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Prognostic modeling of predictive 
maintenance with survival analysis 
for mobile work equipment
Zhen Yang1,3, Juho Kanniainen1, Tomi Krogerus2 & Frank Emmert‑Streib3*

In recent years there is a data surge of industrial and business data. This posses opportunities 
and challenges at the same time because the wealth of information is usually buried in complex 
and frequently disconnected data sets. Predictive maintenance utilizes such data for developing 
prognostic and diagnostic models that allow the optimization of the life cycle of machine components. 
In this paper, we address the modeling of the prognostics of machine components from mobile work 
equipment. Specifically, we are estimating survival curves and hazard rates using parametric and 
non-parametric models to characterize time dependent failure probabilities of machine components. 
As a result, we find the presence of different types of censoring masking the presence of different 
populations that can cause severe problems for statistical estimators and the interpretations of 
results. Furthermore, we show that the obtained hazard functions for different machine components 
are complex and versatile and are best modeled via non-parametric estimators. However, notable 
exceptions for individual machine components can be found amenable for a Generalized-gamma and 
Weibull model.

Machine prognostics and diagnostics have received much attention in recent years1–3. Its ultimate goal is to derive 
preventive maintenance schedules for reducing machine downtime and maintenance costs and for improving 
spare part supply chains to optimize warehouse organization4–7. Hence, comprehensive machine prognostic 
and diagnostic systems are anticipated to provide enormous benefits for organizations operating service or 
production machinery.

One major challenge for machine prognostics is the modeling of the reliability of machine parts or its com-
ponents. For this purpose, machine failure data have been utilized for modeling the reliability of machine 
components in combination with reliability theory. Interestingly, reliability theory and survival analysis8 have 
essentially the same definitions but survival analysis has a longer history with many applications in the biomedical 
sciences9,10. For this reason survival analysis has been identified as having great potential of becoming a major 
tool for modeling machine reliability11. In this paper, we contribute an analysis investigating the parametric 
and non-parametric modeling of the reliability of machine parts by using a number of different methods from 
survival analysis.

Survival analysis was initially introduced for the analysis of life tables12. However, the meaning of an ’event’, 
upon which a survival analysis is based on, is not limited, e.g., to the death of biological organisms or humans 
but it is far more general and can also correspond to graduation of a student, crime or divorce13–15. Hence, the 
application of survival analysis is very flexible, and this is the reason for its widespread usage. Furthermore, this 
flexibility explains also the existence of multiple synonyms used instead of survival analysis by different fields, 
e.g., event history analysis, duration analysis or reliability analysis16. A major problem in studying survival data, 
also known as time-to-event data, is the presence of censoring17,18. In general, censoring refers to a form of miss-
ing data in which the time-to-event is for some reason not observed. Interestingly, in contrast to other types of 
missing data, e.g., due to sensor failure or the accidental deletion of information19, censoring is not due to any 
error or mistake. Instead, it represents an unavoidable characteristic of the phenomenon under investigation. For 
instance, in a clinical study patients may decide to participate no longer in a clinical trial and to drop out before 
the event of interest occurs. Similarly, the customer of a service plan for a production machine may decide to 
discontinue a service contract before the failure of a component. In order to deal appropriately with censoring, 
dedicated statistical analysis methodology has been developed20. Importantly, such methods require the careful 
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selection because the application of inappropriate methodology leads to systematic errors in an analysis and 
renders its interpretations as meaningless.

In the context of machine prognostics, so far only a limited number of studies have been conducted using 
survival analysis in the presence of censoring for investigating machine component failures21. For instance, 
from a Google Scholar we find only 568 publications in the context of predictive maintenance while for clinical 
applications over 1.5 million publications can be found. An early example is from22 where the authors proposed 
a three-parameter Weibull distribution to model the time to failure data from overhead line components subject 
to right-censoring. In23, the authors applied survival analysis technique for the modeling of the failure probability 
of replaced joint. In their paper, they discussed issues regarding employing survival analysis for drawing survival 
probability on highly censored-data which sometimes is the common issues for machine failure data. The paper 
by24 focuses on supporting and improving the preventive identifying and replacement on the water pipe using 
survival analysis technique, the author analyzed the hazard rate between groups and investigated the hazard 
ratio for different risk factors by non-parametric and semi-parametric methods. General reviews about different 
machine learning aspects of predictive maintenance and machine diagnosis can be found in25–27.

In addition to the above, there are also more distance studies using survival analysis. For instance, in28 a 
simulation study was presented comparing Kaplan Meier Estimator (KME), the Piecewise Exponential Estimator 
(PEXE) and the Maximum Likelihood Estimator (MLE) for estimating survivor functions. Yet a different type 
of study aims at combining survival analysis with machine learning approaches. For instance, in29, the authors 
discussed several machine learning related approaches in modeling the remaining useful life (RUL) of industrial 
robots. In their paper they used COX Proportional Hazard Model (CPHM) for modeling RUL, and they make 
comparisons between a CPHM, extremely randomized trees, K-nearest and convolutional neural network for 
the estimation of the RUL of robots. Also in30 survival analysis and machine learning were combined to form a 
probability-based support vector machine to predict remaining life of bearings components. Finally, we would 
like to mention that there are reviews of reliability modeling which include also some discussions about survival 
analysis, see, e.g.,11,21.

The main purpose of this paper is to study the modeling of the prognostics of machine components from 
mobile work equipment. Specifically, we are estimating survival functions and hazard functions using parametric 
and non-parametric models to characterize time dependent failure probabilities. As a result, we find the pres-
ence of different types of censoring that can cause severe problems for the statistical estimators. Furthermore, 
we show that the obtained hazard functions for different machine components are complex and versatile and 
are best modeled via non-parametric estimators. The methods and results of this paper can be used to develop 
an actual expert system for predictive maintenance with realistic hazard functions within various environments.

