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ABSTRACT: We developed a rules-based scoring system
to classify DNA variants into five categories including
pathogenic, likely pathogenic, variant of uncertain signif-
icance (VUS), likely benign, and benign. Over 16,500
pathogenicity assessments on 11,894 variants from 338
genes were analyzed for pathogenicity based on prediction
tools, population frequency, co-occurrence, segregation,
and functional studies collected from internal and exter-
nal sources. Scores were calculated by trained scientists
using a quantitative framework that assigned differential
weighting to these five types of data. We performed de-
scriptive and comparative statistics on the dataset and
tested interobserver concordance among the trained sci-
entists. Private variants defined as variants found within
single families (n = 5,182), were either VUS (80.5%;
n = 4,169) or likely pathogenic (19.5%; n = 1,013).
The remaining variants (n = 6,712) were VUS (38.4%;
n = 2,577) or likely benign/benign (34.7%; n = 2,327)
or likely pathogenic/pathogenic (26.9%, n = 1,808). Ex-
act agreement between the trained scientists on the final
variant score was 98.5% [95% confidence interval (CI)
(98.0, 98.9)] with an interobserver consistency of 97%
[95% CI (91.5, 99.4)]. Variant scores were stable and
showed increasing odds of being in agreement with new
data when re-evaluated periodically. This carefully cu-
rated, standardized variant pathogenicity scoring system
provides reliable pathogenicity scores for DNA variants
encountered in a clinical laboratory setting.
Hum Mutat 37:127–134, 2016. Published 2015 Wiley Periodi-
cals, Inc.∗
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Introduction
Genetic testing is fast becoming a formidable tool in the diagnostic

armamentarium for common and rare diseases. Many specific genes
in the human genome cause Mendelian disorders and many com-
mon diseases are associated with a constellation of genes harboring
risk factors. The identification of disease genes permits research to
move beyond searching for a cause to seeking a cure. As gene-specific
therapies are developed, it will become increasingly important to
identify which genetic variants provide diagnostic and prognostic
information [Allen, 2015]. Burgeoning technologies provide the ca-
pability to rapidly sequence disease targeted multigene panels, the
exome and the entire genome, but do not address the growing prob-
lem of interpreting the clinical significance of variants uncovered
during the course of diagnostic testing. Several schemes for in-
terpreting clinical variants have been proposed for cancer [Goldgar
et al., 2004; Plon et al., 2008; Pastrello et al., 2011; Lindor et al., 2012;
Eggington et al., 2014; Thompson et al., 2014], the mitochondrial
genome [Wang et al., 2012], and for non-specific mutations [Bean
et al., 2013; Duzkale et al., 2013; Kircher et al., 2014]. Recently, the
American College of Medical Genetics and Genomics (ACMG) and
the Association for Molecular Pathology (AMP) updated guidance
for the interpretation of sequence variants in clinical laboratories
[Richards et al., 2015]. The report recommends the use of five spe-
cific categories for describing variants including pathogenic, likely
pathogenic, uncertain significance (VUS), likely benign, and benign
[Richards et al., 2015]. In the present study, we describe the appli-
cation of these recommendations using a standardized, rules-based
process that provides a variant pathogenicity risk score based on
clinical grade information in a CLIA-certified laboratory.

Materials and Methods

Data Collection and Storage

Individual genetic diagnostic tests ordered by referring healthcare
providers for Sanger and next-generation sequencing evaluations
were interpreted by individuals board-certified by the American
Board of Medical Genetics and Genomics over a four year period
between 2010 and 2014 at a CLIA-certified clinical laboratory. Over
16,500 pathogenicity assessments on 11,894 distinct variants in 338
genes causing neurological, endocrine, and nephrotic genetic dis-
orders were performed on the sequencing data. A list of the genes
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Figure 1. Multiple lines of evidence used in the variant pathogenicity scoring system. Interpretation categories are aligned to the American
College of Medical Genetics (ACMG) recommendations [Richards et al., 2015]. A midpoint score of 4 (yellow) does not favor pathogenicity or
benignity. Benign scores are shown in green and pathogenic scores in red. Variants of uncertain significance (VUS) have three subclasses; score
of 3 is suggestive of the variant being benign, score of 5 is suggestive of the variant being pathogenic, and score of 4 does not favor either side of
the pathogenicity scale.

