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Abstract: Damage to mechanical components caused by wear is considered to be an important issue
for mechanical engineers. For the purpose of wear resistance, it is necessary to improve the material
properties of the mechanical elements. Furthermore, low friction plays an important role in saving
energy. Hence, it is important to establish a key technology for wear resistance and low friction
through appropriate materials science for related industries. In general, the tribological properties of
aluminum alloys are very different from those of steels. Hence, aluminum alloys should be specially
considered and clarified for their tribological properties before being applied industrially. This paper
therefore aims to further investigate the effects of the content of doping elements on the friction and
wear of the selected aluminum alloys. From the experimental results, it can be concluded that the
higher the Si content, the smaller the friction coefficient, and the milder the variation. The higher the
content of iron and copper, the more materials are removed, showing better machinability. Moreover,
three frictional models and wear mechanisms that describe the effects of the content of doping
elements on the friction and wear are proposed. The wear mechanisms change as the silicon content
increases, from the junction growth to the wedge and the ploughing particles. As a result, better
choices of aluminum alloys with regards to friction and wear can then be made. These results have
great practical importance.
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1. Introduction

With the rapid developments of traffic vehicles and key transmission components, the demand
for safe and lightweight new materials is growing, and with the global demand for energy saving and
carbon reduction, the industry urgently needs to develop lightweight, reliable and environmentally
friendly materials. Of the metal contained in the earth, aluminum is the second most abundant, behind
iron. Hence, aluminum and its chemical compositions are the materials with large development
potential [1–4]. In addition, due to its light weight, high strength, acceptable corrosion resistance and
good machinability, aluminum alloy is widely used in aerospace machinery [5], defense and people’s
livelihood industry. The early aluminum alloy material aimed at being lightweight, and did not
consider the enhancement of wear resistance, therefore, although aluminum alloy had high strength
and durability, its abrasion resistance was always significantly worse than that of steel [6]. In order to
apply aluminum alloy to advanced transport vehicles and key transmission parts, further improvement
of the wear properties of aluminum alloy materials is the main project of product development.

Since silicon is a very strong element, if its particles are added to the industrial material, the
abrasion resistance of the material can be greatly enhanced, and therefore its applicability is greatly
increased [7]. Sarkar and Prasad [8,9] found that the crystal structures of silicon will affect the wear
properties of aluminum alloys. If they are further mixed with an appropriate amount of Ni, Cu and
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Mg, their mechanical properties can then be improved. Over recent decades, these research topics
have been continuously investigated by national scholars [10–16].

Some researchers have found that certain elements may degrade wear properties such as Fe
or Mn. It is generally believed that this is because Fe and Mn react with silicon to produce some
special compounds, which reduce the effective volume of the silicon particles and reduce the wear
properties [17]. Wear behavior refers to the gradual removal of solid surface material by mechanical
actions; if the wear rate is lower, a longer experimental time is required to identify the difference [18].
Moreover, Alpas, Hu, and Zhang [19–21], Li and Tandon [22], and Subramanian [23] designed dry wear
tests for various aluminum alloys to speed up the experiments and obtain clearer results. Wang [24,25]
clarified the relations between the frictional temperature, wear, microstructures, normal loads and
sliding speeds of the steel 52100. The studies of Moghadam [26–28] revealed that the addition of
suitable elements to metals decreases both the friction coefficients and wear rate as well as increasing
the tensile strength. Moreover, the composites have good tribological properties under limited
lubricated conditions due to graphite particles acting as a solid lubricant on worn surfaces.

Based on the above documents, five aluminum alloys which are frequently used in industrial
circles are used in this study for friction and wear experiments, in order to analyze and compare the
effects of doping elements on the friction and wear of SUJ2 steel sliding against the aluminum alloys
under the selected experimental conditions.

2. Experimental Apparatus and Procedures

Figure 1 shows a schematic diagram of the ball/disk friction tester and the measurement system.
The friction coefficient is dynamically measured and exported by variations of electrical voltage
through the load cell. The electronic signals are captured by a data acquisition system, and these
data are processed and analyzed by a personal computer. Wear loss is measured and quantitatively
analyzed by a microbalance, and microscopic wear particles are qualitatively observed by the SEM.
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Figure 1. Schematic diagram of the ball/disk friction tester with the measuring system.

The SUJ2 steel ball is used as the Pin, and the five aluminum alloys are alternately used as the
Disk, in the order of 1050, 5052, 5083, 6061 and 7075 aluminum alloys. The contents of the five disks
are shown in Table 1. The size and geometry of the test specimens are shown in Figure 2. The sliding
distance is set to 100 m, the load is set to 30 N and 60 N, respectively, and the sliding speed is 200 mm/s
in this study. The response time of this measurement system is less than 1 ms and the accuracy is 0.1%
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of the full scale. The experiments were carried out under dry friction conditions. Room temperature
was maintained at 25 ± 2 ◦C, and relative humidity was maintained at 70 ± 5%.

Table 1. