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Abstract: Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal
and genitourinary tract, present in 30–50% of healthy individuals in a population at any given
moment. The host defense mechanisms prevent this commensal fungus from invading and causing
disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune
defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive
candidiasis. A comprehensive understanding of the immune defense against Candida is essential
for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility
to Candida infections has become apparent over the years. In most patients, the cause of increased
susceptibility to fungal infections is complex, based on a combination of immune regulation gene
polymorphisms together with other non-genetic predisposing factors. Identification of patients
with an underlying genetic predisposition could help determine which patients could benefit from
prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an
overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential
for adjunctive immunotherapy.
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1. Introduction

Candida spp., especially Candida albicans, are colonizing fungi of human skin and mucosae of
the gastrointestinal and genitourinary tract of 30–50% of healthy individuals in any given human
population at a certain moment, with the majority of the individuals being colonized during certain
periods of their lives. Under normal conditions the human host defense prevents this commensal
fungus from becoming a pathogen. Loss of skin or mucosal barrier function, microbiome imbalances,
or defects of immune defense mechanisms can all lead to an increased susceptibility to severe
mucocutaneous or invasive candidiasis [1].

Superficial candidiasis of mucosal membranes and skin is highly prevalent and occurs in
immunocompromised as well as in apparently immunocompetent patients. In most cases these
Candida infections of skin, nails, oropharyngeal mucosa, esophagus, and genital tract are occasional
and not severe. Some patients, however, suffer from severe recurrent or persistent mucocutaneous
Candida infections in the absence of commonly predisposing factors such as diabetes, and this condition
has been termed chronic mucocutaneous candidiasis (CMC) [2].

Invasive candidiasis includes candidemia, deep-seated infections, and syndromes such as chronic
disseminated (hepatosplenic) candidiasis. The mortality rate of invasive candidiasis is as high as 40%,
which makes this a life-threatening condition. Known risk factors are indwelling vascular catheters,
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recent abdominal surgery, hematologic cancers, the administration of broad-spectrum antibiotic
therapy, and multifocal C. albicans colonization. Interestingly, most patients admitted to the intensive
care unit (ICU) have several of these risk factors but only a few develop invasive candidiasis [3].

Several genetic mutations and variations in immune regulation genes have been identified that
confer susceptibility to Candida infections. Identification of patients with an underlying genetic
predisposition could help determine which patients could benefit from prophylactic antifungal
treatment or adjunctive immunotherapy [3,4]. This review will provide an overview of the mechanisms
that increase patient susceptibility to mucocutaneous and invasive candidiasis and will provide a
rationale of the potential for adjunctive immunotherapy.

2. The Host Immune Defense against Candida

2.1. Recognition of C. albicans

The first step of the host immune defence is recognition of an invading pathogen by the innate
immune system. Recognition of microorganisms occurs through conserved chemical signatures, called
pathogen-associated molecular patterns (PAMPs). These PAMPs are recognized by specific innate
immune receptors known as pathogen recognition receptors (PRRs) [5,6]. The host is therefore able to
orchestrate a pathogen-specific immune defense. The cell populations of the innate immune system
involved in recognition of C. albicans are monocytes, macrophages, dendritic cells and neutrophils.
These cells express PRRs in different patterns, rendering the host capable of a cell-type-specific immune
defense against C. albicans [5].

The Candida cell wall consists of an inner layer of polysaccharides (chitin, 1,3-β-glucans and
1,6-β-glucans) and an outer layer of proteins glycosylated with mannan [1,5–15] constituting the
PAMPs. The main PRRs that are involved in the recognition of C. albicans are the Toll-like receptors
(TLRs) and the C-type lectin receptors (CLRs). TLR2 recognizes phospholipomannans, TLR4 recognizes
O-linked mannans, the CLR dectin-1 recognizes β-glucans and the CLRs macrophage mannose
receptor (MR) and dendritic cell (DC)-specific-ICAM3-grabbing non-integrin (DC-sign) recognize
N-linked mannans [1,5–7,16–27]. The macrophage-inducible CLR (Mincle), expressed predominantly
on macrophages, has been recognized as a receptor for C. albicans and plays a role in macrophage
responses to C. albicans [28]. The ligand that binds to Mincle has not yet been identified. More recently,
activation of the inflammasome through the nucleotide-binding oligomerization domain (NOD)-like
receptor (NLR) pyrin domain-containing 3 (NLRP3) and the RigI-helicase receptor (RLR) melanoma
differentiation-associated protein 5 (MDA5) has also been shown to be involved in anti-Candida host
defense [29,30]. MDA5 is known for its recognition of viral RNA and its role in antiviral immunity,
recently it has been suggested that MDA5 is also involved in antifungal immunity. Which ligands
cause activation of MDA5 in Candida infection remains unclear [29,31].

The recognition of Candida species by innate immune cells is depicted in Figure 1.
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Figure 1. Recognition of Candida species by innate immune cells. Ligand binding to extracellular 
Toll-like receptors (TLRs), such as TLR2 and TLR4, leads to the production of pro-inflammatory 
cytokines during Candida infections. The intracellular TLRs that recognize nucleic acids—namely, 
TLR3 and TLR9—might also have a role in anti-Candida host responses. Chitin from C. albicans has 
been proposed to induce the production of interleukin-10 (IL-10) via a nucleotide-binding 
oligomerization domain-containing protein 2 (NOD2)-dependent mechanism and in this way may 
contribute to dampening pro-inflammatory host responses during fungal infection. The pattern 
recognition receptors (PRRs) dectin 1, dectin 2 and dectin 3, and Fc receptors for IgG (FcγRs), induce 
responses in a spleen tyrosine kinase (SYK)-dependent manner, whereas the signalling pathways 
engaged by the mannose receptor remain unknown. Dectin 1 can interact with TLR2 and can induce 
intracellular signalling via SYK- and RAF proto-oncogene serine/threonine-protein kinase 
(RAF1)-dependent pathways. Complement receptor 3 (CR3) is important for the recognition of 
unopsonized Candida, whereas FcγRs are important for recognition of opsonized Candida by 
neutrophils. Dendritic cell (DC)-specific -ICAM3-grabbing non-integrin (DC-SIGN) recognizes 
N-linked mannans of Candida and has a role in inducing T helper (TH) cell responses. There is no 
known Candida-derived ligand that triggers the macrophage-inducible C-type lectin receptor 
(MINCLE), whereas β-mannans from Candida are recognized by galectin 3. Although a role for 
melanoma differentiation-associated protein 5 (MDA5) in anti-Candida host responses has been 
described, it remains to be determined what ligand induces MDA5 activation. Together, these 
signalling pathways induce the secretion of cytokines and chemokines and initiate phagocytosis to 
clear Candida infections. CARD9, caspase activation and recruitment domain-containing 9; C. 
glabrata, Candida glabrata; NF-κB, nuclear factor-κB; PAMP, pathogen-associated molecular pattern; 
PKCδ, protein kinase Cδ; ROS, reactive oxygen species. 