is provided in Supp. Table S1 with their OMIM numbers, NCBI
reference transcripts, and summaries of the gene’s variants. Coding
exonic regions and up to 20 nucleotides of their flanking intronic
sequences were tested and analyzed. Untranslated regions (UTR)
were sequenced when variants were reported in the HGMD R© Hu-
man Gene Mutation Database (Biobase, Waltham, MA), Online
Mendelian Inheritance in Man (OMIM R©), or cited in publications
found in PubMed (NCBI, Bethesda, MD). Variants were identified
by aligning gene sequencing results with the National Center for
Bioinformatic Information human transcript reference sequence.
The Alamut HT standalone (version 1.1.11) and Alamut database
2013.12.15 (version 2.2) (Interactive Biosoftware, Rouen, France)
were used for basic DNA sequence annotation. Alamut Visual (ver-
sion 2.2) was used for alignment, conservation, SIFT/PolyPhen db-
SNP, and Exome Sequencing Project data collection to evaluate
the variant in its surrounding genomic context. Alamut’s standard-
ized text string was used for literature and other variant-specific
data searches. Five types of variant data were collected in a step-
wise manner including data from minor evidence/prediction tools,
population frequency, co-occurrence, segregation, and functional
studies (Fig. 1). Variant information from external databases (e.g.,
ClinVar, LOVD, UMD, and specialty gene/disease databases) and
publications was organized in a standardized, retrievable format
within an SQL database. Novel variants were scored on their ini-
tial identification. Likely benign, VUS, or likely pathogenic variant
scores were re-assessed if more than 4 months lapsed after scoring.
Pathogenic and benign variant scores were evaluated every 4 years
or upon the request of a patient, physician, genetic counselor, or
a laboratory director. All data collection, database annotation, and
pathogenicity assessments were performed by scientists trained in
variant scoring using standardized training modules and annual
proficiency testing.

A Rules-Based, Weighted Variant Scoring System

We used an internal 7 point scale with three subclasses in the vari-
ant of unknown significance (VUS) category that aligns with the five

variant categories recommended previously [Richards et al., 2015],
including pathogenic (score = 7), likely pathogenic (score = 6), VUS
(score = 3–5), likely benign (score = 2), and benign (score = 1)
(Fig. 1). The midpoint score of 4 was considered baseline and all
variants began at this score prior to addition of data. Point values
ranging from –3 to +3 were derived from five types of data, with
0.5 being the smallest change in scoring (Supp. Table S2). The sum
of all point values was added to the starting score of 4 to produce
a pathogenicity score ranging from 1 to 7 (Fig. 1). A special con-
sideration was given to genes where null variants (e.g., frameshift,
nonsense, canonical splice site variants at the ±1,2 positions asso-
ciated with out-of-frame events) were documented in the literature
to cause well-characterized disease phenotypes. These variants were
assigned +2 points which raised their score to 6 (likely pathogenic)
(Supp. Table S2). Exceptions to this rule were applied to null vari-
ants near the C-terminus that were not likely subject to nonsense-
mediated RNA decay, those variants occurring in a non-relevant
isoform, or in gene-specific cases where the disease mechanism or
molecular biology was not well characterized.