In contrast to other papers, our study makes the following contributions. First, while survival analysis has 
been used before in studies about predictive maintenance, usually, parametric models are used22,31,32. However, 
the assumptions that need to hold for parametric models to be applied are rarely checked. For this reason, we 
compare in this paper parametric and non-parametric models to reveal the influence of parametric assumptions. 
Second, survival analysis is an advanced statistical method that needs to be applied with care. In this respect, 
not only the method is of importance but also the quality of the data. Since time-to-event data are not directly 
measurable one needs to reconstruct these from the available information. In our case the distinction of the 
number of maintenance events is key for obtaining well-defined data allowing a sound analysis. Furthermore, also 
distinguishing between different types of censoring is important because otherwise the statistical methodology 
for estimators suffers. Third, the data we use in our study are real-word data from from cargo and load handling 
equipment. The data have been acquired from Cargotec and represents a unique and complex data set for which 
no reference exists so far in the literature. Hence, our analysis enters unchartered territory for this research 
domain. Forth, our analysis does not stop with the estimation of hazard rates but includes a categorization of the 
studied machine components. This allows to identify different classes of characteristic behavior which could be 
exploited for a downstream analysis, e.g., for a more efficient organization of supply chains.

We organize the paper as follows. In Section “Methods” we discussed the underlying methodology of our 
work, as well as a brief introduction to our data. In Section “Data pre-processing” we discuss our efforts on 
identifying and removing possible noises from our data, also how we form and format our input data. In Section 
“Survival curves for individual components” we employ non-parametric estimation to demonstrate the survival 
probability from 12 specially selected components from a specific type of mobile work equipment. In Section 
“Non-parametric and parametric estimation of hazard rates” we shows the hazard estimations for 12 selected 
components using the non-parametric method and 5 parametric methods. In Section “Assessing the parametric 
models of the hazard rates” the numerical goodness of fit metrics from 5 parametric models are listed. Section 
"Discussion" we compare the hazard curves from different parametric models on different parts graphically and 
numerically by accessing the goodness of fit using the presented metrics, after which we discuss the feasibility 
of applying parametric models, also we compare our work to some other similar works. In the Conclusion we 
summary main findings and the contributions of our work.

Methods
In this section, we present all methods and data we use for our analysis. Furthermore, we clarify the meaning 
of terminology.

Methods from survival analysis.  For conducting a survival analysis of machine components, we need to 
estimate a survival function and a hazard function33. Furthermore, for the hazard function, we discuss paramet-
ric and non-parametric estimators.
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Survival function.  Simply, a survival function describes the probability of a population surviving past a certain 
time. Formally, a survival function is indicated by S(t) which is defined by

where T > 0 is a random variable denoting the time of the failure of a component. According to the definition 
of a cumulative distribution function, a variable T smaller or equal to t can be written as

From this follows that

Since S(t) is a probability, there exists a probability density function f with

Hazard function.  In addition to the survival function, S, and its underlying density, f, there is a hazard function, 
h. Formally, the hazard function is defined as

The hazard function has the interpretation of an instant probability because �t goes to zero.
From this one can derive an important relation between the three entities S, f and h given by33

In contrast to survival function that measures the probability of surviving, the hazard function measures the 
instant probability that an individual will fail to survive in the time interval (t, t +�t) given that the individual 
has survived until time t. We would like to note that the hazard function is frequently called instant probability34 
because it assesses the hazard rate for �t approaching zero (see Eq 5).

In most cases, we are more interested in the hazard function than the survival function in a survival analysis 
because it provides information about the failure probability.

Sometimes it is useful to know the cumulative hazard of a population accumulated over time. For this one 
can either take the integration over the hazard if explicitly given or one can use the Nelson-Aalen estimator35,36 
to estimate it directly from the data. The Nelson-Aalen estimator has the form

The Nelson-Aalen estimator is a non-parametric estimator that directly estimates the cumulative hazard from 
the data. Here di is the number of events at time ti and ni is the number of individuals left at time ti.

Non‑parametric and parametric estimators.  In general, non-parametric methods do not require the 
data to follow any distributions as they provide a direct estimation from the data itself. Hence they have an 
advantage for data that do not correspond to any standard distributional form37. In the following, we discuss a 
commonly used non-parametric method for the survival function and the hazard function but also some para-
metric models for the hazard function.

Non‑parametric estimation of the survival function.  For estimating survival functions, we use the Kaplan-Meier 
estimator. The Kaplan-Meier estimator was proposed in 195838. It is an non-parametric estimator for measuring 
the fraction of living subjects after a certain amount of time regarding one or more specific events (treatment, 
failure). Its major advantage in analyzing survival data is its ability to account for censored data. Due to its 
simplicity and its ability of modeling incomplete observations, it is one of the best non-parametric methods to 
estimate the survival39 for data.

Formally, it is given by

Here ni is the number of subjects living at time step i, and di denotes the number of events that happened at time 
i. The inputs to the Kaplan-Meier estimator are the individuals’ event time in ascending orders, Kaplan-Meier 
estimator recalculates the survival probability whenever a new uncensored event occurs at next time step. Kaplan-
Meier survival curve is given as the probabilities of surviving regarding different time intervals, each interval is 
defined by the time between two successive uncensored events, consequently Kaplan-Meier curve is a step curve 
where the survival probability between two uncensored events remain unchanged though the censored events 

(1)S(t) = Pr(T > t),

(2)F(t) = Pr(T ≤ t).

(3)S(t) = 1− F(t).

(4)S(t) =

∫ ∞

t
f (u)du.

(5)h(t) = lim
�t→0

Pr(t ≤ T < t +�t|T ≥ t)
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can continue to happen inside each interval. The Kaplan-Meier survival curve starts from 1 when all subjects 
are alive and decreases to 0 when all subjects experience events.

Non‑parametric estimation of the hazard function.  Non-parametric estimation of hazard has been applied 
widely for survival analysis, as it makes no assumptions on the data and presents an intuitive understanding of 
the instant failure rate.

Non-parametric estimators for the hazard rate can be mainly divided into two categories: histogram-based 
estimator and kernel-based smoother estimator. While both of these estimators are capable of estimating the 
hazard from data, the kernel method results in less biased estimations40. For the past ten years, kernel based 
smooth estimators have been widely studied and applied41. Therefore, in our work, non-parametric hazard was 
estimated using the kernel-based smoother estimator.