2.2. Activation of Host Immune Defense 

Ligation of the PAMPs with their corresponding PRR leads to activation of the innate immune 
system, inducing production of pro-inflammatory cytokines and chemokines, and activation of the 
NLRP3 inflammasome, which processes pro-interleukin (IL)-1β and pro-IL-18 into their biologically 
active forms, with subsequent activation of inflammation and a directed adaptive immune response. 
Subsequently, these pathways potentiate phagocytosis and killing of C. albicans, predominantly by 
neutrophils [1,5–7,32–45]. 

Antigen-presenting dendritic cells are important for the activation of T cell responses. 
Candida-specific T helper cells (TH-cells) consist of TH1-cells and TH17-cells. TH1-cells are induced by 
IL-18 and produce interferon-gamma (IFN-γ). TH17-cells are induced by IL-1β and produce IL-17 

Figure 1. Recognition of Candida species by innate immune cells. Ligand binding to extracellular
Toll-like receptors (TLRs), such as TLR2 and TLR4, leads to the production of pro-inflammatory
cytokines during Candida infections. The intracellular TLRs that recognize nucleic acids—namely, TLR3
and TLR9—might also have a role in anti-Candida host responses. Chitin from C. albicans has been
proposed to induce the production of interleukin-10 (IL-10) via a nucleotide-binding oligomerization
domain-containing protein 2 (NOD2)-dependent mechanism and in this way may contribute to
dampening pro-inflammatory host responses during fungal infection. The pattern recognition receptors
(PRRs) dectin 1, dectin 2 and dectin 3, and Fc receptors for IgG (FcγRs), induce responses in a spleen
tyrosine kinase (SYK)-dependent manner, whereas the signalling pathways engaged by the mannose
receptor remain unknown. Dectin 1 can interact with TLR2 and can induce intracellular signalling
via SYK- and RAF proto-oncogene serine/threonine-protein kinase (RAF1)-dependent pathways.
Complement receptor 3 (CR3) is important for the recognition of unopsonized Candida, whereas
FcγRs are important for recognition of opsonized Candida by neutrophils. Dendritic cell (DC)-specific
-ICAM3-grabbing non-integrin (DC-SIGN) recognizes N-linked mannans of Candida and has a role
in inducing T helper (TH) cell responses. There is no known Candida-derived ligand that triggers
the macrophage-inducible C-type lectin receptor (MINCLE), whereas β-mannans from Candida are
recognized by galectin 3. Although a role for melanoma differentiation-associated protein 5 (MDA5) in
anti-Candida host responses has been described, it remains to be determined what ligand induces MDA5
activation. Together, these signalling pathways induce the secretion of cytokines and chemokines
and initiate phagocytosis to clear Candida infections. CARD9, caspase activation and recruitment
domain-containing 9; C. glabrata, Candida glabrata; NF-κB, nuclear factor-κB; PAMP, pathogen-associated
molecular pattern; PKCδ, protein kinase Cδ; ROS, reactive oxygen species.

2.2. Activation of Host Immune Defense

Ligation of the PAMPs with their corresponding PRR leads to activation of the innate immune
system, inducing production of pro-inflammatory cytokines and chemokines, and activation of the
NLRP3 inflammasome, which processes pro-interleukin (IL)-1β and pro-IL-18 into their biologically
active forms, with subsequent activation of inflammation and a directed adaptive immune response.
Subsequently, these pathways potentiate phagocytosis and killing of C. albicans, predominantly by
neutrophils [1,5–7,32–45].

Antigen-presenting dendritic cells are important for the activation of T cell responses.
Candida-specific T helper cells (TH-cells) consist of TH1-cells and TH17-cells. TH1-cells are induced by
IL-18 and produce interferon-gamma (IFN-γ). TH17-cells are induced by IL-1β and produce IL-17
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and IL-22. IFN-γ is important for the fungicidal activity of neutrophils and macrophages. IL-17 and
IL-22 induce neutrophil recruitment and activate neutrophils as well as epithelial cells and induce the
release of antifungal β-defensins [1,5,6,46–51]. Activation via the intracellular PRR MDA5 induces
a signaling pathway leading to the production of type I interferons. Recent studies have led to the
suggestion that these interferons skew the adaptive cytokine response, induced by C. albicans, from a
TH17 response to a TH1 response [29,31].

The composition of the host microbiome likely has significant impact on Candida colonization,
invasion and host defense against Candida. As an example, the skin microbiome of patients with
immunodeficiency disorders as CMC and hyper IgE syndrome (HIES) differs substantially from
healthy individuals [52,53]. This topic will be discussed in another chapter of this special issue.

