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Abstract
Understanding the evolutionary dynamics of influenza viruses is essential to control both

avian and human influenza. Here, we analyze host-specific and segment-specific Tajima’s

D trends of influenza A virus through a systematic review using viral sequences registered

in the National Center for Biotechnology Information. To avoid bias from viral population

subdivision, viral sequences were stratified according to their sampling locations and sam-

pling years. As a result, we obtained a total of 580 datasets each of which consists of nucle-

otide sequences of influenza A viruses isolated from a single population of hosts at a single

sampling site within a single year. By analyzing nucleotide sequences in the datasets, we

found that Tajima’s D values of viral sequences were different depending on hosts and

gene segments. Tajima’s D values of viruses isolated from chicken and human samples

showed negative, suggesting purifying selection or a rapid population growth of the viruses.

The negative Tajima’s D values in rapidly growing viral population were also observed in

computer simulations. Tajima’s D values of PB2, PB1, PA, NP, and M genes of the viruses

circulating in wild mallards were close to zero, suggesting that these genes have undergone

neutral selection in constant-sized population. On the other hand, Tajima’s D values of HA

and NA genes of these viruses were positive, indicating HA and NA have undergone bal-

ancing selection in wild mallards. Taken together, these results indicated the existence of

unknown factors that maintain viral subtypes in wild mallards.

Introduction
The influenza A virus is a zoonotic pathogen that infects a wide range of mammalian and avian
species [1]. According to the antigenicity of hemagglutinin (HA) and neuraminidase (NA),
influenza A viruses are divided into 18 HA subtypes and 11 NA subtypes [2]. The natural hosts
of influenza A viruses are aquatic birds, such as ducks, geese, and gulls [3]. Sixteen HA subtypes
and 9 NA subtypes of influenza A viruses are circulating among these aquatic bird species. So
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far, H1N1, H2N2, and H3N2 subtype viruses have caused pandemics in humans [4,5]. H5N1,
H5N2, and H7N7 subtype viruses cause highly pathogenic avian influenza to chickens, and
they have damaged poultry industry for long time [6,7]. Zoonotic transmissions of viruses
from pigs and chickens to humans have been reported frequently [8–10].

Since all the influenza A viruses circulating in humans and poultry originated from their
natural hosts, understanding the evolutionary dynamics of influenza A viruses in aquatic bird
species is important for the control of both avian and human influenza. Kida et al. [11] showed
ducks infected with influenza A viruses did not show clinical signs of diseases and they pro-
duced only low levels of serum antibodies. These results suggested that influenza A viruses
have undergone neutral evolution in their natural host population, but clear evidence has yet to
be found.

Tajima’s D is a statistic that can be used to test whether or not the population structures of
target organisms follow the Wright-Fisher model (WF-model) [12–15]. The WF-model starts
from two assumptions. First, the population of target organisms is selectively neutral. Second,
the population is constant in size and not subdivided. Using nucleotide sequence data from
surveillance studies, Tajima’s D can test whether or not these assumptions hold with the popu-
lation. Tajima’s D is often used to analyze genetic variation maintained in a population of
organisms, including bacteria and viruses [16,17].

In this study, we analyze host-specific and segment-specific Tajima’s D trends of influenza
A viruses. To avoid bias from viral population subdivision, we conducted a systematic review
of surveillance studies on influenza A viruses of wild mallards, chickens, and humans using
nucleotide sequences registered in the database of National Center for Biotechnology Informa-
tion (NCBI). To our knowledge, this is the first comprehensive Tajima’s D study that uses data-
sets obtained by stratifying NCBI database sequences according to their isolation hosts,
sampling sites, and sampling year. To clarify theoretical detectability of influenza outbreaks by
Tajima’s D, we also conducted computer simulations of viral evolution with changing viral
demography and confirmed a clear relationship between Tajima’s D and the viral population
changes.