Non-parametric hazard estimation often involves smoothing technique that is applied on the initial estimation 
of the hazard since the original hazard estimation is often with high variances, a proper smoothing technique 
provides a good trade off between the bias and the variance hence it can improve the statistical performance 
of the naive hazard estimation42. For a set of data that contains random censorship, the kernel non-parametric 
estimation of hazard often can be done by smoothing the increments of the Nelson-Aalen cumulative hazard 
estimator using a kernel function, the kernel smoothing hazard estimation has the basic form of

where h(t) is the kernel hazard estimation, HNA is the Nelson-Aalen cumulative hazard estimation, b is the band-
width which is a critical parameter for balancing the bias and variance by changing the degree of smoothness of 
the curve, usually, a bad choice of the bandwidth results in a under-fitting or over-fitting curve. 

∫ (

1

b

)

K
(

t−x

b

)

 is 
the kernel smoother and K is the kernel function. Many research works have shown that the choice of different 
kernels has a minor effect on the final estimation, therefore Epanechnikov kernel is often adopted in most of the 
studies41, and its kernel function can be written as:

In general, the kernel estimator can be seen as a convolution of the Nelson–Aalen estimator with a kernel 
function. Due to the nature of kernel functions, estimations near the boundaries are typically highly biased. 
Hence, corrections need to be applied. Details for the choose of the parameters for the kernel hazard of our work 
will be discussed in Section  "Discussion".

Parametric models for the hazard function.  Parametric models can be generalized to all types of survival mod-
els in which their distribution of the survival times are specified by a set of parameters θ . Parametric survival 
models can be divided into fully parametric and semi-parametric types. While the fully parametric models make 
strong assumption on the distribution of the survival time whereas semi-parametric models do not require such 
assumptions. In this paper we will apply and discuss fully parametric models.

The procedure for fitting a fully parametric survival models can described as follows: Firstly estimate the 
non-parametric hazard rate from the data, and make proper assumptions on the shape of the curve. Then com-
pare of the assumed shape with the hazard shapes from various parametric distributions and find a parametric 
distribution that fits best to the hazard shape43. Parametric models are widely used by many studies44 when the 
underlying distribution of data is known, they will allow a convenient representation of complex data structure45.

Parametric models are characterized by a set of parameter θ , the form of the probability density function, 
cumulative probability and survival function can be rewritten as f (t; θ) , F(t; θ) , S(t; θ) respectively. Some of 
the most commonly used parametric models for survival analysis are the Exponential, Weibull, Log-logistic, and 
Log-normal46 model. In addition to those four models we also include the Generalized-gamma model which has 
more varieties in its hazard shape. For our analysis, the parameters from the parametric models are estimated 
by maximizing the full log-likelihood with respect to the parameter θ.

Figure 1 shows the properties of those 5 parametric models including their behaviour on the shape of the 
hazard, their probability density, survival function, and hazard function. This gives a general overview of these 
parametric models and highlights also the types of behavior that can be accomplished with the corresponding 
hazard function.

Model selection of parametric models.  For the evaluation of the goodness-of-fit of parametric models, 
we use two different metrics, the Akaike information criterion (AIC) and log likelihood value (LLV).

The Akaike information criterion (AIC)47 is a general score used for evaluating the model fit. It is widely used 
to compare the goodness-of-fit between different models. Formally, it is defined as

where l is the log-likelihood of the fitted model, p is the number of total covariates in the model, and k is the 
number of parameters in the model. AIC is advantaged when comparing models with different numbers of 
parameters since in the formula it takes into account of the number of the parameters from the model as a penalty 
to the AIC score. In general, the smaller the AIC score the better is the model fit.

Log likelihood value (LLV) is simply the log transform of the likelihood from the maximum likelihood esti-
mation. The larger the LLV is the better the fitted model and the value of the LLV can range from −Inf to +Inf.
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(11)AIC = −2l + 2(p+ k),
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Time‑to‑event data.  For our analysis, we use time-to-event data from mobile work equipment. Specifi-
cally, we are collecting maintenance records from a specific type of mobile work equipment provided by Car-
gotec.

Censoring of data.  Censoring is a characteristic of real-life data referring to the inability to observe the occur-
rence of completed events for individuals. In a clinical context, this can happen due to the loss track of the patient 
or the loss of occurrence time of event, for examples, a patient can drop out in the middle of a study or the event 
of interest does not happen to the patients before the end of the study period, such individuals are so-called cen-
sored individuals in survival analysis. Censorship basically exists in every time-to-event dataset and censorship 
is the key concept that distinguishes survival data from other types of data17.

Left censoring, right censoring and interval censoring are three main types of censorship we can encounter 
in survival data. Let’s assume ts is the start time that an individual has been under the risk of the interested event, 

Figure 1.   Overview of five parametric models used for our analysis. The left-hand-side provides information 
about the functional form of the survival density f, survival function S and the hazard rate h and the right-hand-
side summarizes the resulting hazard-shape of the corresponding models.
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te as the occurrence time of the interested event, t0 as the starting time of the study, and t1 as the ending time of 
the study, an illustration of different censoring types can be seen in the Fig. 2.

As all the subjects entered the study scope at different time stamp, we will scale their entry times to be t0 for 
whose entry times are ≥ t0 . An individual has an uncensored event when te is observed during the study and 
ts = t0, te ≤ t1 . In Fig. 2, individual A is uncensored (meaning it has a complete observation). An individual 
was said to be right-censored observation when ts = t0 but te > t1 or te is unknown. In Fig. 2, individual B and 
C are typical types of right-censored data. Left-censoring refers to the cases that we observe te , te ≤ t1 but the 
patient has been in the risk of the interested event before enrolling into the study, specifically ts < t0 and ts is not 
known. In Fig. 2, individual D is left-censored data. Interval censoring arises when we can only observe ts or te 
up to a time interval, which can be seen from the individual E in Fig. 2, where ts is only observed to lie within 
the time interval c0 and c1 , or te is observed to happen in between time c2 and c3 , these two cases can be referred 
as left interval censoring and right interval censoring respectively, both left and right interval censoring could 
happen at the same time for an individual.

In this paper, we need to deal with left-, interval- and right-censored because our data can contain all of these 
types of censoring. However, for our analysis, we will only keep the right-censorship while we try to identify 
and remove as many left- and interval-censored data as possible. Details will be presented in Section “Data pre-
processing”. Also it is important that we need to specify the right-censoring types existing in the data, different 
types of right-censoring records sometimes could be the result of different risk factors hence have different 
underlying empirical distribution, therefore the type of right-censoring needs to be addressed during the analysis 
of survival data23. Therefore, the remaining right-censored data will be all of individual-B type from Fig. 2, as we 
assume that all the right-censored maintenance records are from the components that have been running from 
the installation date till now without any failures.