3. Mucocutaneous Candidiasis

Most cases of oropharyngeal and esophageal candidiasis occur in the setting of well-known
risk factors, are incidental, and not severe. In these patients, use of broad-spectrum antibiotic
therapy leads to Candida colonization on epithelial surfaces of skin, oropharynx, and vagina [54,55].
Development of vulvovaginal candidiasis following antibiotic therapy occurred in 20–22% of
patients previously colonized with Candida. Studies show that only patients that were previously
colonized with Candida had an increased risk of developing vulvovaginal candidiasis after antibiotic
therapy [56,57]. Inhalation corticosteroids and systemic prednisone increase the risk of Candida
infections [58]. Patients with diabetes have higher rates of vaginal Candida colonization and vulvovaginal
candidiasis [59,60].

In addition, disruption of epithelial function, microbiome imbalances and loss of T cell function
increases susceptibility to mucocutaneous candidiasis. Radiation therapy of the oro-maxillo-facial area
leads to mucositis and all patients develop oral candidiasis at some point during therapy [61]. Candida
infection in HIV patients is one of the so-called AIDS-defining illnesses. In absence of antiretroviral
therapy, 57% of patients develop oropharyngeal candidiasis, typically when T cell CD4+ count is below
200 cells/m3 [62].

3.1. Epithelial Function

A major player in the host immune defense against mucocutaneous candidiasis is the epithelium
and its interaction with C. albicans. The epithelium lining the oropharynx, skin and vagina forms the
first physical barrier for invading pathogens. In addition to their physical barrier function, epithelial
cells have an important immune function. Epithelial cells recognize C. albicans through the pattern
recognition receptor (PRR) TLR4 and are able to differentiate between colonization and invasion.
Recognition leads to the activation of the protein complex nucleair factor-kappaB (NF-κB) and the
proto-oncogene c-Jun (JUN). Only when Candida germinates and forms hyphae invading the epithelium,
a second response is initiated by activation of mitogen-activated protein kinase 1 (MAPK1) and FOS
protein signaling. This triggers the initiation of the host response by releasing pro-inflammatory
cytokines [6,7]. Recently, a fungal peptide toxin called Candidalysin has been discovered, secreted by
C. albicans hyphae, that damages the epithelium and leads to immune activation of the epithelium by
recognition of the peptide [63].

3.2. Th17 Pathway

The adaptive immune system plays a major role in the host defense against mucocutaneous
candidiasis. Th17 cells, a differentiated subset of the CD4+ T-helper lineage, are induced after
recognition of C. albicans mannan by the macrophage mannose receptor (MR). The dectin-1/TLR2
pathway enhances this response [64]. Th17 cells are activated via pro-inflammatory cytokines IL-1β,
IL-6, TGF-β and IL-23 produced by antigen-presenting cells [65]. Production of IL-1β is predominantly
induced by Candida hyphae via activation of the NLRP3 inflammasome and caspase-1. This means
the Th17 pathway is only fully induced when Candida is invading, in contrast to colonizing mucosal
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tissue [66]. When activated, the Th17 cells produce IL-17A, IL-17F and IL-22. At early stages of
infection, before induction of the Th17 subset, mucosa-associated type 3 innate lymphoid cells (ILCs)
secrete IL-17 and thereby support host defense against mucocutaneous candidiasis [67].

IL-22 acts on epithelial cells to induce the release of antimicrobial peptides such as β-defensins.
These β-defensins have potent fungicidal activity enabling the epithelium to prevent invasion of
C. albicans. IL-17A and IL-17F induce neutrophil recruitment from the bloodstream to the site of
infection where these cells aid to prevent Candida dissemination [6,7,68–82].

Induction of genes involved in neutrophil recruitment during oropharyngeal candidiasis is
partly dependent on IL-17 receptor A activation [83]. Recently, it has been suggested that the role of
IL-17 in neutrophil recruitment is dependent on the tissue environment [71]. In a mouse model of
oropharyngeal candidiasis, the IL-17 pathway was not required for an adequate neutrophil response to
C. albicans in the oral mucosa. Mice deficient in the IL-17 receptor A or depleted of IL-17A and IL-17F
were able to establish normal neutrophil recruitment and function. Although the neutrophil response
was normal, Candida colonization was persistent due to absent induction of epithelial antimicrobial
peptides. These findings suggest that the main role of IL-17 in mucosal host defense against Candida is
the stimulation of epithelial cells to release antimicrobial peptides, and to a lesser extent neutrophil
recruitment [84]. Results from experimental psoriasis models in IL-17 receptor A deficient mice,
support that neutrophil recruitment to the skin, is IL-17-independent [85].

Interestingly, while the Th17 pathway is important for defense against oropharyngeal candidiasis,
it appears to be less important in the host defense against vulvovaginal candidiasis in mice [86].
Likewise, patients with genetic defects in their Th17 cell responses do not suffer from recurrent
vulvovaginal candidiasis [2,87]. Major mechanisms involved in the pathogenesis of vulvovaginal
candidiasis are local estrogen level, and imbalances in local microbiome [88]. In addition,
IL-1β-induced hyperinflammation as a result of defects in the inflammasome seems to play a causal
role in the pathogenesis of recurrent vulvovaginal candidiasis [30].

3.3. Genetic Susceptibility to Mucocutaneous Candidiasis

In the immunocompetent population, mucocutaneous candidiasis of skin, nails, oropharynx and
esophagus occurs infrequent and is generally mild. Some patients, however, display a different clinical
spectrum with severe and persistent Candida infections in the absence of risk factors. These syndromes
comprise also the severe chronic mucocutaneous candidiasis (CMC) and hyper IgE syndrome (HIES).
For most of these syndromes, the underlying genetic mutations or variation in immune regulation
genes have now been identified.

3.3.1. Chronic Mucocutaneous Candidiasis (CMC)

Patients with CMC suffer from severe and persisting Candida infections of skin, nails and mucous
membranes. There are several CMC phenotypes caused by specific genetic defects.