Materials and Methods

Tajima’s D
Tajima’s D [13] is the normalized difference between two statistics, Watterson’s estimator and
Tajima’s estimator. Watterson’s estimator θw, that is, the expected number of segregating sites
between n sequences, is given by

yW ¼ Sn
Xn

k¼2

1

ðk� 1Þ
: ð1Þ

The numerator of Eq (1), Sn is the observed number of segregating sites, and the denomina-
tor of Eq (1) is the expected total length of genealogy of n samples divided by 2 times total pop-
ulation N. Tajima’s estimator θT, which is the average number of nucleotide differences, is
given by

yT ¼ 2

nðn� 1Þ
X

i<j

pij: ð2Þ

Here πij denotes the pairwise difference between the ith sequence and the jth sequence in the
samples, and n(n–1)/2 is the total number of pairs in the samples.
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Tajima’s D is derived by subtracting Watterson’s estimator from Tajima’s estimator and by
normalizing its numerator as follows;

D ¼ yT � yW
StdðyT � yWÞ

: ð3Þ

From Eq (3), the sample size for Tajima’s D have to be larger than three because the denom-
inator of Tajima’s D becomes zero.

Systematic review
We downloaded all the database records of influenza A viruses from the GenBank on Novem-
ber 24th 2015 by using the Taxonomy ID of influenza viruses as a search condition, i.e.
“txid = 11320”. From the retrieved GenBank records, PubMed IDs were collected. Based on the
PubMed ID, articles accompanied with more than 100, 300, and 1,000 GenBank sequence rec-
ords respectively for mallard, chicken, and human viruses were collected. Influenza virus sur-
veillance studies with wild mallards are conducted at a smaller scale than those for chickens
and humans. To collect similar numbers of studies, we used these different thresholds on the
minim sequence numbers for mallard, chicken, and human. To avoid bias from population
subdivision [12,15], the abstract of articles were reviewed, and nucleotide sequences from sur-
veillance studies conducted at a single sampling site from single host species were collected. Fig
1 shows the selection process of the systematic review of surveillance studies.

Alignment of Sequences and Calculation of Tajima’s D
For each surveillance study selected by above criteria, nucleotide sequences of each gene seg-
ment were aligned using MAFFT, a multiple sequence alignment program (version 7) [18].
Sequences with a length less than 90% of complete gene were removed from the alignment.
These aligned sequences were stratified according to their sampling years. Since Tajima’s D
requires at least four sequences for its calculation, the datasets having less than four sequences
were removed. For each dataset containing nucleotide sequences of the same gene segment of
influenza A viruses isolated from the same sampling site in a single year, Tajima’s D was com-
puted by a custom program implemented with Python3 (v.3.3.3).

Outbreak Simulation
Viral sequence evolutions in a rapidly expanding population were simulated using Python3
(python scripts are available in S1 Script and S2 Script). We set the length of nucleotide
sequences to 500 and mutation rate in the simulated evolution to 10−6 per base per generation.
For each generation, viruses are randomly selected from the previous generation with replace-
ment, and their nucleotide sequences were copied to the offspring in the current generation
with mutations. We used equal mutation rates for all nucleotide bases (JC69 model) [19]. The
simulation was started with 1,000 viruses with identical nucleotide sequences. During the first
5,000 generations, the population size was fixed to 1,000. In each generation from the 5,000th

to 5,005th, the population size was doubled. From the 5,005th generation, the population size
was fixed to 32,000 to the end of the simulation. For every 400 generations, 50 viruses were ran-
domly sampled and Tajima’s D was calculated from their nucleotide sequences. Totally, 100
simulations were conducted with the same setting, and averages of Tajima’s D values were
calculated.
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Results

Data Retrieval and Sequence Alignment
Using 401,212 GenBank records retrieved from the NCBI database, we identified 1,635 articles
published with nucleotide sequences of the influenza A viruses. Among them 19, 17, and 11
articles satisfied our criteria for mallard, chicken and human, respectively (Fig 1). A total of
42,664 nucleotide sequences accompanied with these 47 surveillance articles were used calcu-
lating Tajima’s D. Table 1 shows the numbers of datasets for each segment and each host after
removing dataset having less than four sequences in the alignment. The accession numbers
and their nucleotide sequences used in this study can be found in the supplementary
information.