Data from cargo and load handling equipment.  The type of mobile work equipment we analysis in our paper 
contains thousands of components and it is usually used for the transportation of goods, therefore, the main 
workload of the mobile work equipment can be characterized by drive distance and fuel consumption and lifted 
weight. We have collected maintenance records on thousands of different components for this specific type of 
mobile work equipment from Cargotec. Each record corresponds to one replacement event for a specific com-
ponent from one machine. The 5 main columns from the maintenance records are:

•	 Machine ID unique identifier of each machine
•	 Maintained part for each maintenance event we replace the broken part with a new one.
•	 Start date the installation date of the machine if the part was maintained for the first time, else it should be 

the maintenance date from previous maintenance record
•	 Maintenance date date of current maintenance event.
•	 Maintenance period the period in days between the start date and maintenance date.

In order to utilize survival analysis, we assume that the installation date is the start date, and the mainte-
nance date the event date. Whenever a component fails, such a component is replaced. Furthermore, there can 
be multiple maintenance events for the same component from one machine. For the records of the maintained 
components, their start date corresponds to the date of the last maintenance and the end date corresponds to 
the date of the next maintenance, however, due to the fact that those records could potentially be left-censored, 
in our analysis the uncensored records will only contain records of first time maintenance. A detailed discussion 
of this is provided in Section “Data pre-processing”.

Figure 2.   Illustrations of different censoring types. Individual A is a complete record, individual B and C are 
right-censored, individual D is left-censored while individual E is both left- and right-interval censored.
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The maintenance records we use are from thousands of different parts and components from mobile work 
equipment. In order to perform an analysis for representative and important components we used expert knowl-
edge to reduce the number of components for which we provide an analysis. Specifically, we selected 12 inde-
pendent components that are not sub-parts of some complex components and are among the most frequently 
replaced parts.

Figure 3 summarizes all of our pre-processing steps. The raw records are grouped from different machines, 
then the procedure of pre-processing is applied to the records from the selected 12 components from each 
machine individually. During the pre-processing, if there are multiple maintenance events for a component, then 
the first maintenance event was kept and the others are removed. If one component from a certain machine has 
not been recorded for any maintenance events, then we will record this as one right-censored record.

Definitions of important entities.  The time-to-event data which we use for our analysis have a well-
defined meaning. In the following, we would like to highlight some terminology we use throughout the paper 
in order to clarify their meaning. In general, an event indicates a certain point in time. Usually, events are com-
monly used as a starting point. In our case such starting points refer to the initiation of a mobile work equip-
ment. It is clear that different mobile work equipments are initiated at different times. For this reason the infor-
mation provided by an event is relative to the time of initiation. Furthermore, due to the fact that components 
of a mobile work equipment can fail multiple times, we need to distinguish between different types of events. 
Specifically, the event of the first replacement of a component is called the 1st maintenance. Similarly, we call the 
second or nth event the 2nd maintenance or nth maintenance respectively. If we want to refer to all events after 
but including the nth maintenance we will call it nth+ maintenance. For instance, events with 2nd+ maintenance 
refer to all the events of the components that are replaced for the second time or more often.

Results
In this section, we present results of our analysis. First, we present details for the preprocessing of the data. This 
is important because dealing appropriately with different types of censoring events is key for a sound survival 
analysis. Second, we show results for survival curves and hazard rates estimated from parametric and non-
parametric models. Third, we present results for the goodness-of-fit of the parametric models.

Data pre‑processing.  In order to apply survival analysis, time-to-event data is needed with well-defined 
events. This includes the appropriate identification of censoring events. Inaccurate information thereof will lead 
to misleading analysis result and defect its meaning. For this reason, in the following sections, we will discuss 
details of pre-processing steps needed for preparing the raw data.

Left‑ and interval‑censored records.  A general problem when using time-to-event data is the type of censoring. 
Basically, there are three main censoring types: Right-censoring, left-censoring and interval-censoring. This 
is important to note because depending on the type of the censoring, statistical estimators need to be selected 
whereas the most developed and best tested estimators are for right-censoring data.

During examining the distribution of the maintenance periods of all the uncensored records, see Fig. 4a, we 
discovered that the histogram shape of the maintenance period is right-skewed with a clear peak at the begin-
ning. Furthermore, we noticed that there is no fade-in effect that can be observed at the start of the distribution, 
while there is a clear fade-out effect starting after about 400 days (see Fig. 4a). From this, we hypothesize that 
the distribution in Fig. 4a is a mixture of several groups (or populations) and these groups are related to the 
number of times a component has been maintained. Specifically, records of components that are under their 
2nd+ maintenance can be distorted or truncated due to various reasons, e.g., distributed recordings. Interestingly, 
most of the maintenance periods from this group appear to locate in much earlier days, which causes such an 
unnatural distribution for the histogram of maintenance periods for all records. Overall, this implies that this 
group represents left- and interval-censored records.

In order to demonstrate this effect, we show in Fig. 4b two distributions, one for components that are under 
their 1st maintenance and one for components that are under their 2nd+ maintenance. As one can see from 
Fig. 4b the components that are under their 2nd+ maintenance are prone to fail much earlier than those that 
are under their 1st maintenance.

To further investigate this, we subdivided the events for components of 2nd+ maintenance in Fig. 4b (blue 
histogram) into records for components of 2nd maintenance and components of 3rd+ maintenance. The distri-
bution of their maintenance period can be seen in Fig. 4c2–c3 (c2 corresponds to components of 2nd mainte-
nance and c3 corresponds to components of 3rd+ maintenance). For reasons of comparison, we added also the 
histogram for records for components of 1st maintenance. From Fig. 4c1–c3, we can see that components of 2nd 
maintenance and components of 3rd+ maintenance have similar distributions. From this, we can conclude that 
these two groups of records are left-censored caused by multiple replacements. Furthermore, it is interesting to 
note that the number of records for these events corresponding to 252 and 148 which is combined much smaller 
than the 987 events for the 1st maintenance. Hence, there is a strong imbalance among those events.

