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Abstract
Antibodies play critical roles in neutralizing viral infections and are increasingly used as therapeutic drugs and diagnostic

tools. Structural studies on virus-antibody immune complexes are important for better understanding the molecular

mechanisms of antibody-mediated neutralization and also provide valuable information for structure-based vaccine design.

Cryo-electron microscopy (cryo-EM) has recently matured as a powerful structural technique for studying bio-macro-

molecular complexes. When combined with X-ray crystallography, cryo-EM provides a routine approach for structurally

characterizing the immune complexes formed between icosahedral viruses and their antibodies. In this review, recent

advances in the structural understanding of virus-antibody interactions are outlined for whole virions with icosahedral

T = pseudo 3 (picornaviruses) and T = 3 (flaviviruses) architectures, focusing on the dynamic nature of viral shells in

different functional states. Glycoprotein complexes from pleomorphic enveloped viruses are also discussed as immune

complex antigens. Improving our understanding of viral epitope structures using virus-based platforms would provide a

fundamental road map for future vaccine development.
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Introduction

Antibodies, the essential components of humoral immu-

nity, are a major defense line against viral infections. To

neutralize viral infections, antibodies primarily bind to

specific epitopes on the outer surfaces of viral particles. An

important first step in modern structural vaccinology

involves structurally characterizing the interactions occur-

ring between viral antigens and their cognate antibodies

(Anasir and Poh 2019). This step provides the direct evi-

dence for the location of viral epitopes, which helps to

elucidate the neutralization mechanisms of antibodies. The

first high-resolution structure of a virus (tomato bushy stunt

virus) was solved four decades ago using X-ray

crystallography (Harrison et al. 1978), a technique that has

been primarily limited to determining the structures of

relatively simple non-enveloped viruses (http://viperdb.

scripps.edu/xray.php) or viral components. Because crys-

tallizing virus-antibody complexes can be challenging,

morphological studies of virus-antibody interactions have

long been carried out through transmission electron

microscopy (TEM) with negative staining protocols

(Almeida and Waterson 1969). The resolution achieved by

this technique is usually low, but the structural details can

be enhanced by modeling high-resolution crystal structures

into low-resolution TEM maps. As the negatively-stained

samples are visualizable with a conventional TEM instru-

ment, they are still widely used today for characterizing

immune complexes with human viruses like influenza A

(Ekiert et al. 2012), Marburg (Flyak et al. 2015) and Ebola

viruses (Flyak et al. 2016).

Cryo-electron microscopy (cryo-EM), a Nobel-

prize-winning technique, is now routinely used for

studying virus-antibody complexes at high resolution (Earl

and Subramaniam 2016). In contrast to negatively-stained

samples, which might be significantly distorted by the

dehydration process and the presence of stains, virus par-

ticles in cryo-EM studies are freshly frozen in a thin layer
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of vitreous ice to maintain their native conformations,

making high-resolution analyses possible. However, before

direct electron detection cameras (DEDs) were introduced

in 2012, cryo-EM structures could only be solved at sub-

nanometer resolutions with traditional CCD cameras,

except some pioneer work based on images recorded on

photographic film (Zhang et al. 2010). Largely resulting

from the development of DED technologies, better

microscopes and sophisticated reconstruction algorithms,

cryo-EM has developed in recent years as a powerful high-

resolution technique in structural biology research (Shen

2018).

There are two major 3D cryo-EM analysis strategies:

single particle analysis (SPA) and cryo-electron tomogra-

phy (cryo-ET) (Danev et al. 2019). SPA is usually used for

macromolecular assemblies that are stable, soluble and

homogeneous in vitro. Because some viruses are highly

structurally ordered, especially those with icosahedral

symmetries, it is possible to solve the structures of whole

viral particles at better than 3 Å resolution using SPA by

combining data from several thousands of purified virus

particles (Jiang and Tang 2017). The density maps at this

resolution allow the de novo building of atomic models.

For viruses with pleomorphic shapes, 3D reconstruction of

a single vitrified virion is achievable using cryo-ET pro-

cedures at *25-Å resolution. Sub-tomogram averaging

techniques are further exploitable for achieving better

structural details for repeating structures, such as the sur-

face glycoproteins on viruses. Both SPA and cryo-ET

approaches have been used for structural studies on the

interactions occurring between whole virions (or viral

components) and their associated antibodies.

Antibodies for Cryo-EM Studies

Antibody molecules for cryo-EM studies can be generated

in different ways. Mass production of murine monoclonal

antibodies (mAbs) has traditionally been achieved by the

use of hybridoma technology where antibody-producing B

cells derived from immunized mice are fused to an

immortalized cell line (e.g., myeloma) (Kohler and

Milstein 1975). Recombinant antibodies can be generated

by phage display technology followed by in vitro selection,

which targets the whole virus particles or some viral

components (Hoogenboom 2005). Various methods for

isolating antigen-specific human B cells to obtain mAbs

have also been reported (Crowe 2017). For viruses with

naturally occurring high mutation rates like HIV-1, broadly

neutralizing antibodies (bNAbs) that potently target a wide

range of viral strains have been isolated from virus-infected

individuals and extensively studied using cryo-EM

(Stephenson and Barouch 2016; Chuang et al. 2019).

For cryo-EM analyses, the antibody components are IgG

molecules or their truncated parts. In a single IgG molecule,

two antigen binding fragments (Fabs) are present (Fig. 1A,

1B), a situation that could result in highly heterogeneous

antigen–antibody complexes if one antigen particle becomes

crosslinked with another. Except for SPA studies on IgG

bivalency (Ye et al. 2016), IgG is usually used in cryo-ET

studies at medium resolution for HIV-1 (Tran et al. 2012),

influenza (Tran et al. 2016b) and Ebola viruses (Tran et al.

2016a). Compared with the intact IgG molecule, the mono-

valent Fab fragments generated by papain digestion of whole

IgG molecules are more commonly used for structural

studies on virus-antibody complexes (Tables 1, 2, 3). The

single-chain variable fragment (scFv) generated by fusing

the variable regions of the heavy (VH) to the light (VL) chains

with a flexible peptide linker (Finlay et al. 2017) can be used

for cryo-EM studies of virus-antibody interactions (Kauf-

mann et al. 2009; Liu et al. 2017). Single-domain antibodies

(sdAbs), such as variable domains of heavy chain-only

antibodies (termed VHH) and VH domains of human IgG

molecules, have also served as antibody derivatives for cryo-

ET studies when combined with sub-tomogram averaging

(Meyerson et al. 2013).

Thus far, 3D reconstructions of virus-Fab complexes at

atomic resolution are available for some picornaviruses,

including rhinovirus B14 (RV-B14) (Dong et al. 2017),

human parechovirus 3 (HPeV3) (Domanska et al. 2019),

hepatovirus A (HAV) (Cao et al. 2019) and enterovirus

D68 (EV-D68) (Zheng et al. 2019) (Table 1). The atomic

models of the capsid protein were well-fitted in the cryo-

EM density map for HPeV3 (Fig. 1C, 1D). Nevertheless,

only the VH and VL domains have clearly defined densities

(Figs. 1E, 2G), whereas the density regions in the CH1 and

CL domains are less ordered, reflecting the flexibility of the

linker regions between the constant domains (CH1 and CL)

and variable domains (VH and VL). Because the antigen

binding site is determined by six hypervariable loops,

namely, the complementarity-determining regions (CDRs)

on the VH and VL domains, these densities can provide

detailed information about the virus-antibody interface.

Based on high-resolution structural analysis, CDRs from

five HAV antibodies (R10, F4, F6, F7 and F9) interact with

a single conserved antigenic site, which has been shown as

an attractive target for rational development of antiviral

drugs (Wang X et al. 2017; Cao et al. 2019).

Icosahedral Viruses as Antigens in Cryo-EM
Studies

Viruses with icosahedral capsid shells are the most studied

antigens in immune complexes by cryo-EM techniques,

largely due to their high symmetry. Since perfect symmetry
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could be broken as observed in many situations, such as

symmetry mismatches at the portal vertex of herpesviruses

(Parent et al. 2018) and partially mature particles of dengue

viruses (Rodenhuis-Zybert et al. 2011), block-based or

localized reconstruction strategies are now often applied to

icosahedral particles showing conformational flexibility or

symmetry mismatches (Ilca et al. 2015; Zhu D et al. 2018).

Geometrically, an icosahedral object has 60 equivalent

positions related by fivefold, threefold and twofold rota-

tional symmetry. The 60 repeating units occupying each of

these positions are referred to as asymmetric units (ASUs).

The triangulation number (or T-number) is usually

assigned to an icosahedral virus to identify the number of

subunits in an ASU. In the simplest T = 1 virus (e.g.,

parvoviruses), only one capsid molecule is present in the

ASU, and the 60 capsid protein copies form an enclosed

shell to protect the viral genome. In contrast, in a T = 3

virus (e.g., flaviviruses), the ASU consists of three chem-

ically identical capsid proteins (e.g., the E protein from

flaviviruses), each of which undergoes conformational

adjustments to occupy three ‘‘quasi-equivalent’’ positions

in the ASU. Some icosahedral viruses show ‘‘pseudo’’ T

geometry. Picornaviruses (T = pseudo 3) have an ASU of

three capsid protein types (VP1, VP2 and VP3), possibly

making them a special T = 1 case. Next, we will examine

the epitope distribution on these two types of human-

infection viruses, and also discuss the binding capacity of

Fab molecules on their virions.

Small non-enveloped viruses in the Picornaviridae

family cause mild or severe human infections, and provide

important antigenic particles for cryo-EM studies

(Table 1). Crystal structures of rhinovirus (Rossmann et al.