Fig 1. The selection process of systematic review of surveillance studies.

doi:10.1371/journal.pone.0147021.g001
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Tajima’s D in natural host species
Wild Mallard. The mean of Tajima’s D values of PB2, PB1, PA, NP, and M gene segments

were 0.061, 0.028, 0.115, 0.077, and 0.048, respectively (Table 2). Medians of Tajima’s D for the
internal gene segments (PB2, PB1, PA, NP, and M) across datasets were close to zero, and the
differences from zero were not significant (p>0.05, 1-sample Wilcoxon signed rank test) (Fig 2
(A)). The mean Tajima’s D of the surface protein genes (HA and NA) and non–structural gene
segment (NS) was 1.524, 1.769 and 0.657, respectively (Table 2). Medians of Tajima’s D of
these gene segments across datasets were significantly positive (p<0.05, 1-sample Wilcoxon
signed rank test) (Fig 2(A)).

Tajima’s D in non-natural host species
Chicken. Influenza A viruses that were circulating in chickens had an overall mean Tajima

D of −0.629. The mean values of Tajima’s D in PB2, PB1, PA, HA, NP, NA, M, and NS gene
segments were −0.550, −0.447, −0.678, −0.872, −0.816, −0.766, −0.473, and −0.431, respectively
(Table 2). Medians of Tajima’s D values for HA, NP, NA, and MP gene segments across data-
sets were significantly negative (p<0.05, 1-sample Wilcoxon signed rank test) (Fig 2(B)). There
were significant differences in Tajima’s D between the wild mallard and chicken except NS
gene segment (p<0.05; Two-sample Kolmogorov-Smirnov test).

Human. Influenza A viruses circulating in humans had a mean Tajima’s D of −1.118. The
mean values of Tajima’s D in PB2, PB1, PA, HA, NP, NA, M, and NS gene segments were
−1.109, −1.013, −1.056, −1.417, −1.008, −1.201, −0.941, and −1.200, respectively (Table 2).
Medians of Tajima’s D for all gene segments were significantly negative (p<0.05, 1-sample

Table 1. The number of datasets of nucleotide sequences.

Host PB2 PB1 PA HA NP NA M NS

Mallard

Number of dataset 24 25 23 24 30 22 29 30

Total number of sequences 237 240 228 244 367 206 388 315

Chicken

Number of dataset 14 19 19 18 18 13 31 23

Total number of sequences 342 468 414 271 429 143 634 497

Human

Number of dataset 24 30 28 16 30 24 33 33

Total number of sequences 1019 1110 1053 861 1169 880 1191 1191

doi:10.1371/journal.pone.0147021.t001

Table 2. The mean and standard deviation of Tajima’s D.

Host PB2 PB1 PA HA NP NA M NS

Mallard

Mean 0.061 0.028 0.115 1.524 0.077 1.769 0.048 0.657

SD 0.630 0.516 0.755 1.065 0.800 0.805 0.672 1.534

Chicken

Mean –0.550 –0.447 –0.678 –0.872 –0.816 –0.766 –0.473 –0.431

SD 1.325 1.507 1.378 0.903 1.089 1.118 1.100 1.279

Human

Mean –1.109 –1.013 –1.056 –1.417 –1.008 –1.201 –0.941 –1.200

SD 0.978 1.003 0.940 0.970 0.956 0.730 0.898 0.999

doi:10.1371/journal.pone.0147021.t002
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Wilcoxon signed rank test) (Fig 2(C)), and there were significant differences in Tajima’s D
between the wild mallards and humans for all gene segments (p<0.05; Two-sample Kolmogo-
rov-Smirnov test). Tajima’s D values for all the dataset can be found in S1 Table.