Autoimmune polyendocrinopathy, candidiasis, and ectodermal dystrophy (APECED) was first
described in 1929. This disorder is also known under the name autoimmune polyendocrine syndrome
type 1 (APS-1). Mutations in the autoimmune regulator (AIRE) gene were found responsible in 1997,
with an autosomal recessive transmission [1,89–91]. In the general population, APECED accounts for
up to 20–40% of CMC cases, while it is the predominant form of CMC in Finns, Sardinians and Iranian
Jews [92,93]. The clinical phenotype consists of CMC and autoimmunity, primarily of endocrine
organs. The classic triad of CMC, hypoparathyroidism and adrenal insufficiency affects more than
80–90% of patients. Autoimmunity can also involve the gonads and thyroid and in small amounts of
patients non-endocrine organs such as liver, eye, kidney and intestine [93]. The AIRE gene is expressed
in the thymus and secondary lymphoid organs and plays a key role in immune tolerance. As part
of autoimmune processes, all patients have autoantibodies against at least one out of three IL-17
cytokines (IL-17A (41%), IL-17F (75%) and/or IL-22 (91%)), which are essential for host defense against
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mucocutaneous Candida infection. Patients may also have auto-antibodies against IFN-α and IFN-ω,
but do not display an increased susceptibility to viral infections [74,89].

In 2011, signal transducer and activator of transcription 1 (STAT1) mutations were discovered to
likely be the main cause of autosomal dominant CMC [2]. STAT1 is a signaling molecule downstream
of the type I and type II IFN receptors and of the IL-12 and IL-23 receptors. Gain-of-function mutations
in the CC domain, the DNA-binding domain and the SH2 domain of STAT1 cause disruption of the
IL-12 and IL-23 pathways resulting in defective Th1 and Th17 cell responses and their consecutive
production of IFN-γ, IL-17 and IL-22 [94]. Gain-of-function mutations of STAT1 are associated
with a broad clinical phenotype and are the most common genetic cause of CMC [95]. In addition
to mucocutaneous candidiasis, 74% of patients with STAT1 mutations suffer from cutaneous and
respiratory bacterial infections (mainly Staphylococcus aureus), 38% suffer from viral skin infections
(mainly Herpesviridae), 10% suffer from invasive fungal infections, and 6% suffer from mycobacterial
infections [95]. Many patients with STAT1 mutations also display autoimmune manifestations (37%),
mainly hypothyroidism [95]. Esophageal carcinoma and cerebral aneurysms have also been linked
to gain-of-function STAT1 mutations [95,96]. The increased risk of invasive infections, squamous cell
carcinoma and cerebral aneurysms make this disease potentially life-threatening.

Autosomal dominant IL-17F, autosomal recessive IL17-RA, autosomal recessive IL-17RC and
autosomal recessive TRAF3IP2 (encodes ACT1) gene mutations have also been reported to cause CMC
in patients without mutations in the AIRE or STAT1 genes. ACT1 is an adaptor molecule that interacts
with the IL-17 receptor for downstream signaling response to IL-17A and IL-17F. Some of these patients
also suffer from S. aureus skin infections [72,74,97].

Several gene mutations are associated with less severe manifestations of CMC. Autosomal
recessive RAR Related Orphan Receptor C (RORC) gene mutations, causing RORγT deficiency affecting
Th17 cell development, leads to mild CMC and severe mycobacterial infections. Autosomal recessive
IL-12B or IL-12Rβ1 gene mutations, causing IL-12Rβ1 or IL-12p40 deficiency, affecting both IL-12 and
IL-23 signaling pathways, leads to mycobacterial infections in 83% of patients, to Salmonella infections
in 43% and CMC in 23% of patients [74].

3.3.2. Hyper IgE Syndrome (HIES)

HIES, also called Job syndrome, is characterized by recurrent staphylococcal skin abscesses,
pulmonary aspergillosis, skeletal and dental abnormalities, eczema, eosinophilia, elevated serum
immunoglobulin E concentrations, and mucocutaneous candidiasis [74].

Autosomal recessive inheritance of HIES is rare and caused mainly by mutations in dedicator of
cytokinesis 8 (DOCK8) gene, encoding a protein involved in Th17 polarization [1,74]. Most cases of
HIES are autosomal dominant and mainly caused by loss-of-function mutations in signal transducer
and activator of transcription 3 (STAT3) [74]. STAT3 is a signaling molecule downstream of multiple
cytokine receptors including IL-6, IL-10, IL-23, IL-17 and IL-22. The defective downstream signaling of
the IL-23 receptor results in absent IL-17 production [74]. Of HIES patients with STAT3 mutations, 85%
develop CMC [1,74].

In addition to the typical skeletal and dental abnormalities, the clinical phenotype of HIES differs
from CMC mainly by including allergic manifestations. Recent research shows that HIES patients are
able to induce normal Th2 responses, while CMC patients have total absent Th2 responses [98].

3.3.3. Recurrent Vulvovaginal Candidiasis (RVVC)

Vulvovaginal candidiasis is the most common form of mucocutaneous candidiasis in the
immunocompetent host. A minority of women (5–8%) suffer from recurrent vulvovaginal candidiasis
(RVVC), defined by recurrence of Candida infections more than three times a year, with many of
these patients lacking any of the known clinical risk factors. Gene polymorphisms in PRRs, TLR2
and mannose-binding lectin (MBL), and in the NLRP3 inflammasome, and cytokine IL-4, have been
discovered that play a role in the multifactorial susceptibility to RVVC.
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The rs5743704 polymorphism in TLR2, increased the susceptibility to RVVC almost three-fold, in a
study with 119 RVVC patients, functional assays suggested that this polymorphism reduces production
of IL-17 and IFN-γ upon stimulation of peripheral blood mononuclear cells with C. albicans [99].
Polymorphisms in codon 54 in MBL2, has been linked to RVVC. This MBL2 gene codes for the
soluble PRR mannose-binding lectin (MBL) which promotes complement activation and Candida
killing [100]. In a group of 50 women with RVVC, 25% carried this polymorphism compared to 10.6%
in controls [101].