1985) and poliovirus (Hogle et al. 1985) have revealed that

on the icosahedral capsid shell, VP1 lies close to fivefold

axes and the neighboring VP2 and VP3 are found around

threefold axes (Fig. 2A, 2B). Since 1997, outbreaks of

hand-foot-and-mouth disease have been increasingly

reported, the leading pathogens of which are various

Fig. 1 Structural models of antibody molecules on the viral surface.

A Modular organization of a Y-shaped IgG molecule, which consists

of two heavy chains and two light chains covalently linked via

disulfide bonds. Papain digestion of a parental antibody produces two

Fab fragments and one Fc fragment. A Fab fragment comprises VH,

CH1, VL and CL domains. B Surface illustration of highly asymmetric

human IgG1 b12 (PDB-1HZH) colored by domain as in (A). C Cryo-

EM map of Fab AT12-015 complexed with HPeV3 (EMD-0069),

showing that the 60 copies of Fab (blue) are placed on the viral

surface (white). A triangular icosahedral asymmetric unit (ASU) is

outlined on the capsid surface. The numbers show the positions of

neighboring fivefold and two threefold axes limiting the ASU.

D Central cross-section of the cryo-EM map showing the Fab

densities (blue). E The enlarged inset shows the density correspond-

ing to one Fab AT12-015 molecule. The VH and VL domains

represented by green and blue ribbons are well defined in the density

map. The six complementarity-determining regions in VH and VL are

colored red.
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Table 1 Summary of cryo-EM structures from picornavirus-antibody complexes in the Electron Microscopy Data Bank (EMDB) (https://www.

ebi.ac.uk/pdbe/emdb/).

Genus Virus name Antigen Antibodya Fragment EMD codes Resolution

(Å)

Enterovirus Coxsackievirus (CV) CV-A6 A-particle 1D5 Fab 6757 3.8

CV-A10 A-particle 2G8 Fab 9603 4.3

CV-A10 mature virion 2G8 Fab 9604 3.9

CV-A10 procapsid 2G8 Fab 9605 4.2

Enterovirus (EV) EV-A71 mature virion MA28-7 Fab 5673 23.4

E18 Fab 2397 10

E19 Fab 2436 13

D5 IgG 6365 7.2

D5 Fab 6366 4.8

EV-A71 procapsid D5 Fab 6383 6

22A12 Fab 6200 8.8

E18 Fab 2434 16

D6 Fab 6963 4.9

A9 Fab 6964 6.8

EV-A71 VLP D5 IgG 6384 5.5

EV-D68 mature virion 15C5 Fab 9633 3.6

15C5/

11G1

Fab 9634 3.5

EV-D68 A-particle 11G1 Fab 9636 7.2

Poliovirus (PV) PV1 mature virion A12 Fab 5670 12

C3 Fab 5291 11.1

PVSP6A VHH 5886 4.8

PVSP29F VHH 5888 6.5

PVSS8A VHH 6433 4.2

PVSP19B VHH 6434 4.8

PVSS21E VHH 6435 3.8

PV2 mature virion A12 Fab 5671 20

PV1 procapsid P1 Fab 5283/5284/5285/

5286

13/21/18/18

C3 Fab 5293 22

PV1 A-particle P1 Fab 5280/5282 12/26

C3 Fab 5292 9.1

PVSP17B VHH 8285 5.3

PVSS12B VHH 8285 5.3

PVSS10E VHH 8277 4.8

PVSS7A VHH 8286 5.3

Rhinovirus (RV) RV B14 mature virion C5 Fab 8754/8761/8762 2.53/2.71/

2.26

RV B14 procapsid C5 Fab 8763 3.01

Aphthovirus Foot-and-mouth disease virus

(FMDV)

FMDV-O mature

virion

D9 Fab 0173 3.97

Parechovirus Human parechovirus (HPeV) HPeV-3 mature virion AT12-015 Fab 0069/3138 2.8/15

HPeV-1 mature virion AM28 Fab 2761 19.76
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enteroviruses, including enterovirus A71 (EV-A71), cox-

sackievirus A6 (CV-A6), CV-A10 and CV-A16 (Kimmis

et al. 2018; Yu and Cowling 2019). Crystallographic and

cryo-EM studies have shed some light on the uncoating

mechanism of EV-A71, CV-A10 and CV-A16 (Wang et al.

2012; Ren et al. 2013; Zhu L et al. 2018a). Based on the

cryo-EM structures of the enterovirus-Fab complexes, four

neutralizing sites have been identified (Fig. 2E–2H) (Zhu R

et al. 2018). Site 1 is located near the icosahedral fivefold axis

of EV-A71 (MA28-7) (Lee et al. 2013), CV-A6 (1D5) (Xu

et al. 2017) and EV-D68 (11G1) (Zheng et al. 2019). While

site 2 maps to the VP1 GH-loop across the twofold axis of

EV-A71 (22A12 and D5) (Shingler et al. 2015; Ye et al.