Fig 2. Tajima’s D values for gene segments sampled from themallards, chickens and humans. (a) shows Tajima's D values for the viruses isolated
from wild mallards, (b) shows those from domestic chickens, and (c) shows those from humans. Black circles and error bars represent estimated medians
and 95% confidence intervals for the median of Tajima's D across datasets using 1-sampleWilcoxon signed rank test. Gray circles represent Tajima's D
values of each dataset. Asterisk denotes the significantly positive or negative Tajima's D based on the result of 1-sampleWilcoxon signed rank test.

doi:10.1371/journal.pone.0147021.g002
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Outbreak simulation
At the first duration when the viral population size was constant over viral generations, the
mean of Tajima’s D of 100 simulations was around zero and was within the range of 95% confi-
dence interval for D = 0 (the error distribution was assumed to be beta distribution [13], which
agreed with the theory of Tajima’s D. After a sudden increase of the viral population, the mean
Tajima’s D value decreased to –2.052, which is significantly negative (p<0.05; beta distribu-
tion). Consequently the mean Tajima’s D value increased gradually and returned within the
range of 95% confidence interval for D = 0 (Fig 3(B)).

Discussion
In this study, we analyzed host-specific and segment-specific Tajima’s D trends of influenza A
viruses through a systematic review of viral sequences registered in the NCBI GenBank. To
avoid bias from viral population subdivision, viral sequences were stratified according to their
sampling locations and sampling years. Tajima’s D values for internal gene segments of influ-
enza A viruses circulating in wild mallards were close to zero. On the other hand, interestingly,
Tajima’s D for external gene segments of influenza A viruses circulating wild mallards showed
positive. Tajima’s D values for both internal and external gene segments in non-natural hosts
—chicken and human—were negative.

The trends of Tajima’s D are different between internal and external gene segments of influ-
enza A viruses circulating in wild mallards. Wild mallard are considered as the natural host of
influenza A viruses. Tajima’s D of influenza viruses in mallards is expected to be close to zero
due to the low pathogenicity, or slightly negative due to the selective sweep by low immune
response. However, Tajima’s D values for external genes showed positive value, suggesting bal-
ancing selection or population subdivision. Since all gene segments should show positive Taji-
ma’s D if viral population were subdivided, balancing selection on external gene segments were
more likely to be the cause of positive Tajima’s D values.

To analyze the selection on the external genes of influenza A viruses circulating in wild mal-
lards, we compared Tajima’s D of the data containing only one subtype with those containing
multiple subtypes using dataset from Bahl et al. [20]. Tajima’s D values of sequences containing
two subtypes were positive: the values were 1.159 in 2006 and 1.032 in 2007, suggesting balanc-
ing selection. On the other hand, the Tajima’s D for sequences stratified by subtypes were not
positive: −0.721 (−1.420) for the H3 HA in wild mallard in 2006 (2007), −1.222 (−0.535) for
H4 HA in 2006 (2007), respectively, suggesting neutral or weak purifying selection (Table 3). A
similar pattern was observed for NA (Table 4). These results suggested that selection within a
subtype was neutral or weak purifying selection as observed in other non-natural hosts, on the
other hand, selection across subtypes is balancing selection.

The diversity of influenza A viruses circulating wild mallard is much higher than other
hosts. This high diversity is not able to be explained by relatively low pathogenicity or low
immune response of wild mallard, which is one of the main reasons why wild mallard is con-
sidered to be the natural host of influenza A viruses. These factors can explain neutral selection
on the viruses, but they cannot explain balancing selection.

Several studies have analyzed the evolutionary dynamics of avian influenza viruses using
their nucleotide sequences. Time to the most recent common ancestor (TMRCA) of HA,
NA and NS were much older than that of internal gene segments [21], and the result is
consistent with our results. The phylogenetic analyses of HA and NA suggested high inter-sub-
type diversity and low intra-subtype diversity, which were not seen in internal gene segments
[22]. The distinct divergence between two alleles of NS suggested balancing selection on NS
[22], and this was consistent with our results. The dN/dS ratio—the ratio of the number of

Host-Specific and Segment-Specific Evolutionary Dynamics of Avian and Human Influenza A Viruses

PLOS ONE | DOI:10.1371/journal.pone.0147021 January 13, 2016 7 / 11



non-synonymous substitutions per site to the number of synonymous substitution per site—
had suggested purifying selection on internal gene segments [20], while Tajima’s D in our
study supported neutral selection. This discrepancy between results from dN/dS and Tajima’s
D remains as an open question, and one possible explanation for this is that the discrepancy
would be attributed to difference between the selection at the lineage level and the selection at
the population level.

The negative Tajima’s D values observed in the human and chicken viruses rejected the
WF-model for these viral populations. These negative Tajima’s D values should be attributed
to the population increase due to recent outbreaks, purifying selection due to viral adaptation
to new hosts, or combined effects of population change and selection. However, Tajima’s D

Fig 3. The change of Tajima’s D with a sudden increase of population. (a) shows the setting of time evolution of viral population size and (b) shows the
result of time series change of mean Tajima’s D. Gray dot line represents 95% confidence interval of Tajima’s d value for D = 0.

doi:10.1371/journal.pone.0147021.g003
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itself cannot be used to examine which of these factors are causes of negative Tajima’s D values.
This problem highlighted a need for the development of a new methodology that can be used
to separate the composite signal into components of population change and selection.

Tajima proposed the use of beta-distribution to reject WF-model and to calculate the 95%
confidence interval of Tajima’s D under the WF-model [13]. Our computer simulations
showed that Tajima’s D values fell outside 95% confidence interval right after the sudden
increase of viral population. Although Simonsen et al. [23] showed that criteria using beta-dis-
tribution was too conservative to reject WF-model when neutrality assumption does not hold,
our computer simulations suggested that beta-distribution could be used to reject WF-model
when population size is rapidly growing. When we have multiple samples independently col-
lected form the population, an alternative approach to reject WF-model is to use 1-sample Wil-
coxon signed rank test, as shown in the previous section.

It would be of particular interest to find connection between the Tajima’s D of an infectious
agent and the effective reproduction number of infectious disease caused by the agent. The
effective reproduction number measures the continuance of an outbreak and the expected
number of secondary infections. Recent studies have utilized coalescent theory to estimate the
time evolution of population size of the ancestors of sampled sequences. By assuming con-
stant-sized population between two coalescence events, Pybus et al. developed a method to esti-
mate the time evolution of population size from their nucleotide sequences [24]. Mathematical

Table 3. Subtype specific Tajima’s D of HA in Mallard.

Subtype Year

2006 2007

H3

Sample size 11 17

Tajima’s D –0.721 –1.42

H4

Sample size 6 8

Tajima’s D –1.222 –0.535

H3, H4 and others (mixed)

Sample size 20 28

Tajima’s D 1.519 1.032

doi:10.1371/journal.pone.0147021.t003

Table 4. Subtype specific Tajima’s D of NA in Mallard.

Subtype Year

2006 2007

N6

Sample size 7 9

Tajima’s D –0.442 –1.315

N8

Sample size 11 14

Tajima’s D 0.498 –0.011

N6, N8 and others (mixed)

Sample size 21 26

Tajima’s D 2.125 2.052

doi:10.1371/journal.pone.0147021.t004
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models on population dynamics of infectious diseases have been also proposed to characterize
infectious disease outbreaks from nucleotide sequences of infectious agents [25,26].

Conclusions
We calculated host-specific and segment specific Tajima’s D values of influenza A viruses
through a systematic review using viral sequences registered in the NCBI database. Interest-
ingly, sequences encoding external proteins of influenza A viruses showed positive Tajima’s D
in wild mallards, suggesting the existence of balancing selection, although zero or negative Taji-
ma’s D was expected. This result suggests the existence of missing factors other than low
immune response or low pathogenicity to maintain the variation of the subtypes circulating in
the natural hosts.
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