It is important to note that when maintenance is performed for a broken component, the root cause of the 
breakdown remains sometimes unknown and even after changing the broken component the root cause still 
exists and may continue to damage the machine and its components. Therefore the second breakdown of the 
same component is more likely to happen much earlier than the first maintenance because there is a systemic 
accumulation of a hazard. In this case the actual start date of the survival records of such components that are 
in their 2nd+ maintenance period should be the date when the potential problem emerges. However it is often 
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difficult to address the causes of a breakdown so it is impossible to estimate the actual start date of being at risk 
of those records.

Figure 3.   Data pre-processing diagram. This diagram shows how we obtained our survival data from the raw 
maintenance records.
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Another issue with the components with more than one maintenance events is that the logbook for their 
recording is heterogeneous and subject to different operators. Specifically, the operation start date will be influ-
enced by different operators after the machine was initiated by the manufacturer, which is potentially related 
to interval-censoring because the actual operation start date will somewhat deviate from the installation date. 
Hence, there is a heterogeneity in the documentation of the replacement dates leading to a varying quality of 
the records.

There is even a further issue which relates to the accumulation of hazard, mentioned above. For a conventional 
survival analysis, e.g., in a biomedical context, stratification is used for homogenizing groups of individuals. In 
our case, the multiple replacements of components and the underlying unknown cause of a failure would require 
such a stratification for obtaining component groups with similar properties corresponding to the same popula-
tion. However, due to a lack of detailed knowledge about the underlying case, which can of course be different 
for different mobile work equipment, such an analysis cannot be performed faithfully.

All of these issues are difficult to address in retrospective, for this reason we filter all left-censored records in 
order to avoid statistical robustness issues and incorrect interpretations. Formally, this means the pre-processed 
data contain only uncensored and right-censored events.

Distributions of replacement periods for all the records from 12 individually selected components.  After the pre-
processing steps, the final dataset contains in total 7,896 records consisting of uncensored and right-censored 
events. These events are collected from 658 unique machines thus each machine component category has 658 
events (each event corresponds to a component from an unique machine), an overview of the resulting data 

Figure 4.   Histograms of maintenance periods for different record types. A: Distribution for all (uncensored) 
records (1, 387 records). B: Subdivision of the distribution in A into two types of records. The components of the 
1st maintenance are shown in blue (987 records) and the components of the 2nd+ maintenance in green (400 
records.). C1–C3: A comparison between different replacement periods of records of 1st maintenance (C1), 2nd 
maintenance (C2) and 3rd+ maintenance (C3), corresponding to 987, 252, 148 records respectively.
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is shown in Fig. 5. Specifically, Fig. 5 shows histograms for replacement periods from all the remaining events 
for 12 machine components. The right-censored events are highlighted in blue and the uncensored events are 
shown in red. From the Fig. 5 one can see that the right-censored events cover a wider range than the uncensored 
events, while most of the uncensored events are locate in early days. From the differences of the histograms, 
especially for the uncensored data, one can speculate about differences of the resulting hazard rates. This will be 
quantified in the next sections.

Survival curves for individual components.  For our first analysis for mobile work equipment com-
ponents, we estimate survival curves. For this analysis, we used the Kaplan-Meier estimator, which is a non-
parametric estimation technique. The resulting survival curves can be seen in Fig. 6. As one can see from Fig. 6, 
there can be 3 distinctive groups of survival, Electrical unit, Control device B from the high risk group, Trans-
mission line C, Exhaust system B, Sensor A, and Transmission line A as the low risk group, and Exhaust system 
A, Transmission line B, Electrical motor, Control device A, Valve, and Sensor B are in the median risk group.

However, in some cases we do not have uniformly distributed failure events which cause rapid drops at the 
tail of the curve like Control device A, also for our data we have high percentage of censoring ranging from 74 
to 96% (see Fig. 5), both of these situations pose challenges for interpreting the survival probability estimated 
from Kaplan-Meier curve39. For our case, one can argue that Kaplan–Meier is inferior to other estimators such 
as maximum likelihood estimator or B-substitution estimator for which large sample sizes and high censoring 
percentage can be better dealt with48. However, despite of the facts that there are alternative estimators suitable 
for our case, one advantage for Kaplan-Meier estimator is that it does not require any prior knowledge of the 

Figure 5.   Histograms for replacement periods for all the events for 12 machine components. The right-
censored events are highlighted in blue and the uncensored events are shown in red.
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distribution of survival time from the data. Therefore, it can be applied in almost all the of cases where the distri-
butional shapes can be arbitrary, which makes the experiments much earlier when dealing with such industrial 
data of complex structure.

Non‑parametric and parametric estimation of hazard rates.  In the following, we estimate hazard 
rates for the 12 mobile work equipment components. We will use parametric and non-parametric models to 
see if the hazard function can be described by well-defined models or if the data deviate from such parametric 
assumptions.

For estimating the non-parametric hazard functions we use kernel estimates implemented in the Muhaz 
package for R environment. The Muhaz function utilizes smoothing kernel estimators in computing the hazard 
rates. There are several properties affecting the resulting non-parametric hazard curve, such as the choice of the 
kernel, the optimizing method of bandwidth, the boundary correction type, the maximum analysis time for the 
estimation. In our experiments, we select Epanechnikov kernel with local optimal bandwidth as the estimator, 
both left and right correlation types, and the analysis time to be from 0 until the time when there are at least 10 
individuals left at risks, all the parameters we choose are in align with the default parameters suggested by the 
coder of Muhaz49. For further information on how each parameter affects the resulting curve please see Section 
"Discussion".
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In contrast to the above non-parametric approach, using parametric models require strong assumptions about 
the shape of the hazard function. In the following, we study 5 different parametric models, namely, Weibull, 
Exponential, Log-logistic, Log-normal and Generalized-gamma. In the following, we compare both the para-
metric and non-parametric models by showing them in the same figure. This allows a graphical evaluation of 
the parametric models because the non-parametric estimations can be used as the ground truth to examine the 
fit of the parametric models42. The results of all estimations are shown in Figs. 7, 8, 9, 10, 11.

All the parametric models were fitted using flexsurv50 package in R environment. Flexsurv is a well wrapped 
function for fully-parametric modelling of survival data. It provides a collection of built-in distributions for the 
data and the fitting is done by maximizing the full log-likelihood.