2016), site 3 is situated near the threefold axis of EV-A71

(E18, E19 and A9) (Plevka et al. 2014; Zhu L et al. 2018b)

and EV-D68 (15C5) (Zheng et al. 2019). Site 4 is adjacent to

the quasi threefold axis of CV-A10 (2G8) (Zhu R et al. 2018).

Some clinically relevant viruses in the Flaviviridae

family, such as dengue virus (DENV), West Nile virus

(WNV), Japanese encephalitis virus (JEV), tick-borne

encephalitis virus (TBEV) and Zika virus (ZIKV)

(Holbrook 2017; Yang et al. 2019), have been structurally

studied as antigenic particles using cryo-EM (Table 2). In

contrast with non-enveloped enteroviruses, flaviviruses

possess host-derived lipid bilayers with 180 pairs of

envelope (E) and membrane (M) proteins on the viral

membrane (Perera and Kuhn 2008). Organized as head-to-

tail homodimers on the outer surface (Fig. 2C, 2D), the E

protein plays important roles in receptor binding and in

mediating virus-host membrane fusion. Compared with

picornaviruses, flavivirus epitopes do not possess an

apparent pattern near symmetrical axes (Fig. 2I, 2J). Based

on how Fab interacts with the E dimer, different epitopes

on the DENV E protein are classifiable into four groups:

(1) those that occur within an E monomer (e.g., 1F4)

(Fibriansah et al. 2014); (2) those spanning the adjacent

surface of two E molecules from neighboring E dimers

(e.g., 14c10) (Teoh et al. 2012); (3) those consisting of

amino acid residues from the two E molecules within an E

dimer (e.g., 747(4)B7) (Dejnirattisai et al. 2015); and (4)

those that occur across three neighboring E molecules (e.g.,

5J7) (Fibriansah et al. 2015b). Largely based on antibody-E

complex crystal structures, antibodies may target DI

domain, DII fusion loop epitope (FLE) or DIII domain

within an E monomer (Dai et al. 2016).

The distance between neighboring epitopes can impact the

number of bound antibodymolecules on each virion. Although

both MA28-7 and 1D5 Fabs bind to site 1 of picornaviruses,

only one MA28-7 Fab fragment occupies each fivefold vertex

(Lee et al. 2013) while five 1D5 Fab molecules bind each

fivefoldvertexofCV-A6 (Xuet al.2017).Comparedwith1D5,

Fab MA28-7 is closer to the symmetry axis, which renders

steric hindrance between possible Fabs, thereby limiting the

number of bound Fabs. As another example, the bivalent

binding pattern of D5 was characterized in which the two Fab

IgG fragments could bind to the GH loops of neighboring VP1

molecules related by twofold symmetry, a finding consistent

with the observation that D5 IgG was able to neutralize EV-

A71 much more potently than D5 Fab (Ye et al. 2016). Con-

trastingly, the 22A12 binding sites near twofold axes on EV-

A71 are further apart and bivalent binding of an antibody

cannot occur (Shingler et al. 2015). In some cases, Fab binding

can even change the local arrangement of the E protein to

accommodate more Fab molecules. For example, when the

total 180 copies of Fab ZKA190 bind to the ZIKV surface, E

proteins at the fivefold vertices move apart and steric clash is

avoided (Wang J et al. 2017).

Structural variations in the capsid protein at quasi-

equivalent positions may also impact the number of bound

Fab molecules. Within an ASU, the DENV E protein exists

as three conformations showing slight structural variation.

180 copies of Fab 747(4)B7 in total can bind to a DENV

virion (Dejnirattisai et al. 2015), suggesting that such

variations have no apparent impact on the epitope. How-

ever, in other cases, conformational changes can result in a

less effective epitope. For example, Fab 1F4 (targeting the

Table 1 (continued)

Genus Virus name Antigen Antibodya Fragment EMD codes Resolution

(Å)

Hepatovirus Hepatovirus A (HAV) HAV mature virion R10 Fab 6688 4.2

F4 Fab 9827 3.9

F6 Fab 9828 3.68

F7 Fab 9829 3.05

F9 Fab 9830 3.79

aStructural insights into the possible mechanisms for antibody-mediated neutralization discussed in the text are summarized below. 1D5:

inhibition of virus-cellular binding (Xu et al. 2017), 2G8: capsid stabilization (Zhu R et al. 2018), MA28-7: cross-linking of virions and blocking

receptor binding (Lee et al. 2013), E18: induction of genome release (Plevka et al. 2014), D5: capsid stabilization (Ye et al. 2016), 22A12: capsid

stabilization (Shingler et al. 2015), D6: blocking receptor binding (Zhu L et al. 2018b), A9: blocking receptor binding and capsid destabilization

(Zhu L et al. 2018b), 15C5: blocking receptor binding and locking capsid at intermediate stage, 11G1: locking capsid at intermediate stage

(Zheng et al. 2019), R10: blocking receptor binding (Wang X et al. 2017), F4, F6, F7 and F9: blocking receptor binding (Cao et al. 2019).
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DI and DI–DII hinges) does not bind to the E proteins near

the threefold vertices where the epitope is partially hidden;

consequently, only 120 copies of Fab 1F4 interact with a

DENV virion (Fibriansah et al. 2014). Additionally, the

capacity of Fab to bind onto a virus particle may not be

straightforward when the binding sites are not fully occu-

pied, as shown in the density analysis of ZIKV-117 Fab in

a cryo-EM reconstruction (Hasan et al. 2017).