The rs74163773 polymorphism in the NLRP3 inflammasome is associated with an increased
susceptibility to RVVC, as studied in a group of 270 RVVC patients. This polymorphism leads to
hyperinflammation by overproduction of IL-1β. Levels of IL-1β at the vaginal surface were higher in
patients bearing this polymorphism, IL-1Ra levels were decreased [30].

The −589C/T polymorphism in the IL-4 gene is associated with an increased susceptibility to
RVCC, in a group of 42 women with RVVC 59.5% had this polymorphism compared to 7.0% in controls.
This polymorphism leads to an elevated concentration of IL-4 and decreased concentration of MBL
and nitric oxide (NO) in vaginal fluid. IL-4 has been known to inhibit macrophage activation and NO
production [102].

A very recent study has performed the first GWAS in patients with RVVC. In this study, the
most important pathways regulating susceptibility to RVVC at a genetic level have been revealed,
including cytokine production capacity, cellular morphogenesis and metabolism, as well as cell
adhesion (Jaeger et al., personal communication).

3.3.4. Candida Colonization, Cutaneous Candidiasis and Onychomycosis

The Tyr238X polymorphism in an early stop codon in the dectin-1 gene, increases susceptibility to
oral and gastrointestinal Candida colonization and onychomycosis, by defective β-glucan recognition
and consecutive Th17 cell responses. Screening for dectin-1 polymorphism in patients undergoing
hematopoietic stem cell transplantation, showed 10.6% of patients bearing this polymorphism, they
were significantly more often colonized with Candida [103]. This polymorphism is present in up to 8%
of Europeans and up to 40% of selected sub-Saharan African populations [103,104].

The L412F polymorphism in TLR3, is associated with chronic cutaneous candidiasis in patients
without known genetic mutations conferring susceptibility to CMC [105]. Peripheral blood mononuclear
cells of patients carrying this polymorphism, showed reduced IFN-γ and tumor necrosis factor
alpha (TNF-α) secretion on response to stimulation with cytomegalovirus (CMV) and C. albicans.
These patients seem to have an increased risk of CMV infection and autoimmune manifestations as well.

4. Invasive Candidiasis

Imbalances in microbiome caused by antibacterial agents, disruption of the barrier between
the external and internal environment and loss of neutrophil function are well known risk factors
for invasive candidiasis. Patients admitted to the ICU acquire Candida colonization in up to 80% of
patients during the first 7 days [106]. Multifocal Candida colonization in combination with abdominal
surgery or indwelling vascular catheters are major risk factors for the development of invasive
candidiasis [3]. Of candidemia episodes, approximately 50% occur in the ICU, with 70–90% of patients
having previously been exposed to broad-spectrum antibiotic therapy, 80–90% have an intravascular
device in situ at the time of candidemia, and 40–50% have had recent surgery [107–109]. Remarkably,
neutropenia is only present in less than 5% of patients with candidemia [108,109].

Candida colonizing the gut invades either through translocation, or through anastomotic leakage
after laparotomy, and may cause localized, deep-seated infection (e.g., peritonitis), or candidemia
via the portal circulation [3]. During candidemia, dissemination of Candida may lead to secondary
metastatic lesions, e.g., in lung, liver, spleen, kidneys, bone and eye. Also indwelling intravascular
catheters are likely to become colonized [3].
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Patients with hematologic malignancies receiving anticancer chemotherapy may develop
extensive mucositis of the gastrointestinal tract, and hence be at risk for translocation of colonizing
Candida to the blood stream. In patients with prolonged neutropenia, chronic disseminated candidiasis
is a rare specific entity [110]. This form of invasive candidiasis primarily involves the liver and
spleen, and often only becomes overt after neutrophil recovery. Immune reconstitution inflammatory
syndrome (IRIS) plays a major part in the disease pathogenesis [110].

4.1. Th1 Pathway and Neutrophil Function

Th1 cell responses are crucial for protection against invasive candidiasis, and IFN-γ is the
pivotal cytokine in anti-Candida host defense. The pro-inflammatory cytokine IL-18, processed by the
inflammasome, induces Th1 cell responses such as IFN-γ production [43]. IFN-γ has a stimulating
effect on the fungicidal activities of phagocytic cells mainly neutrophils and macrophages [48,49].
Natural killer cells (NK) further enhance this fungicidal activity by producing granulocyte -macrophage
colony-stimulating factor (GM-CSF).

Neutrophil activation is essential for the clearance of Candida, as these are the most potent
phagocytes to kill Candida, and the only host immune cell able to inhibit germination of yeasts into
hyphae. After phagocytosis of Candida, neutrophils use oxidative as well as non-oxidative killing
mechanisms. The production of reactive oxygen species (ROS), is mediated through a protein complex
called nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The enzyme myeloperoxidase
(MPO) catalyses the conversion of hydrogen peroxide to hypohalous acid, which amplifies the
toxicity of ROS. The fungicidal activity relies on toxicity of ROS and release of antifungal proteases.
This ROS-dependent mechanism is essential for clearance of opsonized Candida, and depends on
binding to the FcγRs receptor and protein kinase C activation. Non-oxidative killing proceeds by
producing anti-microbial factors such as lysozyme, lactoferrin, elastase, β-defensins, gelatinases and
cathepsin G. In addition to killing by phagocytosis, neutrophils can release chromatin fibers forming
neutrophil extracellular traps (NETs). These NETS are able to kill Candida yeasts as well as hyphae,
by binding them and releasing an antifungal peptide called calprotectin. This ROS-independent
mechanism is essential for clearance of unopsonized Candida, and depends on binding to the CR3
receptor and CARD9 activation [6,7,111,112].