Five Types of Variant Data

Minor evidence and prediction tools

Minor evidence was based on prediction tools, important
functional domains, known pathogenic variants at the same
residue, and the report of an affected patient with the variant (Supp.
Table S2). Alamut Visual (version 2.2) was used to query predic-
tion tools to analyze variants included SIFT (http://sift.jcvi.org)
[Kumar et al., 2009], PolyPhen-2 (http://genetics.bwh.harvard.edu/
pph2) [Adzhubei et al., 2010], and other prediction tools that eval-
uated post-translational modifications and mRNA splicing (Max-
EntScan: http://genes.mit.edu/burgelab/maxent/Xmaxentscan_sco
reseq.html; NNSPLICE: http://www.fruitfly.org/seq_tools/splice.
html; GeneSplicer: http://www.cbcb.umd.edu/software/GeneSplicer
/gene_spl.shtml; Human Splice Finder: http://www.umd.be/HSF/)
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[Reese et al., 1997; Zhang, 1998; Pertea et al., 2001; Yeo and Burge,
2004; Desmet et al., 2009]. These tools were used together in
accordance with guidelines for using prediction methods [Vihinen,
2013] (Supp. Table S3). The predicted effect of the variant using
these tools was given a lower-weight of evidence as compared
with other lines of evidence (Supp. Table S2). A minimal value
of +0.5 was assigned if the variant was reported in one or more
patients having the clinical phenotype associated with disease.
Splicing prediction scores at least 15% lower than the wild-type
score [Houdayer et al., 2012] and a consensus among three or more
prediction tools [Hellen, 2009] were used to assess the variant’s
effect on known splice sites. Exon variants predicted to cause
cryptic splice sites, but not predicted to change natural splice sites,
were not weighted in variant scoring. Published variants or variants
in the internal database that occurred in important structural
or functional domains of a protein were considered evidence of
pathogenicity but did not carry the same weight as published
functional evidence. New variants that changed an amino acid in
a codon containing pathogenic variants were considered as minor
evidence (score value of +0.5) if the amino acid differed from that
of the pathogenic variant (Supp. Table S2).

Frequency data in the general population

The population frequencies of variants were estimated from inter-
nal studies, published control groups, and data reported in dbSNP,
1000 Genomes, and the Exome Sequencing Project. The variant fre-
quencies were compared with estimated disease allele frequencies,
taking into account published information on disease prevalence,
varying disease penetrance, and the gene-specific attributable risk
in polygenic disorders. A conservative approach was taken in calcu-
lating the disease allele frequency, to account for underestimates of
disease prevalence. If a variant was found to exceed the expected dis-
ease allele frequency by 10-fold, the score was reduced by 3 points.
Pathogenicity scores were reduced by 2 points if the observed fre-
quency of the variant was threefold to 10-fold above the estimated
disease allele frequency, and reduced by 1 point if the variant fre-
quency equaled or exceeded the expected disease allele frequency
by <3-fold. This rule did not apply in most cases when a founder
variant was identified in the literature or if the variant was signifi-
cantly enriched in a self-reported ethnic population. Alternatively,
pathogenicity scores were increased by 0.5 to 1.0 points if the fre-
quency of a variant was significantly higher in affected individuals as
compared with controls matched for ethnicity using either internal
datasets or well described published datasets, respectively (Supp.
Table S2). In cases where the data sets were too large to allow a
calculation by the Fishers exact test, we used a chi squared test with
the Yates correction.

Co-occurrence

The term “co-occurrence” was defined as the presence of two
or more variants that paired together in the same gene or in an-
other gene related to the same disease. Variants that co-occurred
with otherwise positive results (i.e., a known pathogenic variant in
dominant disorders or two pathogenic variants in recessive disor-
ders) were considered less likely pathogenic. Recessive variants that
co-occurred less than expected with recessive pathogenic variants
in trans were considered less likely to be pathogenic. If a variant
in a recessive gene co-occurred frequently in trans with a single
known pathogenic variant, but not with second variants in con-
trols, then the variant was considered more likely pathogenic. The

observed frequency of co-occurrences of a pathogenic variant with
the variant in question was compared for significant differences to
the expected frequency of co-occurrences calculated from our inter-
nal positive pathogenic rate by the binomial test [Waples, 1988; Kuk
et al., 2014]. Phenotype and age were considered in the comparisons
when evaluating co-occurrence especially for dominant disorders
with an adult or late-life onset, or for slowly progressive degener-
ative diseases. Generally, missense variants that co-occurred once
with an otherwise positive result received a low point reduction of
–0.5 because the majority of genetic diagnostic testing is performed
on post-natal samples that are not known to be associated with an
embryonic lethal phenotype (Supp. Table S2).

Variant segregation analysis in families

The segregation of variants in family pedigrees was analyzed by
estimating the logarithm of the odds (LOD) score or by a statistical
association test if the family data were incomplete. The LOD score
was estimated based on the number of meiotic events and weighted
as evidence for the segregation between the disease locus and the
variant in family pedigrees. For example, the LOD score at a recom-
bination fraction of zero for one known non-recombinant meiosis
was estimated at log (2) = 0.3, as described previously [Ott, 1999]. A
LOD score �1.0 was used as evidence to support the pathogenicity
of a variant. Increasing statistical evidence for variant segregation
added points to the pathogenicity score (e.g., 1 point for a LOD
score between 1 and 2, 2 points for a LOD score between 2 and 3,
and 3 points for a LOD score over 3). The Fisher’s exact test was
used to calculate the statistical significance of variant segregation in
pedigrees with incomplete family data especially when the proband’s
siblings were tested without the parents. Two points were added for
de novo variants in an affected patient when paternity and mater-
nity were confirmed by identity testing. If identity testing was not
performed, then the unconfirmed de novo event was given partial
weight (Supp. Table S2).

Functional studies

The functional significance of variants was based on in vitro and
in vivo published studies that showed whether or not a variant dam-
aged the normal function of a protein. One point was either added
or subtracted to the variant score based on published evidence
that described the molecular, biochemical, or pathophysiological
role of the variant in the clinical disorder. Publications describ-
ing experimental assays evaluating transcript splicing were gener-
ally not considered as functional evidence of pathogenicity unless
the aberrant splicing led to truncation of the mRNA in a haploin-
sufficient disease model. The functional consequences of in-frame
exon skipping events were considered on an individual basis (Supp.
Table S2).

Interobserver Variation in Variant Scoring

Interobserver variation was analyzed over a period of eight
months by measuring the concordance among variants scored in du-
plicate by independent scientists. As a separate assessment changes
in scores were tracked after two trained scientists, distinct from
the scientist that originally scored the variant, reviewed and dis-
cussed the variant score prior to reporting the result. Binomial 95%
confidence intervals (CIs) were calculated to assess interobserver
consistency and to estimate reliability.
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Table 1. Summary of Variants by Type and Pathogenicity Score

Variant score

Variant type 1 (Benign)
2 (Likely
benign)

3 (VUS
suggesting

benign) 4 (VUS)

5 (VUS
suggesting

pathogenic)
6 (Likely

pathogenic) 7 (pathogenic) Total

Missense 468 200 643 2,248 1,307 322 552 5,740
Coding synonymous 846 363 1,529 77 26 1 4 2,846
Intronic 296 108 453 81 124 22 23 1,107
Frameshift 1 0 0 3 1 642 195 842
Nonsense 0 0 0 3 1 328 286 618
Consensus splice site 0 0 0 1 0 278 127 406
In-frame insertion or deletion 8 2 5 162 30 13 26 246
UTR 33 2 8 44 0 1 1 89
Total 1,652 675 2,638 2,619 1,489 1,607 1,214 11,894

Results

Summary Statistics of Pathogenicity Assessments

Table 1 provides a summary of variant types and their assigned
pathogenicity scores. Almost half of variants were classified in the
likely pathogenic/pathogenic (scores 6 and 7, 23.7%; n = 2,821) and
likely benign/benign (scores 1 and 2, 19.6%; n = 2,327) categories.
The remaining variants, designated as VUS (scores 3, 4, and 5,
56.7%; n = 6,746), were periodically reassessed for pathogenicity.
Variants limited to single families, also known as private variants
(n = 5,182), were scored as VUS in 4,169 (80.5%) cases and likely
pathogenic in 1,013 (19.5%). Non-private variants (n = 6,712) were
in the VUS range in 2,577 (38.4%) cases, likely benign/benign in
2,327 (34.7%), and likely pathogenic/pathogenic in 1,808 (26.9%).
The majority of VUS subclass scores (Fig. 1) were toward the benign
scores (score = 3) (39.1%; n = 2,638) or remained at the midpoint
(score = 4) (38.8%; n = 2,619). VUS with some data supporting
potential pathogenicity (score = 5) (22.1%; n = 1,489) were less
frequent.

Variant Classification Types

Missense variants (n = 5,740) accounted for nearly half (48.3%)
of all distinct variants, followed by synonymous variants (n = 2,846)
at 23.9%, and intronic variants outside the canonical splice site
(n = 1,107) at 9.3%. Frame-shifting insertions and deletions (n = 842;
7.1%), nonsense (n = 618; 5.2%), and consensus splice site variants
(n = 406; 3.4%) were less common. In-frame deletions and insertions
(n = 246) explained 2.1% of variants. Variants in UTRs were the least
common variant type (n = 89; 0.7%). The distribution of mutation
types among variants classified as pathogenic or likely pathogenic
shows that the majority (65.8%) were nonsense, frameshift, or con-
sensus splice site changes, whereas missense variants accounted for
31% of pathogenic variants. Only 1% (n = 28) of pathogenic vari-
ants did not alter the amino-acid residue (synonymous, intronic but
outside canonical splice sites, or UTR). The majority of these vari-
ants were predicted to affect splicing. Most benign variants (70.0%;
n = 1,630) did not alter the coding sequence (coding synonymous,
intronic, or in UTR), and the remaining 30.0% (n = 697) were
missense or in-frame insertions or deletions. Definitive truncating
variants were not classified as benign.

Variant Types by Pathogenicity Score

Almost all loss-of-function variants (99.5%; n = 1,856) were ei-
ther pathogenic or likely pathogenic. A small number of cases with
truncating or frameshift mutations were considered VUS (n = 9).

These rare cases involved a few specific genes where truncating vari-
ants were not clearly known to cause disease (e.g., specific truncat-
ing mutations in NOTCH3 and TRPV4 in CADASIL and Charcot-
Marie-Tooth disease) [Fawcett et al., 2012; Rutten et al., 2013]. Supp.
Figure S1 shows the distribution of pathogenicity scores by synony-
mous (n = 2,846), missense (n = 5,740), intronic (n = 1,107), and
in-frame insertions/deletion (n = 1,107) variant types. Thirty-eight
percent of missense variants scored as VUS-suggesting pathogenic
(score = 5), likely pathogenic (score = 6) or pathogenic (score = 7),
whereas only 1% of synonymous changes scored within this range.
Twenty-three percent of missense variants scored in the benign range
(scores = 1, 2, or 3) as compared with 96% of synonymous variants.
Sixty-six percent of in-frame insertions and deletions were scored
as VUS (score = 4) followed by 28% in the pathogenic range (scores
= 5, 6, or 7) and 6% in the benign range (scores = 1, 2, or 3).

Splicing Pathogenicity Scoring

Intronic variants, excluding canonical splice-site position, were
more likely to be pathogenic because of their effect on splicing (15%)
as compared with synonymous changes in coding regions (1%).
Variants predicted to affect splicing outside of the consensus sites
occurred in the +3 to +5 range at the beginning of introns, and from
–3 to –10 at the end of introns. Variants that were predicted to affect
splicing by creating new potential acceptor or donor (“cryptic”)
splice sites were identified in 153 cases (Supp. Table S4). The vast
majority of these predictions have not been experimentally tested.
Evaluations to determine the gain or loss of a binding site for an
exonic splicing enhancer or silencer were not evaluated because of
the difficulties in predicting the effect of a specific variant [Holste
and Ohler, 2008].

Scoring Changes and Re-Analysis

Figure 2 shows the number of times a variant score changed as
a function of new data. When variants with a prior score of 4 were
re-evaluated (n = 776), most (66.8%) had no additional data and
their scores were unchanged (n = 518). Among the remaining, new
data lowered the score toward benign (19.7%, n = 153) more often
than raising the score (P = 0.004). For variants initially scored as
5 (n = 427), new data increased (15% of cases; n = 64) the score
more often than lowering the score (5.2%; n = 22). There were
no score changes in 341 cases. Overall, a re-evaluation based on
new data was more likely to increase the pathogenicity score for
variants with a prior score of 5 than for those with a prior score of
4 (P < 0.0001). Variants with a prior score of 6 (n = 220) were more
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Figure 2. Likelihood of variant score changes as a function of new data. The percentage of cases changing classification categories is depicted
by green (decreases) and red (increases) arrows, cases where variant score is staying the same are depicted in yellow. The last column shows
the odds of a variant score increasing to a more pathogenic score . The number of re-scoring events (n) in each scoring category is shown in the
first column. Variants scored as 2 led to a lower score in 38.9% and a higher score in 0.8% on re-evaluation. Variants scored as 3 were lowered in
33.2% and raised in 2.1%. Variants scored as 2 or 3 had a significant (P < 0.0001) tendency to move down in scoring to classification as benign or
benign/likely benign, respectively. Variants with a prior score of 5 or 6 were more likely (odds ratios of 2.88 and 7.56, respectively) to increase to
more pathogenic scores (P < 0.0001).

likely (P < 0.0001) to be scored higher (13.6%, n = 30) than lower
(1.8%, n = 4) (Fig. 2) on re-evaluation based on new data. None of
159 cases that scored 7 were downgraded on re-evaluation. Variants
scored as 3 were re-evaluated 957 times; re-evaluation lowered the
score in in 33.2% (n = 318) and raised it in 2.1% (n = 20). Only 0.8%
(n = 6) of 737 re-evaluations of variants scored 2 led to a higher score
and 38.9% (n = 287) were scored in the benign category. None of
the variants scored 1 changed their score on re-evaluation (n = 368).
Cases with an original score of 2 and 3 had a significant (P < 0.0001)
tendency to continue to move further down the benign part of the
scoring scale.

A review of the scoring evidence shows that general population
frequency data was the most common reason for a variant score
moving down toward the benign end of the scale. Co-occurrence
with pathogenic positive variants was the second most common
data type to move variant scores down. Family segregation data
often moved variant scores up toward pathogenicity; especially the
identification of de novo variants. Functional studies were less likely
to change scores toward pathogenicity. This observation is expected
given the number of “private variants” that we encounter.

Interobserver Scoring Consistency

Variant scores (n = 2,710) agreed in 98.5% of cases when re-
viewed separately and discussed by two trained scientists [95% CI
(98.0, 98.9)] during routine evaluations. When nine trained scien-
tists scored variants (n = 104) independently in a blinded fashion, the
interobserver consistency was 97% [95% CI (91.5, 99.4)]. In both
studies there was only a one-point score difference in discrepant
cases with no variant scoring changes from pathogenic to benign, or
benign to pathogenic. The score differences occurred in genes with

Table 2. The Distribution of Assigned Variant Scores Compared
with the Results of Published Functional Studies (n = 597)

Assigned variant score

Published effect
on protein
function 1 2 3 4 5 6 7 Total

Damaging 0 10a 8a 16a 36 143 275 488
NOT damaging 21 22 30 3b 1b 0 2b 79
Conflicting 5 2 6 8 3c 0 6c 30

aVariant scores were lowered in 34 of 488 variants with damaging results (7.0%).
bSix out of 79 variants with functional study results of “not damaging” (7.6%) had a
score of 4 or higher.
cFunctional studies with conflicting information were scored in the pathogenic range
in nine cases (30%).

unknown or ill-defined allele frequencies, disease prevalence, mixed
modes of transmission, or associated with multiple phenotypes.

Reliability of Functional Studies and Predictors as
Indicators of Pathogenicity

Table 2 shows the relationship between the results of published
functional studies and variant scores. Published functional studies
that suggested that a variant damaged the protein were scored up-
ward from a baseline score of 4 to a score of 5 in accordance with
the scoring system rules (Supp. Table S2). Scores were lowered in
34 of 488 cases (7.0%) due to differences between the published
functional data and other evidence. Six out of 79 variants with
functional study results of “not damaging” (7.6%) had a score of
4 or higher, also suggesting that other evidence contradicted the
functional study. Variant scores with functional studies containing
conflicting information (n = 30) were distributed evenly between the
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Table 3. SIFT and PolyPhen Predictions for Missense Variants Classified as Benign (n = 353) and Pathogenic (n = 363)

SIFT tolerated
SIFT NOT
tolerated PolyPhen benign

PolyPhen
damaginga Both benignb Both damagingb

Pathogenic 37 326 28 335 12 310
Benign 243 110 276 77 220 54

aPolyphen predictions of “probably damaging” and “possibly damaging” are combined into the damaging category.
bBoth SIFT and PolyPhen predictions agree.

Table 4. The Performance of SIFT and PolyPhen Predictions Based
on the Concordance between the Prediction Tools and Variant
Classification

Parametera SIFT PolyPhen Both agree

Sensitivity 0.898 0.923 0.963
Specificity 0.688 0.782 0.803
PPV 0.748 0.813 0.852
NPV 0.868 0.908 0.948
FDR 0.252 0.187 0.148
Accuracy 0.795 0.853 0.889

aCalculations were based on the data summarized in Table 3. The number of true
positives and negatives were based on the concordance between the pathogenicity
scores and the SIFT and PolyPhen predictions.
Abbreviations: PPV, positive predictive value; NPV, negative predictive value; FDR, false
discovery rate.

pathogenic range (30%; scores = 5, 6, or 7), at the midpoint (27%;
score = 4) and in the benign range (43%; scores = 1, 2, or 3). The
assigned variant scores were in agreement with damaging (n = 454),
not damaging (n = 73), and conflicting (n = 8) published functional
results in 90% of cases [95% CI (87.4, 92.2)]. These results suggest
that published functional studies as an independent line of evidence
may predict variant pathogenicity in 90% of cases.

The performance of the prediction tools, SIFT [Kumar et al.,
2009] and PolyPhen 2.0 [Adzhubei et al., 2010], were compared with
a set of 716 missense variants from 205 genes that were classified
as benign (n = 353) or pathogenic (n = 363) by the variant scoring
system (Supp. Table S2). Table 3 shows that when the two programs
agreed, their predictions matched the scoring system in 95% of cases
(220/232) for benign predictions and in 85% of cases (310/364) for
pathogenic predictions. Table 4 shows the performance of SIFT and
PolyPhen based on their agreement with the variant classification
scores generated by the scoring system. The prediction tools had a
combined accuracy of 89%, with a high sensitivity (96%) and lower
specificity (80%) to correctly identify benign or pathogenic variants.

Case Illustrations

The Supporting Information describes the application of vari-
ant scoring system in the pathogenicity assessment of benign and
pathogenic variants in two patient cases.

Discussion
We describe a standardized, rules-based system for evaluating

variant pathogenicity in a diagnostic clinical laboratory. This vari-
ant scoring system uses an objective assessment by the acquisition
of weighted evidence using five types of data including prediction
tools, population frequency, co-occurrence, functional studies, and
segregation. These variant assessments are conducted by trained
scientists whose competency is regularly evaluated by standard train-

ing modules. The strength of this study is the number of pathogenic-
ity assessments (n = 16,500), the consistent interobserver scoring of
variants, and the reliability of the scores. The variant scoring system
provides a standardized, rules-based iterative process for clinical
grade variant scoring that tracks the history of variant classification.
The database itself is valuable because it contains the cumulative
knowledge from well-described disease mechanisms and disease
population trends observed over years of testing patients in a clin-
ical laboratory. The information, placed in the database by a stan-
dardized procedure is updated regularly by scientists trained in the
collection of variant data to assure the quality of the variant scoring
assessments. The uniformity of the process creates an awareness of
the completeness and deficiencies of the data. Although the vari-
ant scoring system was operational before the recently published
ACMG/AMP guidelines, it meets their recommendations [Richards
et al., 2015]. We are in the process of incorporating certain sup-
porting category elements of the ACMG guidelines that may not
be well represented in our current iteration. We will then re-assess
our scores generated with the new iteration of the scoring sys-
tem to evaluate the impact of these changes. Updates to the scor-
ing algorithm can be found at http://www.athenadiagnostics.com/
athenainsight.

The variant evaluation process presents several challenges. The
most common is determining the significance of variant frequen-
cies in control populations. The variant frequencies can vary signifi-
cantly in different geographic or ethnic populations, and the disease
prevalence is not well-established for many rare disorders. The nor-
mal population frequency must be in excess of the disease prevalence
before this data is used to score a variant. A recently available data
set of 60,706 unrelated individual provided by the Exome Aggrega-
tion Consortium (ExAC) (http://exac.broadinstitute.org) provides
a wealth of ethnically diverse variant frequency data to assist in re-
solving these issues. This data will be used as part of our scoring
assessment (Supp. Table S2).

Many of the VUS are private, novel variants. To further clarify
these private variants, we perform family segregation studies and
collaborate with academia to perform functional studies. Sometimes
we observe variants published as pathogenic at higher than expected
frequencies compared with control populations [Norton et al., 2012;
MacArthur et al., 2014]. Both published variants and variants in
public databases are commonly misclassified as pathogenic [Bell
et al., 2011] and are reclassified as either VUS, VUS-suggesting
benign or benign after an expert review [Xue et al., 2012; Shearer
et al., 2014; Tabor et al., 2014]. The variant scoring system described
in this report minimizes these types of misclassifications by using
multiple independent lines of evidence in a standardized, rules-
based, weighted fashion.

Figure 2 shows the stability of the scoring system over time. Only
10 of 3,117 scores (0.3%) changed from likely benign to VUS or likely
pathogenic to VUS. In these rare cases the scores were changed
because of better control population data or because the family
segregation data were weak. More importantly, no cases were re-
scored differently once designated as benign or pathogenic. These
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properties instill a high degree of confidence in each step of the
variant scoring system. For example, a VUS with a score of 4 has
lower odds of scoring up than does a VUS with a score of 5. It also has
weaker odds of scoring lower than does a VUS with a score of 3. This
shows the value of the three VUS subclasses and their corresponding
data to mitigate drastic changes in pathogenicity designations. In
addition, the three variant subclasses provide likelihood data to
provide genetic counseling guidance and to assess the need for family
segregation studies.

Studies of the effects of DNA variants on protein function are
valuable in clarifying the pathogenicity of a variant. In 10% of our
cases, published functional studies were either not clear or appeared
to contradict other lines of evidence. Identifying the reasons for the
incongruent results was challenging for several reasons. In some
cases, different labs published results that contradicted each other.
Typically, the experiments were performed in different cell lines or
a slightly different assay was used to assess protein function. Exper-
iments were sometimes performed on patient-derived cell lines or
tissue samples. These types of experiments were difficult to interpret
because of the effects of confounding genetic or cellular factors in in-
terpreting whether the variant in question caused the aberrant pro-
tein function. The relationship between the variant’s consequences
and the molecular basis for disease was not always clear. The effect of
a partial loss of function on the ability of molecular and metabolic
pathways to tolerate such changes was difficult to determine. Func-
tional studies that included analyses of both known damaging and
known benign variants were the most valuable because the results
allow comparisons between these variants and uncharacterized vari-
ants. This study, like the InSiGHT study [Thompson et al., 2014],
shows that large data sets in standardized formats provide unbiased
variant classification that help resolve the inherent difficulties in
interpreting apparently discordant functional assays.

Prediction tools such as SIFT and PolyPhen-2 are based on scores
that consider the position of amino acids in highly conserved pro-
tein domains because they are likely to be important for protein
function. These programs, when they agree, have 89% accuracy for
predicting damaging protein effects. However, they do not predict
pathogenicity in all cases, because highly conserved sites often occur
in blocks due to selection for a neighboring site and may tolerate
some amino acid changes that are biochemically similar. In addition,
not all functional sites are highly conserved. Therefore, the results
SIFT and PolyPhen are not assigned as much weight as other data
in the variant scoring system because of the degree of unreliability
in their predictive value. Scores are adjusted if both agree, and then
only when there is complimentary data [Stanley et al., 2014].

Conclusions

The use of multiple lines of evidence, the inclusion of three sub-
classes of VUS, standardized training, and a weighted rules-based
scoring system are factors that are directly responsible for the sta-
bility and reliability of the variant pathogenicity scoring system
described in this report. Replicating and testing this system in other
clinical laboratories may enhance our ability to reliably assign vari-
ant pathogenicity scores and create standards for variant interpre-
tation. Healthcare providers, patients and their families will benefit
by the accurate interpretation of complex genetic information us-
ing a standardized variant scoring system such as we described in
this report. This scoring system is currently applied to Mendelian
disorders but may also identify non-Mendelian genetic risk factors
or phenotypic modifiers. This rules-based scoring system may be
designed to analyze somatic variants as well.
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