Immune Complexes for Icosahedral Viruses
at Intermediate States

Antibodies have been used to capture intermediate states in

the assembly pathway of enteroviruses. There are two

major enterovirus particles in infected host cells: empty

procapsids (noninfectious) and mature virions (infectious).

Upon binding to cellular receptors, the native virions are

converted into uncoated intermediates called A(altered)-

particles (Shingler et al. 2013). Binding to the E18 anti-

body transforms infectious EV-A71 into A-particles and

triggers genome release (Plevka et al. 2014). Uniquely,

CV-A6 A-particles are biochemically and structurally

stable, which enabled the A-particle-Fab complex to be

reconstructed at a 3.8-Å resolution (Xu et al. 2017). 2G8

shows cross-reactivity against the CV-A10 procapsid, the

mature virion, and the A-particle, suggesting that the epi-

topes on 2G8 are structurally conserved among the three

capsid forms (Zhu R et al. 2018).

The dynamic conformational changes occurring during

the flavivirus life cycle have also been investigated by cryo-

EM. Differing from the mature virus particles with smooth

Table 2 Summary of cryo-EM structures from flavivirus-antibody complexes.

Virus name Antigen Antibodya Fragment EMD codes Resolution (Å)

Dengue virus (DENV) DENV1 mature virion 14c10 Fab 5268 7

1F4 Fab 2442 6

DENV2 mature virion 747(4)B7 Fab 2818 10.24

1A1D-2 Fab 1418 24

2D22 Fab 2967/2968/2969/2996/2997/2998/
2999

6.5/20/21/6.9/13/11/
23

DENV2 immature
virion

2H2 Fab 5674/5675/5676/5677 21/25/21/21

E53 Fab 5102 23

DENV3 immature
virion

1H10 Fab 9649/9650/9651 12/25/25

DENV3 mature virion 5J7 Fab 5935 9

West Nile Virus (WNV) Immature virion E53 Fab 5103 15

Mature virion E16 Fab 1234 14.5

E16 scFv 5115 22.75

CR4354 Fab 5190 13.7

Tick-borne encephalitis virus
(TBEV)

Mature virion 19/1786 Fab 3754/3755 3.9/19.2

Zika virus (ZIKV) Mature virion ZIKV-
117

Fab 8548 6.2

ZKA190 Fab 6793/6794 22/22

Z23 Fab 9542 9.4

C10 Fab 9573/9574/9575 4.4/12/4

ZAb-
FLEP

Fab 7613 9.7

ZK2B10 Fab 9811/9812 20/11

ZIKV-
195

Fab 9131 4

Japanese encephalitis virus (JEV) Mature virion 2F2 Fab 6854 4.7

2H4 Fab 6855 4.6

aThe possible neutralization mechanisms for flavivirus antibodies discussed in the text are summarized below. 14c10: blocking receptor binding

(Teoh et al. 2012), 1F4: blocking virus attachment (Fibriansah et al. 2014), 1A1D-2: blocking virus attachment by binding to hidden epitopes

(Lok et al. 2008), 2D22: blocking capsid reorganization required for virus fusion (Fibriansah et al. 2015a), 2H2: inhibition of virus maturation

(Wang et al. 2013), E53: binding to partially immature heterogeneous virions (Cherrier et al. 2009), 1H10: enhancing immature virus attachment

to endosomal membrane (Wirawan et al. 2019), 5J7: blocking receptor binding and capsid stabilization (Fibriansah et al. 2015b), E16: blocking

capsid reorganization required for virus fusion (Kaufmann et al. 2006), ZIKV-117: capsid stabilization (Hasan et al. 2017), ZKA190: inhibition

of either cell attachment or membrane fusion (Wang J et al. 2017), C10: capsid stabilization (Zhang et al. 2016).
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Table 3 Summary of cryo-EM structures from glycoprotein–antibody complexes.