4.2. Genetic Susceptibility to Invasive Candidiasis

Even among patients with a combination of several risk factors for invasive candidiasis, the
disease occurs in only a minority of patients. This suggests a role for underlying genetic variations,
which, in combination with several risk factors, makes a patient prone to develop invasive candidiasis.
Several polymorphisms in immune regulation genes have recently been described, leading to either an
increased susceptibility to acquire or a decreased ability to clear invasive candidiasis.

4.2.1. Increased Susceptibility to Acquire Candidemia

The influence of polymorphisms in TLRs genes on susceptibility to candidemia was prospectively
studied in a large case and control cohort consisting of European and North American hospitalized
patients at risk for candidemia [113]. An association with increased susceptibility to acquiring
candidemia was found for three polymorphisms in TLR1 gene. Patients with these genotypes display
decreased proinflammatory cytokine release upon stimulation ex vivo. No association was found for
polymorphisms in TLR2, TLR4, TLR6, TLR9, or their adaptor proteins myeloid differentiation primary
response 88 (MyD88) or TIR domain containing adaptor protein (TIRAP) genes [113]. Three additional
polymorphisms in CD58, LCE4A-C1orf68, and T-cell activation GTPase activating protein (TAGAP) loci
associated with increased susceptibility to candidemia were identified in a genome-wide association
study (GWAS) in the largest candidemia cohort to date. The risk of candidemia for patients on
the ICU was increased by more than 19-fold when carrying at least two risk alleles from these loci.
CD58 is important for Candida phagocytosis and inhibition of germination, TAGAP has a function in
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Candida-induced cytokine production, and LCE4A-C1orf68 locus contributes to mucosal integrity [114].
Recently, 18 novel susceptibility loci were validated, by integrating genotype data from a cohort of 217
candidemia patients with transcriptome changes in healthy human primary leucocytes induced by
Candida. In these 18 loci, 31 candidate genes were identified [115].

4.2.2. Increased Susceptibility to Persistent Candidemia

Persistent candidemia is defined as positive blood cultures yielding Candida for more than
five days despite adequate therapy. In a large prospective cohort of ICU patients with candidemia,
polymorphisms in cytokine genes encoding IL-10 and IL12B were found to be associated with persistent
candidemia [116]. This decreased capability to clear the blood stream from Candida is likely mediated
by increased production of the anti-inflammatory cytokine IL-10 and decreased production of IL-12b,
resulting in downregulation of IFN-γ production. Polymorphisms in IFN-γ, IL-18, IL-1β and IL-8
genes were not associated with persistent candidemia [116]. In a subsequent GWAS study, the CD58
polymorphism was also associated with persistent candidemia [114].

4.2.3. Increased Susceptibility to Candida Dissemination

Disseminated candidiasis is defined as the presence of Candida at normally sterile sites outside
the bloodstream, and this condition may be either acute or chronic.

An association between genetic variants in IL-4 gene and susceptibility to chronic disseminated
candidiasis (CDC) was found in a cohort of 90 patients with acute leukemia, of which 40 suffered from
CDC [117]. The −1098T/−589C/−33C polymorphism in IL-4 gene was associated with increased
susceptibility to CDC in acute leukemia patients whereas the −1098T/−589T/−33T polymorphism
was associated with decreased susceptibility. IL-4 is an anti-inflammatory cytokine, induced by Th2 cell
responses. The polymorphism that increased susceptibility to CDC was associated with a decreased
IL-4 transcriptional activity [117].

The autosomal recessive inheritance of loss-of-function mutations in caspase recruitment
domain-containing protein 9 (CARD9) gene, were first described in a large consanguineous Iranian
family with recurrent mucocutaneous and invasive Candida infections [118]. Interestingly, this is
the first, and as yet only, described genetic cause for a combined phenotype of mucocutaneous and
invasive candidiasis. CARD9 is an intracellular adaptor molecule essential for dectin-1 signaling.
This signaling pathway induces the production of IL-1β, IL-6, and IL-23, and consecutive Th17 cell
responses. In the four affected family members, low numbers of circulating Th17 cells were found.
Three affected family members died during adolescence, two died from Candida meningoencephalitis,
and one died from presumed, but not confirmed, Candida cerebral involvement [118].

In a subsequent study, additional understanding was obtained on the invasive nature of
candidiasis resulting from mutations in CARD9 gene [119]. Neutrophils of a patient diagnosed
with Candida meningoencephalitis and CARD9 gene mutations, displayed a selective Candida killing
defect, which was independent of ROS production. The underlying mechanism is not yet fully
understood [119]. In five additional patients, with CARD9 gene mutations, who all were born
to consanguineous parents of Arabic origin, an association of CARD9 gene mutations with tissue
culture proven Candida colitis was described [120]. These observations support the role for CARD9 in
anti-fungal immunity of the gut, as was previously found in murine models. CARD9-deficient mice
displayed strong fungal colonization of the digestive tract with decreased numbers of colonic Th17
cells and innate lymphoid cells [120]. The earlier mentioned polymorphism in TAGAP gene is also
associated with dissemination in organs [114]. An overview of genes involved in genetic susceptibility
to Candida infections is depicted in Table 1.
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Table 1. Genes involved in genetic susceptibility to Candida infections.

