22] Para evitar estas potenciales complicaciones se sugiere: a) fresar el cóndilo solo lo necesario para "aplanar" el ángulo superior que forma el mismo luego de remover la fosa retrocondilar; b) nunca llegar a exponer el XII nervio craneano; c) identificar la vena condílea posterior a nivel de la fosa retrocondílea, para poder coagularla y cortarla en forma adecuada; y d) para evitar un gran consumo de tiempo durante el fresado del cóndilo, es necesario practicar previamente en el laboratorio.

Varios trabajos previos demostraron que los meningiomas intracraneanos son lesiones que crecen. [17,19,23,25] Hashimoto y cols. mostraron que los meningiomas de la base de cráneo tienen un crecimiento menor que los meningiomas de la convexidad.[17] Si a este concepto agregamos que el tratamiento quirúrgico de los meningiomas de la convexidad es algo relativamente simple en comparación con los tumores que involucran la base de cráneo, una conducta conservadora parecería representar una alternativa lógica. Esto sería particularmente aplicable para pacientes con lesiones pequeñas y asintomáticas. Sin embargo, un estudio reciente de Hunter y cols. mostró que la tasa media de crecimiento de un meningioma petroclival fue de 2.38 cm³/año, y que el 88,2% de los tumores demostraron crecimiento durante el período de evaluación.^[19] En el presente trabajo se ejemplifica un caso que fue diagnosticado en el año 2011 y operado en el año 2016 [Figura 7]; se puede apreciar claramente el crecimiento tumoral, haciéndonos reflexionar si es mejor operar en una etapa temprana, donde el tumor es pequeño y el paciente no tiene síntomas, o por el contrario cuando el tumor creció y dio síntomas y signos. Los autores sugieren tener una conducta quirúrgica temprana en pacientes jóvenes con diagnóstico de MFM.

CONCLUSIÓN

La cirugía de los MFM de localización anterior y lateral puede ser realizada de forma segura y efectiva. Es necesario: a) buen conocimiento anatómico de la región; b) disecar los músculos de la nuca en 2 planos, exponiendo el triángulo suboccipital y la arteria vertebral (AV); 3) realizar un abordaje ELRC en los tumores laterales, y ELTC en los tumores anteriores; y 4) buena técnica microquirúrgica.

Financial support and sponsorship Nil.

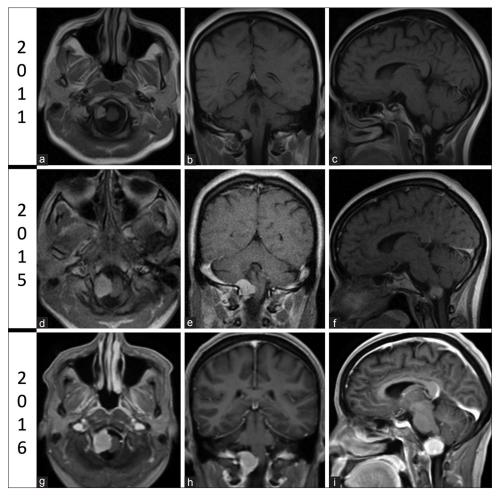


Figura 7: Secuencia de RM donde se puede apreciar el crecimiento tumoral con el correr de los años. (a-c) Imágenes del año 2011. (d-f) Imágenes del año 2015. (g-i) Imágenes del año 2016

Conflicts of interest

There are no conflicts of interest.