Genus Virus name Antigen Antibody Fragment EMD codes Resolution (Å)

Lentivirus Human

immunodeficiency

virus (HIV)

HIV-1 BaL

virion

A12 VHH (Tomo) 5544/5551

m36 VH (Tomo) 5552/5553/5554/5555

17b IgG (Tomo) 5456 22

VRC01 IgG (Tomo) 5457 24

VRC03 IgG (Tomo) 5458 23

VRC02 Fab (Tomo) 5459 23

VRC02 IgG (Tomo) 5460 25

VRC01/17b IgG (Tomo) 5461 28

b12 Fab (Tomo) 5018/5021 20/20

17b Fab (Tomo) 5020/5023 20/20

17b/A32 Fab 0466 13.08

BG505

SOSIP.664

17b/8ANC195 Fab 7516/(Tomo) 3096 3.54/23

3BNC117 Fab 8644 4.4

3BNC117/PGT145 Fab 8643 4.3

3BC315 Fab 3067 9.3

BG1/8ANC195 Fab 8693 6.2

PG9/8ANC195 Fab 8695 11.5

3417 Fab 7552/7553/7554/7555/7556/7557 4.7/4.7/4.7/4.7/

4.7/4.7

VRC34.01 Fab 8125 17

BF520.1 Fab 9166 4.8

PGT128 Fab 3121/3120 4.36/4.47

17b Fab 8730 8.6

PGV04 Fab 5779/5780/5781 5.8/7.9/8.2

PGT151 Fab 9062 4.5

BG505 DS-

SOSIP.664

vFP/VRC03/

PGT122

Fab 7622/7621/7459/7460 4/4/3.8/3.6

vFP Fab 8420/8421/8422 8.58/14.7/19.6

PGT145 Fab 8427 6.8

2G12/VRC03 Fab 8981 8.8

PGT122/VRC03/

FP antibodies

Fab 9189/20189/20191/9359/9320/

9319/8977

3.8/4.3/3.5/3.7/

4.2/4/3.18

462c

SOSIP.664

VRC01GL Fab 9294/9295/9303/9304 3.8/3.8/4.8/4.8

B41 SOSIP. 664 17b Fab 8713 3.7

PGV04 Fab 8716 7.4

b12 Fab 8717 3.6

21c/8ANC195 Fab 9038 4.06

PGT151 Fab 9030 6.7

ZM197 SOSIP.

664

VRC01 Fab 3059 9.32

PC64M18C043

FL Env

PGT151 Fab 7858 3.1

PGT151/PCT64-

35S

Fab 7859 6.8

PC64M18C043

SOSIP. 664

PGT151 Fab 7860 4.9

PC64M4C054

SOSIP. 664

PCT64-13C Fab 7863/7864/7089 5.1/30/13.2

PCT64-13F Fab 7862 30

PCT64-35S Fab 7865/7866 5.5/8.2

PC64M4C054

FL Env

PGT151/PCT64-

13C

Fab 7861 30

JR-FL EnvDCT PGT151 Fab 3308/3309 4.19/4.3

PGT151/10E8 Fab 3312 8.8

AMC011

SOSIP.v4.2

PGV04 Fab 8302 6.2

KNH1144

SOSIP. gp140

VRC03 Fab 2484 6

17b Fab (Tomo) 5462 8.8
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surfaces, immature virions appear as rough particles with 60

spikes comprising three E and three prM molecules (the pr

peptide on top of each trimeric spike) (Perera and Kuhn

2008). As the pr peptide is cleaved during virus maturation

and is absent in mature virions, anti-prM Fabs (e.g. 2H2 and

1H10) form complexes with immature DENV (Fig. 2K, 2N)

(Wang et al. 2013; Wirawan et al. 2019). Highly cross-

reactive E53, a fusion-loop-specific antibody, binds prefer-

entially to spikes on immature DENV and WNV particles

(Cherrier et al. 2009). Because these antibodies can trap

flaviviruses in immature states, the neutralizing mechanism

for them may depend on their capacity to block the normal

transition occurring during the maturation process.

Many cryo-EM studies have been performed to inves-

tigate antibody-virus particle interactions for different

functional states, including the following ones: (1) Inter-

mediate complexes during ‘breathing’ motion. Although

each cryo-EM reconstruction usually represents a static

snapshot of a specific conformation, structural plasticity in

immune complexes can also be visualized. Fab 1A1D-2

induces large conformation changes in the E protein and

binds to normally partially hidden epitopes (Lok et al.

2008). Cryo-EM studies have also revealed that Fab 1A1D-2

only binds to epitopes near the fivefold and threefold

vertices, suggesting that the extent of the breathing might

be not evenly distributed over the viral surface. (2) Size

variations in the viral shells at different temperatures. It

was found that when exposed to 37 �C, DENV virions

expand in size when compared with the structure at 4 �C
(Fibriansah et al. 2013). The unexpanded virions at 4 �C

are covered by 180 copies of the 2D22 Fab (Fig. 2I, 2L),

whereas only 120 Fab copies are present on some expanded

virions at 37 �C (Fig. 2J, 2M), as based on 2D and 3D

classification of extracted virus-antibody particles

(Fibriansah et al. 2015a). (3) Fusion intermediates. A low

pH-triggered rearrangement of the E protein is required for

virus–cell membrane fusion during entry of flaviviruses

into the cell. The E16 Fab trapped WNV in a prefusion

state when the virions were exposed to low pH (Kaufmann

et al. 2009). C10, a bNAb for DENV, can structurally lock

the E protein of ZIKV at acidic conditions (Rouvinski et al.

2015; Zhang et al. 2016).

Enveloped Viruses Without Icosahedral
Symmetry

Many severe human diseases are caused by structurally

polymorphic enveloped viruses (e.g., HIV-1, influenza and

Ebola viruses). Glycoprotein-specific antibody-inducing

epitopes on the viral surface have been studied directly using

cryo-ET. The open conformations of the HIV-1 Env spike

induced by Fab b12 or CD4/Fab 17b have been characterized

using cryo-ET analysis (Liu et al. 2008). The extent to which

the C179 antibody bound to the stem domain of hemagglu-

tinin (HA) on the influenza virus was also investigated by

cryo-ET, revealing that most of the HA trimers on virions

were accessible to this antibody (Harris et al. 2013).

High-resolution SPA of glycoprotein–antibody com-

plexes requires stabilized protein samples, a good example

Table 3 (continued)

Genus Virus name Antigen Antibody Fragment EMD codes Resolution (Å)

Lymphocryptovirus Epstein-Barr virus (EBV) glycoprotein AMMO1 Fab 7344/7345 4.8/10

Betacoronavirus Middle East respiratory syndrome-

related coronavirus (MERS-CoV)

S protein G4 Fab 8783/8784/8785/8786/8787/

8788/8789/8790/8791/8792/

8793

4/3.6/4.8/4.6/4.8/

4.7/5/4.5/4/4/

11.5

LCA60 Fab 0401/0402 3.5/3.6

Severe acute respiratory syndrome

coronavirus (SARS-CoV)

S protein S230 Fab 0403/0404 4.2/4.5

Alphainfluenzavirus Influenza virus Influenza virion 6F12 IgG (Tomo) 6610/6611 25/25

C179 IgG (Tomo) 5684/5685

7B2 IgG (Tomo) 6612 25

3F5 IgG (Tomo) 6613/6614 25/25

HA protein K1915 scFv 8561/8562/8563/8564 4.8/4.8/4.8/4.8

H7.5 Fab 9142/9143/9145 7.4/9.2/7.4

Ebolavirus Ebola virus (EBOV) glycoprotein 100/114 Fab 3310/3311 7.2/6.7

c2G4/c13C6 IgG/Fab 8240 4.3

c13C6/BDBV91 IgG/Fab 8241 5.5

c4G7/c13C6 IgG/Fab 8242 4.3

ADI-15878 Fab 8935/8936 4.14/4.29

VLPs c13C6 IgG (Tomo) 8226 25

c2G4 IgG (Tomo) 8227 25

c4G7 IgG (Tomo) 8228 25
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Fig. 2 Virus-antibody complexes from picornaviruses (T = pseudo 3)

and flaviviruses (T = 3). A The capsid shell on human rhinovirus 14

(PDB-4RHV) is formed by 60 copies of VP1 (gold), VP2 (blue), and

VP3 (magenta). B In an ASU, VP1, VP2 and VP3 are folded with a

similar ‘‘jelly-roll’’ topology. C The dengue virus capsid structure

(PDB-1K4R) is shown as a smooth herringbone lattice of 90 dimers

(‘E dimers’). The three E molecules in an ASU are colored gold, blue

and magenta. D E dimers in two ASUs. The E protein’s ectodomain

has three domains: DI (red), DII (yellow) and DIII (blue). E–H Cryo-

EM structures of Fab–picornaviruses complexes, where 60 copies of

Fab (blue) bind to the outermost surface of the virus (white) near the

5-, 2-, 3- and q3-fold vertices (5-fold: EMD-6757, 2-fold: EMD-6366,

3-fold: EMD-8762 and q3-fold: EMD-9604, respectively. See Table 1

for related information). An icosahedral ASU is outlined in each map.

I, L 180 copies of Fab 2D22 (blue) bind to DENV2 at 4 �C (EMD-

2967). J, M 120 copies of Fab 2D22 (blue) bind to DENV2 at 37 �C
(EMD-2968). K, N 180 copies of Fab 2H2 bind to immature DENV2

(EMD-5674). There are 60 characteristic spikes on the immature

virion. Each spike is a hetero-hexamer consisting of three prM

(magenta) and three E molecules (green). Virions are radially colored

as in the side bar with the number corresponding to the radius (in Å).

Note that the picornavirus and flavivirus particles are not drawn to

scale. The external diameters of picornaviruses and flaviviruses are

* 30 nm and * 50 nm, respectively.
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of which is the engineered HIV-1 Env trimer with SOSIP

mutations (Sanders et al. 2002). Mature HIV-1 possesses

trimers of gp41/gp120 homodimers as the surface spikes.

Although some spike epitopes are present on the gp120

monomer, it would be desirable to choose native-like tri-

mers for structural analysis because they are the major

target of the neutralizing antibodies elicited by natural

infection (Sanders and Moore 2017; Ward and Wilson

2017). SOSIP mutants contain an introduced disulfide

(SOS) bond between the gp120 and gp41 ectodomains, and

an introduced isoleucine to proline mutation in gp41 to

promote trimer formation. Engineered glycoprotein trimers

from other enveloped viruses (e.g., Middle East respiratory

syndrome coronavirus, MERS-CoV, and parainfluenza

virus types 1–4) were designed to present the antigenically

optimal prefusion conformation (Pallesen et al. 2017;

Stewart-Jones et al. 2018). Glycoproteins from Ebola virus

were modified by removing the mucin-like domain,

assembled as soluble trimers, and then studied in a com-

plex with the ADI-15878 Fab by SPA (Murin et al. 2018).

Except for the above-mentioned trimeric forms, glycopro-

tein complexes containing more than one viral glycoprotein

(e.g., gH/gL/gp42 from Epstein-Barr virus) have also been

used for cryo-EM antibody–antigen studies (Snijder et al.

2018).

Cryo-EM structures of glycoprotein–antibody com-

plexes are usually captured in intermediate states. Twenty

antibody classes targeting six epitopes on the prefusion

closed HIV-1 Env trimer have been characterized using

SPA (Table 3) and crystallographic studies (Chuang et al.

2019). ‘Breathing’ by HIV-1 B41 SOSIP.664 trimers was

found to expose the b12 epitope (Ozorowski et al. 2017),

and a similar motion by influenza HA protomers was also

revealed by SPA (Turner et al. 2019). S230 binding

induces fusogenic conformational rearrangements in the

SARS-CoV S glycoprotein, while the MERS-CoV S gly-

coprotein remains its prefusion conformation upon LCA60

binding (Yuan et al. 2017; Walls et al. 2019).

Virus-Like Particles (VLPs) as Antigen
Presentation Platforms

VLPs with features that are structurally and immunologi-

cally indistinguishable from live viruses are used as alter-

native models for cryo-EM studies, especially when the

viruses need to be manipulated in high-level biosafety

facilities. Chikungunya virus (CHIKV) is a mosquito-

transmitted human pathogen with T = 4 icosahedral sym-

metry. On its surface, three E2 molecules form the major

component of the viral spike and serve as the main target

for antibodies. Because handling live infectious CHIKV

requires biosafety level 3 facilities, cryo-EM studies are

performed with the safe CHIKV vaccine strain (CHIKV

181/25) (Fox et al. 2015) or CHIK VLPs (Akahata et al.

2010; Sun et al. 2013; Jin et al. 2015). The CHK-265 Fab

cross-links two E2 molecules from neighboring spikes (Fox

et al. 2015), while the footprints of C9 and IM-CKV063

Fabs on VLPs span the neighboring E2 subunits within one

viral spike (Jin et al. 2015). CHK-152 may cross-link the

flexible domain B to the domain A within an E2 molecule,

and thus inhibiting the exposure of the fusion loop on

domain II of E1 (Sun et al. 2013).

VLPs have also served as controllable scaffolds for

loading antigenic cargos (Charlton Hume and Lua 2017).

Currently, the most commonly used VLPs are rigid icosa-

hedral or helical particles, and flexible platforms are

beginning to be promising roles for antigen loading (Hu-

dalla et al. 2014; Rao et al. 2018). To protect against dif-

ferent human papillomavirus (HPV, pseudo T = 7

icosahedral) infections, chimeric VLPs containing the

epitopes from three HPV types have been generated and

studied by cryo-EM (Li et al. 2018). Recently, computa-

tionally designed nanoparticles have also been examined

by cryo-EM as a new platform for presenting the respira-

tory syncytial virus F glycoprotein trimer (Marcandalli

et al. 2019). Being able to add antigenic protein modules to

tailorable platforms is a tantalizing way of studying highly

virulent viruses like Crimean-Congo hemorrhagic fever,

Nipah, and Ebola viruses. It is also likely that the cryo-EM

characterization of VLPs and nanoparticles will accelerate

the development of new vaccine platforms.

Conclusions

Cryo-EM has evolved in recent years into a powerful

technique for elucidating the structural basis of virus-

antibody interactions. Compared with traditional X-ray

crystallography, cryo-EM offers the following advantages:

(1) it can investigate conformational epitopes with

sequentially discontinuous residues on icosahedral virions;

(2) it avoids tedious screening for diffractable crystals and

can be incorporated into a standardized process for rapid

and rational vaccine development; (3) it can help with

analyzing intrinsic heterogeneous samples, like highly

glycosylated viral glycoproteins; and (4) it can be exploited

for developing and characterizing high-quality vaccine

platforms. Finally, cryo-EM studies of antigen–antibody

complexes are beginning to clarify the mechanisms of epi-

tope–paratope recognition at atomic resolution, so we expect

that high-resolution cryo-EM structures will play more

important roles in future at guiding vaccine development.
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