In Fig. 7, we show results for the Weibull hazard rate. The red curves correspond to the non-parametric 
kernel-estimation of the hazard and the blue ones are for the parametric Weibul model (see formal definition 
in the Methods section). In Fig. 8, hazards with Exponential model are shown as the the blue curves while red 
curves correspond to the non-parametric kernel-estimation of the hazard (see formal definition of Exponential 
model in the Methods section). Figures 9 and 10 shows hazards with Log-logistic and Log-normal models, 
respectively. The red curves are the parametric hazards and the blue curves are non-parametric hazard. Figure 11 
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shows Generalized-gamma hazard function for 12 parts, the red curve is the Generalized-gamma hazard and 
blue curve is non-parametric kernel-estimation hazard. Table 1 shows the parameters estimated for each model 
regarding 12 parts.

Assessing the parametric models of the hazard rates.  In this subsection, we will access the goodness 
of fit of each fitted distribution by two metrics, log likelihood value (LLV), and the Akaike information criterion 
(AIC). The metrics are showed in the Table 2.

Discussion
Using parametric models has usually the advantage of resulting in smoother estimates of functions, in our case 
for hazard functions. The reason for this is that a parametric model is only capable of modeling a small number 
of different behaviors and, hence, averages over details in the data resulting in clean behavior of curves. Examples 
for such categories of behavior can be observed for the Weibull model, which allows an exponential decaying, 
an exponential increasing, a linear increase or a constant hazard. A more extreme example is the Exponential 
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model, which allows only an exponential decay of hazard functions. However, in the case of an increasing hazard 
function the Exponential model cannot provide sensible estimates thereof.

In order to study the suitability of parametric models for estimating hazard functions, we compare them 
with non-parametric estimates and goodness-of-fit scores. The latter allows a quantitative evaluation. A graphi-
cal comparison of the parametric models and the non-parametric models can be found in Fig. 7, 8, 9, 10, 11 
and the scores for the goodness-of-fit evaluations are given in Table 2. From a graphical comparison between 
parametric and non-parametric models for hazard functions, we found only a few cases providing a good quali-
tative correspondence. Specifically, for the Weibull and the Log-logistic model for Transmission line C and the 
Generalized-gamma model for Transmission line A. Furthermore, acceptable correspondence can be found for 
Log-logistic and Generalized-gamma model for Sensor A and for the Weibull model for Electrical unit. Interest-
ingly, the Exponential model is the worst because its constant behaviours for the hazard function provides the 
least flexibility which is not appropriate for any components studied in this paper. From the AIC and LLV values 
in Table 2 one can see that the Generalized-gamma model basically outscores every other parametric model for all 
components. Specifically, for the Transmission line C the AIC score for the Generalized-gamma model is almost 
half of other parametric models’, and for Sensor B the AIC score is 10% less than for the others’ AIC scores. This 

0.0e+00

5.0e−05

1.0e−04

1.5e−04

2.0e−04

2.5e−04

0 500 1000 1500 2000

H
az

ar
d

Transmission line A

0.0e+00

5.0e−05

1.0e−04

1.5e−04

2.0e−04

2.5e−04

0 500 1000 1500 2000

Electrical motor

0.0e+00

5.0e−05

1.0e−04

1.5e−04

2.0e−04

0 500 1000 1500 2000

Control device A

0e+00

2e−04

4e−04

6e−04

0 500 1000 1500 2000

H
az

ar
d

Electrical unit

0e+00

1e−04

2e−04

3e−04

0 500 1000 1500 2000

Transmission line B

0.0e+00

5.0e−05

1.0e−04

1.5e−04

0 500 1000 1500 2000

Sensor A

0e+00

2e−04

4e−04

6e−04

0 500 1000 1500 2000

H
az

ar
d

Valve

0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

0 500 1000 1500 2000

Exhaust system A

5e−05

1e−04

0 500 1000 1500 2000

Transmission line C

0.0e+00

2.5e−05

5.0e−05

7.5e−05

0 500 1000 1500 2000
Time

H
az

ar
d

Exhaust system B

0e+00

5e−04

1e−03

0 500 1000 1500
Time

Legend
Non−parametric
Log−logistic model

Control device B

0.0e+00

5.0e−05

1.0e−04

1.5e−04

2.0e−04

0 500 1000 1500 2000
Time

Sensor B

Figure 9.   Log-logistic model hazard. Blue curve indicates Log-logistic model hazard and red curve represents 
non-parametric kernel-estimator hazard.
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confirms the power of the Generalized-gamma model and its flexibility. All scores from the other parametric 
models, i.e., for Weibull, Log-normal, Log-logistic and Exponential model are pretty close to each other and the 
differences are almost within 1%. Overall, as one can see, the monotonic hazard behaviour is rather easy to be 
modeled by a parametric model, and a gamma-shape hazard can be captured by a Generalized-gamma model. 
However, most of the hazard rates with sophisticated, complex pattern can not be captured by any parametric 
model. Hence, in general, parametric models for the hazard are not capable of providing very precise estimates 
of the true underlying distribution. That means, except for the few case discussed above, the hazard functions 
of the components are best fitted using non-parametric models.

From the estimates of the non-parametric models, we can distinguish between a number of different main 
behavior-types of the hazard functions. These can be summarized as follows:

•	 Decaying
•	 Gamma-shaped
•	 Oscillating
•	 Increasing
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Figure 10.   Log-normal model hazard. Blue curve indicates Log-normal model hazard and red curve represents 
non-parametric kernel-estimator hazard.
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For the oscillating behavior, it is clear that none of the parametric models can fit this behavior because none of 
the parametric models is capable of exhibitting such a complex behavior. This means also that Transmission line 
B and Sensor A provide the most complex hazard functions.

For the Gamma-shaped behavior one can find parametric models for Transmission line A, as discussed above. 
However, the behavior of Sensor B and Control device A is more Bell-shaped (i.e. symmetric) and for this reason 
also this behavior is outside the capabilities of the parametric models.

For the remaining two behavior-types of the hazard function, namely, for decaying and increasing hazards, 
their behavior is more subtle. Specifically, while Valve, Electrical unit and Control device B are increasing one 
can observe two subcategories thereof. The first one starts from a plateau and increases steeply toward the end, 
while the second one shows a linear increase. Again, none of these behaviors is part of the repertoire of parametric 
models. Finally, also for the decaying behavior one observes two subcategories. The first shows a linear decaying 
(Electrical motor, Exhaust system A and Exhaust system B) while the second one is exponential.