BIBLIOGRAFÍA

- Acikbas SC, Tuncer R, Demirez I, Rahat O, Kazan S, Sindel M, et al. The effect of condylectomy on extreme lateral transcondylar approach to the anterior foramen magnum. Acta Neurochir (Wien) 1997;139:546-50.
- Arnautovic KI, Al-Mefty O, Husain M. Ventral foramen magnum meningiomas. J Neurosurg 2000;92(Suppl 1):71-80.
- Babu RP, Sekhar LN, Wright DC. Extreme lateral transcondylar approach: Technical improvements and lessons learned. J Neurosurg 1994;81:49-59.
- Bassiouni H, Ntoukas V, Asgari S, Sandalcioglu EI, Stolke D, Seifert V. Foramen magnum meningiomas: Clinical outcome after microsurgical resection via a posterolateral suboccipital retrocondylar approach. Neurosurgery 2006;59:1177-87.
- Bertalanffy H, Seeger W. The dorsolateral, suboccipital, transcondylar approach to the lower clivus and anterior portion of the craniocervical junction. Neurosurgery 1991;29:815-21.
- Bertalanffy H, Gilsbach JM, Mayfrank L, Klein HM, Kawase T, Seeger W. Microsurgical management of ventral and ventrolateral foramen magnum meningiomas. Acta Neurochir (Suppl) 1996;65:82-5.
- Bruneau M, George B. Foramen magnum meningiomas: Detailed surgical approaches and technical aspects at Lariboisiere Hospital and review of the literature. Neurosurg Rev 2008;31:19-33.
- 8. Campero A, Rivadeneira C. Abordaje extremo lateral transcondilar para

- resecar un meningioma anterior del foramen magno. Rev Argent Neuroc 2006;20:161-4.
- Campero A, Ajler P, Emmerich J. Abordaje posterolateral. En Campero A, editor: Abordajes Quirúrgicos al Cerebro y la Base de Cráneo. Buenos Aires: Ediciones Journal; 2013, pp 111-21.
- Campero A, Ajler P, Martins C, Rhoton AL. Abordaje posterolateral (extremo lateral o far lateral). En García Navarro y Castillo Velázquez, editord. Estrategias y Abordajes en Neurocirugía Craneal. Distrito Federal: Amolca; 2015, pp 321-8.
- Campero A, Rubino P, Rhoton AL. Anatomy of the vertebral artery. En Bruneau, George y Spetzler, editors. Pathology and Surgery around the Vertebral Artery. París: Springer; 2011, pp 29-40.
- David CA, Spetzler RF. Foramen magnum meningiomas. Clin Neurosurg 1997;44:467-89.
- Dowd GC, Zeiller S, Awasthi D. Far lateral transcondylar approach: Dimensional anatomy. Neurosurgery 1999;45:95-100.
- 14. Elsberg CA, Strauss I. Tumors of the spinal cord which project into the posterior cranial fossa: Report of a case in which a growth was removed from the ventral and lateral aspects of the medulla oblongata and upper cervical cord. Arch Neurol Psychiatry 1929;21:261-73.
- George B, Dematons C, Cophignon J. Lateral approach to the anterior portion of the foramen magnum. Application to surgical removal of 14 benign tumors: Technical note. Surg Neurol 1988;29:484-90.
- George B, Lot G. Foramen magnum meningiomas: A review from personal experience of 37 cases and from a cooperative study of 106 cases. Neurosurgery Quarterly 1995;5:149-67.
- Hashimoto N, Rabo CS, Okita Y, Kinoshita M, Kagawa N, Fujimoto Y, et al. Slower growth of skull base meningiomas compared with non-skull

- base meningiomas based on volumetric and biological studies. J Neurosurg 2012;116:574-80.
- Heros RC. Lateral suboccipital approach for vertebral and vertebrobasilar artery lesions. J Neurosurg 1986;64:559-62.
- Hunter JB, Yawn RJ, Wang R, O'Connell BP, Carlson ML, Mistry A, et al. The natural history of petroclival meningiomas: A volumetric study. Otol Neurotol 2017;38:123-8.
- Kratimenos GP, Crockard HA. The far lateral approach for ventrally placed foramen magnum and upper cervical spine tumours. Br J Neurosurg 1993;7:129-40.
- Li D, Wu Z, Ren C, Hao SY, Wang L, Xiao XR, et al. Foramen magnum meningiomas: Surgical results and risks predicting poor outcomes based on a modified classification. J Neurosurg 2016;13:1-16.
- Moscovici S, Umansky F, Spektor S. Lazy far-lateral approach to the anterior foramen magnum and lower clivus. Neurosurg Focus 2015;38:E14.
- Nakamura M, Roser F, Michel J, Jacobs C, Samii M. The natural history of incidental meningiomas. Neurosurgery 2003;53:62-70.
- Nanda A, Vincent D, Vannemreddy B, Baskaya MK, Chanda A. Far lateral approaches to intradural lesions of the foramen magnum without resecting of the occipital condyle. J Neurosurg 2002;96:302-9.

- Oya S, Kim SH, Sade B, Lee JH. The natural history of intracranial meningiomas. J Neurosurg 2011;114:1250-6.
- Pamir MN, Kilic T, Özduman K, Türe U. Experience of a single institution treating foramen magnum meningiomas. J Clin Neurosci 2004;11:863-7.
- Peris-Celda M, Campero A, Rubino P, Rhoton AL. Microsurgical anatomy of the internal carotid and vertebral arteries. En Spetzler, Kalani y Nakaji, editors. Neurovascular Surgery. Nueva York: Thieme; 2015, pp 12-36.
- Pirotte B, David P, Noterman J, Brotchi J. Lower clivus and foramen magnum anterolateral meningiomas: Surgical strategy. Neurol Res 1998:20:577-84.
- Salas E, Sekhar LN, Ziyal IM, Caputy AJ, Wright DC. Variations of the extreme-lateral craniocervical approach: Anatomical study and clinical analysis of 69 patients. J Neurosurg 1999;90(Suppl 2):206-19.
- Sen CN, Sekhar LN. An extreme lateral approach to intradural lesions of the cervical spine and foramen magnum. Neurosurgery 1990;27:197-204.
- Spektor S, Anderson GJ, McMenomey SO, Horgan MA, Kellogg JX, Delashaw JB Jr. Quantitative description of the far-lateral transcondylar transtubercular approach to the foramen magnum and clivus. J Neurosurg 2000;92:824-31.
- 32. Spetzler RF, Grahm TW. The far-lateral approach to the inferior clivus and the upper cervical region: Technical note. BNI Q 1990;6:35-8.

Comentario

Los autores presentan un trabajo retrospectivo sobre 12 casos de meningiomas del foramen magno, 8 de ubicación anterior fueron operados por un abordaje extremo lateral transcondilar y los 4 restantes, de ubicación lateral, fueron operados por un abordaje extremo lateral retrocondilar. En 10 casos la resección fue completa, y las complicaciones postoperatorias fueron: 3 casos de paresia del XII par craneal, 2 casos de paresia del XI par craneal y 1 caso con fístula de LCR. Las complicaciones del abordaje extremo lateral (AEL) pueden ser mayores y devastadores para el paciente como la lesión de los pares bajos (IX; X; XI y XII) y la laceración de la arteria vertebral, por lo que coincido con los autores en el conocimiento anatómico y la buena técnica microquirúrgica para un AEL, pero creo es necesario para cualquier tipo de cirugía.

Los abordajes a la región del foramen magno se dividen en anteriores, posteriores y posterolaterales. Los abordajes anteriores clásicamente se hacían por la vía transoral y sus ampliaciones, pero tenían complicaciones relacionadas a la fístula de LCR e infecciones, y cayeron en desuso. Actualmente está resurgiendo la vía anterior mediante los abordajes nasales endoscópicos extendidos pero su indicación aún es poco clara. Los abordajes posteriores son lo clásico y se pueden resecar tumores de cualquier punto de la región del foramen magno, desde hace

varios años existe la controversia en relación a la visión quirúrgica de la lesión y posibles complicaciones entre la vía posterior y la posterolateral. Por último en las décadas del 80 y 90 han tenido un gran impulso los abordajes posterolaterales a la región del foramen magno gracias a Bernard George para los tumores y Roberto Heros para la patología vascular.^[1-3]

Los meningiomas del foramen magno son una patología desafiante para el Neurocirujano; y es necesario conocer la anatomía regional, tener en mente la ubicación tridimensional, tamaño del meningioma, compresión y/o englobamiento de estructuras neurovasculares, edad y comorbilidades para poder elegir bien la vía de abordaje. Más allá de las preferencias personales es fundamental elegir la vía con la cual uno tenga la mayor experiencia y se sienta más cómodo.

Jorge M. Salvat

FLENI

BIBLIOGRAFÍA

- George B, Dematons C, Cophignon J. Lateral approach to the anterior portion of the foramen magnum. Application to surgical removal of 14 benign tumors: Technical note. Surg Neurol 1988;29:484-90.
- George B, Lot G, Boissonnet H. Meningioma of the foramen magnum: A series of 40 cases. Surg Neurol 1997;47:371-9.
- Heros RC. Lateral suboccipital approach for vertebral and vertebrobasilar artery lesions. J Neurosurg 1986;64:559-62.

Comentario

Los autores presentan una interesante serie de 12 pacientes operados de meningiomas del foramen magno. Los mismos se presentaron en su mayoría por dolor occipitocervical, una manifestación suficientemente benigna si se entiende en qué localización tan delicada se encuentran este tipo de lesiones.

Durante el desarrollo de su trabajo los autores realizan un interesante raconto de los aspectos anatómicos y microquirúrgicos de la compleja área del foramen magno, resaltando sus límites y elementos neurovasculares de vital importancia, no sólo para nuestra desafiante labor sino también para el buen pronóstico y recuperación del paciente. Es fundamental para dominar esta patología el exhaustivo entrenamiento en el laboratorio de anatomía microquirúrgica y la disección cadavérica, un aspecto que los autores no pasan por alto y sobre la que realizan especial hincapié en varios pasajes de su relato.

El abordaje extremo lateral, tal como lo expresara el profesor Evandro De Oliveira en su emblemático artículo^[1] y en los que vinieron en los años subsiguientes,^[2] presenta numerosas variantes. El fresado del cóndilo occipital es quizás nuestra mejor arma si queremos exponer la cara anterior de la unión bulbomedular, tal como lo expresan los autores; pero quizás no sea necesario para tratar patologías de la región lateral del foramen magno e incluso de la cara anterior, ya que muchas veces el mismo tumor nos crea un corredor lo bastante amplio como para poder trabajar en esta zona, sin necesidad de fresar parte del cóndilo, aunque siempre debe estar presente esta posibilidad, especialmente en los de ubicación anterior. Sin duda alguna, es fundamental no solo manejar los aspectos

más importantes de la cirugía de la base del cráneo sino también dominar la cirugía vascular, ya que se requiere de una descollante praxia para poder disecar, liberar y eventualmente transponer la arteria vertebral, un elemento al que debemos respetar en todo momento.

Felicito a los autores por tan interesante revisión, y por compartir con nosotros su experiencia en esta patología por demás desafiante y no tan frecuente en nuestra práctica diaria.

Pablo Rubino

Hospital El Cruce

BIBLIOGRAFÍA

- Oliveira E, Rothol AL Jr, Peace D. Microsurgical anatomy of the region of the Foramen Magnum. Surg Neurol 1985;24:293-352.
- Wen HT, Rothon AL, Katsuta T, de Oliveira E: Microsurgical anatomy of the transcondylar, supracondylar, and paracondylar extensions of the far-lateral approach. J Neurosurg 1997;87:555-85.

Comentario

El abordaje extremo lateral es una opción de capital manejo y conocimiento para abordar lesiones anteriores y laterales de la unión cráneo-vertebral.[1-3] El orden de estudio propuesto por el autor debe ser imitado por cualquier cirujano que deba enfrentar este abordaje y su patología: profundo estudio anatómico de la región, correcta práctica en laboratorio de disección de preparados anatómicos y una adecuada técnica microquirúrgica. Las indicaciones más usuales incluyen aneurismas de la unión vertebro-PICA, cavernomas de tronco y tumores antero-laterales de la protuberancia baja, bulbo y médula (meningiomas del foramen magno, schwannomas de pares bajos y cordomas entre los más habituales). Las principales ventajas se sustentan en la segura exposición de la porción antero-lateral del foramen magno y en generar un corredor corto, amplio y estéril, con la posibilidad de estabilización de la unión cráneo-cervical (de así requerirlo) a través del mismo abordaje, en contraste con el abordaje transoral para algunas lesiones tumorales de la misma región, que expone un campo de menor espacio, asepsia y control para el desarrollo de la cómoda práctica del cirujano. En acuerdo con el autor, existen múltiples estrategias de manejo operatorio (posición sentada versus "park

bench", incisión en herradura versus lineal, colgajo con o sin "cuff" de músculo), pero la mayoría de los autores coinciden en no extenderse en el fresado del cóndilo, en el caso de usar la variante transcondilar, más de 1/3 desde su borde posterior, que son aproximadamente 6-8 mm, procurando evitar la apertura del canal del hipogloso. Esta variante, claramente referida por el autor como de elección para lesiones anteriores del foramen magno, aumenta la amplitud y los ángulos de visión, facilitando el abordaje de la lesión con mínima o nula retracción neural y un bajo nivel de complicaciones postoperatorias.

Tomás Funes

Sanatorio Otamendi y Miroli

Sanatorio Anchorena

BIBLIOGRAFÍA

- Campero A, Rivadeneira C. Abordaje extremo lateral transcondilar para resecar un meningioma anterior del foramen magno. Rev Argent Neuroc 2006;20:161-3.
- Campero A, Rivadeneira C. Reparos anatómicos superficiales de los senos transverso y sigmoideo. Importancia en la planificación de un abordaje. Revista Argentina de Neurocirugía 2001;15:13-9.
- Rhoton AL. The far lateral approach and its transcondylar, supracondylar and paracondylar extensions. Neurosurgery 2000;47:195-209.

Comentario

Los autores nos presentan un trabajo prolijo, sólido y claro acerca de la concepción estratégica para la mejor resolución quirúrgica de los Meningiomas de Foramen Magno (MFM) de variedad anterior y lateral. En este reporte se destacan el preciso análisis de la anatomía

aplicada, la excelencia iconográfica y el importante valor numérico de la serie, en una patología de baja prevalencia.

Coincidimos con los autores en que no siempre es necesaria la realización de una variante transcondilar del abordaje Lateral Extremo para la exéresis de estos tumores, dependiendo fundamentalmente de su variedad topográfica; pero así también del relevamiento antropométrico craneocervical previo por imágenes, y del grado de resección pretendida. En algunos casos, como lo es en pacientes añosos, una resección subtotal para auspiciar la mejoría sintomática sin sobreagregar posible morbilidad, puede estar indicada. Asimismo, en lesiones anteriores de gran volumen existe un desplazamiento dorsal del neuroeje, generándose un espacio de acceso transtumoral. También concordamos con la importancia de la exposición del segmento V3 de la arteria vertebral, y que la realización del drilado condíleo, cuando sea necesario, debe ser el menor suficiente.

Como aporte al contenido del presente trabajo, preferimos durante la disección miofascial dejar una banda muscular sobre la línea nucal superior para propiciar su mejor reconstrucción. Consideramos de utilidad el monitoreo electrofisiológico intraoperatorio

con MEP, PESS, onda D distal; y EMG de los pares XI y XII, para la evaluación funcional no sólo de vías largas sino también de dichos pares craneanos. En un número no despreciable de MFM, hemos visto la elongación dorsal de la raíz craneal del nervio accesorio o de su raíz espinal, obligándonos a realizar ventanas de trabajo con su consecuente manipulación. También es bien conocida, como se lo enuncia, la posibilidad de lesión del nervio hipogloso mayor en su canal durante el drilado condilar, por acción directa o difusión térmica.

Felicitamos a los autores por la calidad de la presente comunicación y sus destacados aportes, considerándola una referencia de importancia en el tema.

Claudio Centurión

Clínica Privada Vélez Sársfield

Comentario

En el presente trabajo los autores analizan el abordaje extremo lateral y sus variantes retrocondilar y transcondilar para el tratamiento microquirúrgico de 12 casos de meningiomas del foramen magno de ubicación lateral (4 pacientes) o anterior (8 pacientes), respectivamente. Describen en detalle la anatomía de la región del foramen magno y ejemplifican con precisión la técnica quirúrgica.

En el trabajo los autores remarcan la necesidad de remover parcialmente el cóndilo occipital únicamente para los meningiomas de localización anterior. Mucho se ha publicado en lo referente a la remoción o no del cóndilo occipital para este tipo de patología. La bibliografía actual aún no ha despejado esa duda, siendo para muchos autores una condición necesaria para lograr la resección completa de meningiomas de localización anterior; mientras que para otros con el abordaje retrocondilar puro se lograría la resección total en la mayoría de los tumores (incluso en los de localización anterior). Arnautovic et al. informaron que la resección del cóndilo es importante para lograr resección tumoral total de los meningiomas anteriores. En 18 casos, los autores resecaron de un tercio a la mitad del cóndilo y no observaron inestabilidad craneocervical.[1] En contraste, Nanda et al. sugirieron que la remoción del cóndilo occipital era innecesaria para la resección segura y completa de meningiomas anteriores en 10 casos clínicos y en estudios anatómicos.[3] En su vasta serie de 114 pacientes con meningiomas del foramen magno Wu et al. utilizaron el abordaje retrocondilar en 97 casos y el transcondilar en solo 7. La resección total se logró en el 86% de los pacientes y la resección subtotal en el 14%. [4]

Otro de los dilemas durante este tipo de abordaje extremo lateral es la necesidad de obtener una movilización de la

arteria vertebral mediante una transposición de la misma, con el objetivo de ganar una mayor visibilidad del sector del meningioma que se encuentra en la región anterior a la arteria vertebral. La transposición convencional de la arteria vertebral implica la apertura del foramen transverso del C1 y el corte de un anillo dural alrededor de la arteria vertebral. Esta maniobra se asocia con mayor incidencia de fístula de LCR, de pseudomeningocele, una mayor posibilidad de injuria de la arteria y un incremento del tiempo quirúrgico. Una opción válida a la transposición, en aras de la relación riesgo-beneficio, es justamente el abordaje transcondilar parcial propuesto por los autores para los meningiomas del foramen magno anteriores. Anatómicamente, el cóndilo occipital se encuentra supero-lateral a la entrada dural de la arteria vertebral. Por lo tanto, la remoción de hasta un tercio de la parte medial del cóndilo puede permitir que la arteria vertebral junto con la duramadre sea movilizada superolateralmente y así tener un acceso a la porción del meningioma que se sitúa anterior a la parte proximal del segmento V4 de la arteria vertebral (que es una zona que de otra manera queda relativamente oculta).^[5]

En resumen, y para los meningiomas anteriores, con la remoción parcial del cóndilo los autores lograron aumentar el ángulo de ataque al sitio de implantación dural del tumor sin la necesidad de transponer la arteria vertebral.

Cabe destacar que el grado de resección con el abordaje propuesto y sus variantes de remoción o no condilea fue muy satisfactorio en la totalidad de los casos, excepto en dos pacientes donde con buen criterio se decidió una resección subtotal.

Hay que tener en cuenta que las complicaciones postoperatorias asociadas a este tipo de patología y de abordaje se encuentra entre el 20-25%;

predominantemente asociadas a la alteración de los pares craneanos bajos. [4] Por tal motivo, la intubación traqueal debe mantenerse al menos por 12 horas después de la operación. En aquellos pacientes con reflejo tusígeno y/o nauseoso ausente deberá considerarse la traqueostomía con el objetivo de evitar trastornos respiratorios hasta que se logre la recuperación funcional de los nervios.

Para finalizar, recordar que en los últimos años también se ha agregado el abordaje endoscópico endonasal dentro del armamentario quirúrgico para meningiomas del foramen magno puramente anteriores de la línea media. No obstante, las publicaciones hasta el momento reúnen pocos casos y aun deben ser establecidas las indicaciones precisas y los beneficios reales de la técnica. [2]

Mis felicitaciones a los autores por la casuística y la experiencia prolijamente documentada en una patología tan compleja e infrecuente como son los meningiomas del foramen magno.

Santiago González Abbati

Hospital de Clínicas "José de San Martín"

Hospital Británico de Buenos Aires

BIBLIOGRAFÍA

- Arnautovic KI, Al-Mefty O, Husain M. Ventral foramen magnum meninigiomas. J Neurosurg 2000;92 (1 Suppl):71-80.
- Beer-Furlan A, Abi-Hachem R, O Jamshidi A, Carrau R, Prevedello M. Endoscopic trans-sphenoidal surgery for petroclival and clival meningiomas. J Neurosurg Sci 2016;60:495-502
- Nanda A, Vincent DA, Vannemreddy PS, Baskaya MK, Chanda A. Far-lateral approach to intradural lesions of the foramen magnum without resection of the occipital condyle. J Neurosurg 2002;96:302-9.
- Wu Z, Hao S, Zhang J, Zhang L, Jia G, Tang J, et al. Foramen magnum meningiomas: Experiences in 114 patients at a single institute over 15 years. Surg Neurol 2009;72:376-82.
- Wu B, Chen LY, Huang GF, Liu WD. Disposal of Occipital Condyle in Far Lateral Approach for Ventrolateral Foramen Magnum Meningiomas. World Neurosurg 2016;93:29-37.

Comentario

Los autores nos describen una serie de casos que suman una importante experiencia, debido a la baja prevalencia de estos tumores. Asimismo, han realizado una muy buena búsqueda bibliográfica y una revisión histórica del abordaje a esta patología.

Podríamos agregar en consonancia con el trabajo una clasificación topográfica, de fácil recordatorio y gran aplicación práctica: la misma consiste en tomar un corte de Tac o RMN donde exista la mayor expresión del tumor (habitualmente a la altura del agujero Occipital) y trazarle dos líneas imaginarias perpendiculares entre sí, una pasando por el centro del basion y opistion, la otra tangencial al borde posterior del cóndilo del Occipital. En esta forma, nos quedan 4 cuadrantes: si el mayor volumen del tumor esta en los cuadrantes posteriores, probablemente una vía posterior o posterolateral pueda ser suficiente para abordar la lesion en forma adecuada. Mientras más lateral sea el tumor, más lateral deberemos abordarlo; si está en los cuadrantes anteriores, la vía extremo- lateral es mandatoria (mientras más medial sea el tumor, con mayor certeza tendremos que drillar el cóndilo).

En la vía extremo lateral, en lo personal prefiero el decúbito lateral, aunque esto dependerá de las costumbres

y experiencia del equipo tratante. Es importante resaltar también el concepto vertido por los autores en su trabajo, de fresar el cóndilo sólo lo necesario pero sin alcanzar en conducto del nervio Hipogloso Mayor, ya que si bien muchas lesiones de gran tamaño desplazan la unión bulbo-medular, una vez realizado el vaciamiento la ventana de trabajo se amplía lo suficiente como para resecar la lesion en forma segura. El cierre hermético dural y el uso de sellador biológico es fundamental en nuestra experiencia para evitar complicaciones. En caso de presentarse una fístula de LCR, se debe ser enérgico en su tratamiento, colocando un drenaje lumbar en forma precoz.

La Obesidad es una co-morbilidad mayor en estos tumores y no es infrecuente, por lo menos en nuestra experiencia, esta asociación. Hoy, con las técnicas de radioterapia y radio-cirugía, no es necesario aferrarse a la exérersis total, si esta implica un mayorriesgo para los pacientes.

Finalmente quiero felicitar a los autores, ya que su presentación es de fácil lectura e ideal para releerlo en muchas ocasiones.

Marcelo Olivero

Instituto de Neurología, Neurocirugía y Columna. Villa María, Córdoba