Disease Gene Immune Modification Infectious Phenotype Non-Infectious
Phenotype References

CMC

AIRE

Autoantibodies against at least
one out of three IL-17 cytokines;

IL-17A (41%), IL-17F (75%)
and/or IL-22 (91%)

CMC

Autoimmune
manifestations:

hypoparathyroidism
and adrenal
insufficiency

[89–93]

STAT1
(gain-of-function)

Disruption of the IL-12 and IL-23
pathways resulting in defective
Th1 and Th17 cell responses and
their consecutive production of

IFN-γ, IL-17 and IL-22

CMC, cutaneous and
respiratory bacterial
infections (mainly

Staphylococcus aureus),
viral skin infections

(mainly Herpesviridae),
invasive fungal infections

Autoimmune
manifestations

(hypothyroidism,
autoimmune

hemolytic anemia, etc),
esophageal carcinoma,

cerebral aneurysms

[2,94–96]

IL-17RA, IL-17F,
IL-17RC, TRAF3IP2

(encodes ACT1)

Deficiency of IL-17RA, IL-17F ,
IL-17RC, ACT1 causing

disruption of the downstream
signaling response to IL-17A

and IL-17F

CMC and S. aureus skin
infections - [72,74,97]

RORC RORγT deficiency affecting Th17
cell development

Mild CMC and severe
mycobacterial infections - [74]

IL-12B or IL-12Rβ1
IL-12Rβ1 or IL-12p40 deficiency,

affecting both IL-12 and IL-23
signaling pathways

CMC, mycobacterial
infections, and Salmonella

infections
- [74]

HIES

STAT3
Defective downstream signaling
of the IL-23 receptor resulting in

absent IL-17 production

Mucocutaneous
candidiasis, recurrent
staphylococcal skin

abscesses and pulmonary
aspergillosis

Skeletal and dental
abnormalities,

pneumatoceles,
eczema, eosinophilia,
and elevated serum
immunoglobulin E

concentrations

[74]

DOCK8 Disruption in Th17 differentiation

Mucocutaneous
candidiasis, recurrent
staphylococcal skin

abscesses and pulmonary
aspergillosis

Eczema, eosinophilia
and, elevated serum
immunoglobulin E

concentrations

[1,74]

RVVC

TLR2 Reduced production of IL-17
and IFN-γ RVVC - [99]

IL-4

Elevated concentration of IL-4
and decreases concentration of
MBL and nitric oxide (NO) in

vaginal fluid

RVVC - [102]

MBL2 Reduced complement activation
and Candida killing RVVC - [100]

NLPR3

Hyper-inflammation by
overproduction of IL-1β, high

levels of IL-1β and low levels of
IL-1Ra at the vaginal surface

RVVC - [30]

Onychomycosis Dectin-1
Defective β-glucan recognition

and consecutive Th17
cell responses

Onychomycosis and
Candida colonization oral

and gastrointestinal
- [103,104]

Cutaneous
candidiasis TLR3

Reduced CMV and
Candida-induced IFN-γ and

TNF-α production

Cutaneous candidiasis and
CMV infection

Autoimmune
manifestations:

hypothyroidism,
hypogonadism,

idiopathic
thrombocytopenic

purpura, pancytopenia,
alopecia, enteritis

[105]

Candidemia

IL-10 Increased production of the
anti-inflammatory cytokine IL-10

Increased susceptibility to
persistent candidemia - [116]

IL-12B

Decreased production of the
pro-inflammatory cytokine IL-12b,

resulting in downregulation of
IFN-γ production.

Increased susceptibility to
persistent candidemia - [116]

TLR1 Decreased Candida-induced
cytokine production

Increased susceptibility to
acquire candidemia - [113]

CD58
Disruption of Candida

phagocytosis and loss of
inhibition of germination

Increased susceptibility to
acquire candidemia - [114]

LCE4A-C1orf68 Disruption of mucosal integrity Increased susceptibility to
acquire candidemia - [114]

TAGAP Decreased Candida-induced
cytokine production

Increased susceptibility to
acquire candidemia - [114]
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Table 1. Cont.

Disease Gene Immune Modification Infectious Phenotype Non-Infectious
Phenotype References

CDC

CARD9

Low numbers of ciruculating
Th17 cells and ROS-independent

selective Candida killing
effect neutrophils

Recurrent mucocutaneous and
invasive Candida infections

(meningoencephalitis, colitis)
- [118–120]

IL-4 Decreased IL-4
transcriptional activity

Increased susceptibility to
CDC in acute

leukemia patients
- [117]

TAGAP Decreased Candida-induced
cytokine production

Increased susceptibility to
Candida dissemination

into organs
- [114]

CMC: chronic mucocutaneous candidiasis; HIES: hyper IgE syndrome; RVVC: recurrent vulvovaginal candidiasis;
CDC: chronic disseminated candidiasis

5. Translating Knowledge into Clinical Practice

Morbidity and mortality associated with Candida disease remains substantial, despite advances
in supportive care and novel antifungal agents, demanding improvement of antifungal therapy.
The current knowledge on pattern recognition, Th1 and Th17 cell responses, and host effector
mechanisms in candidiasis underlines the potential for adjunctive immunotherapy in antifungal
treatment. Identifying patients within high-risk groups who bear genetic mutations or polymorphisms
associated with specific immune pathway defects allows selection of subjects for whom antifungal
prophylactic therapy, early empiric treatment, or host-directed adjunctive immunotherapy is expected
to be most effective. Thus, more accurate definition of high-risk groups will, in light of overtreatment
and emergence of fungal resistance, provide an additional benefit on a population level [3,121].

5.1. Prophylaxis

Antifungal prophylaxis on ICU is currently used only in specific high-risk groups, in which it has
been shown to be effective, such as abdominal surgery with recurrent gastrointestinal anastomotic
leakage, transplantation of the pancreas or small bowel, liver transplantation in selected patients
who are at high risk of candidiasis, and extremely low-birth-weight neonates in settings with a high
incidence of neonatal candidiasis [122].

Benefit of antifungal prophylaxis can, however, be expected in other ICU patient groups with
additional risk factors, such as broad-spectrum antibiotic therapy use, gastrointestinal disease and
indwelling vascular catheters. Studies to evaluate the value of antifungal prophylactic therapy
have been based on defining these high-risk groups by clinical parameters. However, a recent
randomized, placebo-controlled study in which patients admitted to ICU with a high risk of acquiring
invasive candidiasis based on a clinical prediction rule, received antifungal prophylaxis, yielded no
significant difference in candidemia rate or overall mortality [123]. Screening for genetic mutations
and polymorphisms in immune regulation genes within these high-risk patient groups, may improve
risk stratification to determine which patients need antifungal prophylaxis.

5.2. Immunostimulatory Therapy

5.2.1. Recombinant Cytokine Therapy

To date, recombinant cytokine therapy is the only clinically available form of adjunctive antifungal
immunotherapy and relies on improving host immune effector functions. Colony-stimulating
factors have been considered as antifungal adjunctive therapy [121,124,125]. These factors enhance
phagocytosis and the release of ROS, prolong the survival of neutrophils by inhibiting programmed
cell death and upregulate chitotriosidase promoting fungicidal activity. In addition, GM-CSF is known
to stimulate upregulation of dectin-1 expression on macrophages. GM-CSF has been successfully used
in HIV patients with refractory mucosal candidiasis [126,127]. No studies with GM-CSF have been
performed in patients with invasive candidiasis. Granulocyte colony-stimulating factor (G-CSF) was
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shown to be effective in mice with disseminated candidiasis [128]. In a randomized placebo-controlled
pilot study among non-neutropenic patients with disseminated candidiasis, adjunctive immunotherapy
with G-CSF in combination with fluconazole showed a trend towards faster resolution of infection
than fluconazole alone [129]. No follow-up studies have been done to date.

IFN-γ has been shown to enhance candidacidal activity of macrophages and neutrophils.
Administration of IFN-γ to mice with disseminated candidiasis reduces fungal burden [130]. In an
open-label prospective pilot study, patients with candidemia have received adjunctive IFN-γ or placebo.
Adjunctive IFN-γ immunotherapy partially restored antifungal immune function in the setting of
sepsis-induced immune paralysis, with improvement in leukocyte innate immune responses (IL-1β,
TNFα), and increased production of T-lymphocyte cytokines (IL-17 and IL-22). This study was not
powered to show effect on mortality [131].

5.2.2. Vaccination and Antibodies

Passive immunization with anti-Candida antibodies could be of benefit in immunocompetent
as well as immunodeficient patients. Screening among candidiasis patients for polymorphisms
known to decrease the ability of Candida clearance, such as the polymorphism in IL-10 and IL-12B
genes, may guide selection of patients most likely to benefit from adjunctive antibody therapy.
Protective monoclonal antibodies against Candida have been developed and tested successful in
murine models [124,132]. Anti-Candida antibodies are not clinically available yet.

Active vaccination for candidiasis would be the ultimate prevention method in immunocompetent
patients undergoing elective procedures or treatments known to increase the risk of candidiasis.
Extensive research over the years has provided several potential vaccines but none of these is
clinically available yet. Two vaccines, containing recombinant C. albicans-derived proteins, have
reached phase II trials. The NDV-3 vaccine, a recombinant alum-adjuvanted vaccine for Candida
and Staphylococcus aureus, has been shown to protect mice against oropharyngeal, vulvovaginal, and
invasive candidiasis as well as skin and soft tissue infections with S. aureus [133]. In phase I trials it has
shown promising results in T en B cell responses [134]. A memory T-cell response was shown for IFN-γ
in almost all participants, and for IL-17 in the majority of participants. The SAP2 vaccine, studied for
its effect on vulvovaginal candidiasis, has shown to generate neutralizing vaginal antibodies [4,121].
Interestingly, studies have shown that by adding different adjuvants to vaccines, different cytokine
profiles and Th cell responses are induced. By adding an adjuvant specific for mucocutaneous disease
or for invasive disease, a vaccine may be expected to shape the adaptive immune response towards
either a Th17 or a Th1 response [124].

5.2.3. Innate Cellular Immunotherapy

Granulocyte transfusion, as treatment for sepsis in neutropenic patients, was developed in the
1970s. Toxicity of the transfusion, development of haematologic growth factors, and antimicrobial and
antimycotical agents have halted its use. The availability of recombinant GM-CSF and G-CSF, however,
has inspired new trials based on the expected higher yield of donor granulocytes. No difference in
survival was found in a randomized phase III trial in febrile neutropenia patients with fungal disease,
receiving granulocyte transfusion adjunctive to standard of care [135]. Similarly, no difference in the
overall success between adjunctive granulocyte transfusion or antibiotic therapy alone was found
in a multicentre randomized trial in patients with febrile neutropenia and presumed infection [136].
In conclusion, the clinical efficacy of granulocyte transfusion has never been conclusively demonstrated.
Another potential option for antifungal immunotherapy, yet to be studied in man, is dendritic
cell-vaccination, in which dendritic cells are primed ex vivo with antigens that induce specific
cytokine profiles that induce an anti-Candida host response, and are then infused in patients with
candidiasis [121,124].



J. Fungi 2018, 4, 9 13 of 20

5.3. Immunosuppressive Therapy

In specific types of candidiasis, suppressing, rather than stimulating, host antifungal immune
response may be beneficial. In chronic disseminated candidiasis, a hyperactive immune response
occurs when neutrophil count returns to normal (IRIS). Adjunctive corticosteroid therapy, for at least
three weeks up to one year, has been described to lead to resolution of symptoms and of inflammatory
response [137]. Anakinra, a recombinant IL-1Ra and potent suppressor of inflammasome activity, has
proven effective in mice studies of VVC [138]. Thus, based on the hyperinflammation as result of
defects in the NLRP3 inflammasome and successive increase in IL-1β production in RVVC patients, a
potential role for anakinra as antifungal immunotherapy has been suggested.

5.4. Future Perspectives

Increased knowledge about host immune response to Candida infections, and genetic mutations
and variations in immune regulation genes conferring susceptibility to candidiasis has led to
development of various forms of immunotherapy that show potential as adjunctive antifungal therapy.
New development of immunotherapy could comprise recombinant cytokine IL-17 or IL-22, considering
their value in antifungal immune responses.

Prospective studies are now warranted to investigate the efficacy of including genetic screening,
within high-risk patient groups, in stratifying patient risk for candidiasis, and to evaluate the efficacy
of antifungal prophylaxis and adjunctive antifungal host-directed immunotherapy when administered
in this selection of patients.
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