Overall, from our discussion above follows that there are four main behavior-types of the hazard functions. 
However, in addition there are further subcategories that are crucial to recognize because some allow the usage 
of parametric models while others do not.
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Figure 11.   Generalized-gamma model hazard. Blue curve indicates Generalized-gamma model hazard and red 
curve represents non-parametric kernel-estimator hazard.
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Non-parametric hazard estimator is capable of producing any arbitrary hazard shapes thus complicated hazard 
behaviours can be captured and described from the non-parametric estimation and non-parametric hazard can 
be used as the ground truth to validate the parametric hazard estimation. However, kernel-smoothing based 
non-parametric estimations of hazard is unstable and sensitive to parameters such as the minimal and maximum 
analysis time, kernel types, bandwidth and correlation type, in addition, different components generally require 
different combinations of the parameters in order to get be best estimation, and this is the reason why for some 
cases we see that the parametric estimation does not match the ”ground truth” provided by the non-parametric 
estimation even though both of them were estimated from the same data. In our study, we fine-tuned the param-
eters and found that the choice of the kernel has only a minor influence on the smoothness of the estimated curve. 
For our data the Epanechnikov kernel seems to provide the most smooth estimation near the boundary area. 
The range of analysis scope has large effect on the estimation near the boundaries of the curve and even further 
influences the overall shape of the curve, one needs to be careful when choosing the time interval of the analysis 
scope since the lesser events left the more biased the estimation will be. The bandwidth influences the smoothness 
of the curve and choosing the optimal bandwidth is a trade-off between the variance and bias of the estimated 
curve. Different types of boundary correlations reshape the curve near the left or right boundaries. Applying 

Table 1.   Estimated parameters and their standard errors for all the parametric hazard estimations from 
Figs. 7, 8, 9, 10, 11. Equations of the parametric models and their corresponding parameters see Fig. 1.

Parameters

Weibull Log-normal Log-logistic Exponential Generalized-gamma

γ � γ � γ � � µ σ �

Transmission 
line A 1.275 ± 0.12 5069 ± 901 1.377 ± 0.12 8.487 ± 0.19 1.364 ± 0.13 4230 ±  717 0.0001281  ± 

0.000014 6.782± 0.22 1.698 ± 0.16 −4.445 ± 0.79

Electrical motor 0.945 ± 0.07 5870 ± 1006 1.881± 0.14 8.647 ± 0.19 1.018± 0.08 4577 ± 750 0.0001864 ± 
0.000017 7.983 ± 0.45 2.648± 0.25 −1.442±  0.65

Control device 
A 1.294± 0.10 3872 ± 497 1.410± 0.10 8.267± 0.14 1.380 ± 0.11 3277 ± 411 0.0001775  ± 

0.000017 7.943± 0.39 1.911 ± 0.27 −1.079 ± 0.81

Electrical unit 1.298± 0.08 2648 ± 222 1.337± 0.08 7.781 ± 0.10 1.429 ± 0.09 2143 ± 181 0.0002875 ± 
0.000022 7.854± 0.09 1.033± 0.23 0.524 ± 0.39

Transmission 
line B 1.215± 0.11 5101 ± 885 1.573± 0.13 8.644± 0.20 1.275 ± 0.12 4404± 744 0.0001398 ± 

0.000015 8.122 ± 0.55  2.362 ± 0.31 −1.569 ± 0.98

Sensor A 1.161± 0.11 5770± 1043 1.626 ± 0.14 8.749 ± 0.20 1.224± 0.11 4903 ± 857 0.0001332  ± 
0.000014 8.186± 0.48 2.444± 0.29 −1.605± 0.84

Valve 1.079± 0.09 5774 ± 1054 1.714± 0.14 8.713± 0.20 1.143 ± 0.10 4792 ± 845 0.0001516 ± 
0.000016 7.600 ± 0.57 2.567 ± 0.20 −2.368± 0.93

Exhaust system 
A 1.003± 0.18 26186± 15960 2.285 ± 0.39 10.95 ± 0.74 1.021 ± 0.18 24074 ± 14371 0.0000378 ± 

0.0000077 6.956± 1.43 4.171± 1.26 -9.684 ± 5.44

Transmission 
line C 0.647± 0.10 98342 ± 80848 3.339 ± 0.52 12.35 ± 0.95 0.660± 0.11 85146± 68260 0.0000505 ± 

0.0000090 8.606± 0.001 0.052± 0.002 46.26 ± 6.71

Exhaust system 
B 0.906 ± 0.12 17633 ± 7232 2.262 ± 0.28 10.17 ± 0.47 0.935 ± 0.12 15277 ± 6073 0.0000735 ± 

0.000010 6.805 ± 0.71 3.410 ± 0.53 −6.576 ± 1.97

Control device 
B 1.176 ± 0.07 2778 ± 256 1.390 ± 0.08 7.755 ± 0.10 1.311 ± 0.08 2151 ± 195 0.0003019 ± 

0.000023 7.350 ± 0.26 1.733 ± 0.13 −1.008 ± 0.49

Sensor B 2.247 ± 0.31 4405 ± 786 0.878 ± 0.11 8.484 ± 0.20 2.339 ± 0.32 4092 ± 712 0.0000482 ± 
0.0000086 6.445 ± 0.08 0.342 ± 0.22 −29.67 ± 19.7

Table 2.   Goodness-of-fit scores to evaluate the fit of parametric models. The studied scores are LLV (log 
likelihood value) and AIC (Akaike information criterion). Significance values are in bold.

Metrics

Weibull Log-normal Log-logistic Exponential Gen-gamma

LLV AIC LLV AIC LLV AIC LLV AIC LLV AIC

Transmission line A −734 1,473 −726 1,456 −732 1,469 −737 1,476  −710 1,427

Electrical motor −1,092 2,189 −1,086 2,177 −1,090 2,185 −1,092 2,187  −1,084 2,174

Control device A −988 1,980 −984 1,973 −987 1,979 -992 1,987 −983 1,973

Electrical unit −1,466 2,937 −1,467 2,938 −1,467 2,938 −1,473 2,949 −1,466 2,938

Transmission line B −797 1,599 −794 1,593 −797 1,599 −799 1,601 −793 1,592

Sensor A −812 1,629 −808 1,621 −811 1,627 −813 1,629 −806 1,619

Valve −871 1,746 −866 1,737 −870 1,744 −871 1,745 −863 1,732

Exhaust system A −268 540 −267 538 −268 540 −268 538 −264 534

Transmission line C −333 671 −331 666 −333 670 −337 677 −235 476

Exhaust system B −472 949 −469 943 −472 949 −473 948 −463 932

Control device B −1,508 3,021 −1,500 3,005 −1,506 3,016 −1,511 3,024 −1,498 3,003

Sensor B −327 658 −323 651 −326 657 −339 680 −314 634
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left or left-right boundary correlations gives most of the time a smoother estimation near the boundaries but 
sometimes the resulting curve has a completely opposite hazard behaviour compared to the curve without any 
boundary correlations. Hence, one needs to carefully examine the data in order to select the right approach. 
In conclusion, we found that our choice of parameters corresponds to the parameters suggested by the Muhaz 
package41 and their robustness is confirmed by the application in several other studies.

As discussed in Section “Data pre-processing”, our underlying raw data are subject to various types censor-
ing including left-, left-interval, and right censoring. Due to the complicity of the censoring types we could not 
utilized the left- and left-interval censored records, however, we found that after removing the left- and inter-
val- censored data the histogram of replacement period for uncensored and right-censored data still somewhat 
represent two different populations within each component in Fig. 5, which might imply that the estimations 
could be further improved.

One challenge we recognized is that the maintenance periods could use the cumulative working hour instead 
of taking the differences of initial day and the maintenance date. For our study, we assumed that all machines 
are operated according to similar schedules in order to calculate the maintenance date by taking the difference 
between the installation date and the maintenance date. However this may not always be the case when machines 
are from different operators and subject to different workloads and/or work conditions.

Furthermore, the records we collected were categorized for 12 different components, hence the categories 
of records do not consider some potential risk factors that are very much likely to affect the survival time on 
individuals differently within each category. Those factors might be different types of usage, different driver 
working styles, how heavily the machine was working before the breakdown of a certain part, or some exter-
nal environment conditions like weather, humidity and anything that might affect the condition of individual 
machines. A reflection of those unidentified factors may be visible in Fig. 7 to 11 causing the oscillating in the 
non-parametric estimation of hazards for the component Transmission line B and Sensor A. In order to identify 
more sub-groups within each component more detailed recording is needed.

In the introduction, we discussed publications utilizing survival analysis for studying predictive maintenance 
or related problems. However, those studies are different to our study with respect to the following points. First, 
some studies use only parametric models, e.g.,22. Second, the studies that use non-parametric models have a 
different focus. Specifically, in28 data for an Air Force system were simulated to test three different estimators 
of survival functions. That means neither real data have been used nor hazards were studied. While in24 non-
parametric estimates for Kaplan-Meier curves and hazard rates were used the resulting hazard functions show 
only a simple non-linear increasing that should be captured by a parametric Weibull model. Hence, no complex 
pattern of hazard rates were present nor were different types of censoring discussed. Third, most studies focus on 
making predictions on the remaining life, utilizing in addition to time-to-event data information about covari-
ates, e.g., sensor information. In contrast, we do not utilizes such covariates in our study but use only time-to-
event data for modeling failure probabilities. Forth, the pre-processing of the data, including the identification 
and cleaning of censoring-related issues is usually completely omitted in other papers. Instead, in our paper one 
of our main focus is on the pre-processing, which is also a key in getting accurate estimates from data and in 
preventing analysis errors. We hope that this important topic will be recognized by others because we think that 
the presence of different types of populations, giving rise to different types of censoring, is not unique to our 
study by a general problem but it has been overlooked so far.

Finally, we would like to note that in recent years, there is increasing interest in combining machine learn-
ing and survival analysis29,30. However, in our opinion and based on the results obtained in our study, we think 
that many of such studies are premature. Specifically, we demonstrated the importance of identifying different 
types of censoring and the validity of parametric of non-parametric models to obtaining an understanding of 
prognostic modeling of machine components for a particular data set underder investigation. Only after such a 
thorough analysis extensions can be addressed.

Conclusion
In this paper, we presented a survival analysis framework for prognostic maintenance employing parametric 
and non-parametric estimators for survival probabilities and hazard functions of machine components from 
mobile work equipment.

From an exploratory analysis of the raw data of maintenance records, we found that these records contain a 
mixture of left-, interval- and right-censoring events. This is further complicated by the imbalanced presence of 
these censoring types, a heterogeneous quality of recordings for multiple replacements and a diversification of 
the machine population. In order to improve the robustness of statistical estimators used for estimating survival 
curves and hazard rates and for simplifying the analysis and its interpretations, we filtered the data leaving only 
right-censored records. This standardizes the data and makes it amenable for well-developed survival analysis 
methodology.

For the analysis of the pre-processed data, we utilized Kaplan-Meier estimators for the survival probability of 
12 machine components. From this, we noticed various groups hinting at different survivability characteristics. 
This impression could be further quantified by estimating the corresponding hazard rates. Using 5 different 
parametric and non-parametric kernel estimation we found not only complex patterns, including decaying, 
oscillating and increasing behavior, but also subgroups thereof, e.g., with respect to a linear or exponential decay-
ing. Hence, the observed impression about the survival curves manifested in quantitatively distinct shape-types 
of hazard rates. Furthermore, we accessed the goodness-of-fit of the parametric models both graphically and 
quantitatively. From this, we found most machine components are best modeled using non-parametric estima-
tors, however, notable exceptions are Transmission line A and Transmission line C which can be described by a 
Generalized-gamma respectively Weibull model.
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Overall, our analysis revealed that the application of a survival analysis framework is involved requiring 
already an advanced data pre-processing to adequately identify different types of censoring records before the 
actual analysis. Also the observed shape of hazard rates is very rich and complex indicating considerable chal-
lenges for the operational management of predictive maintenance, e.g., for organizing efficient supply chains. 
Furthermore, the knowledge we gained from our survival analysis works could support our future application 
as we have seen from the publications where survival analysis results can be further incorporated into actual 
predictive maintenance applications.
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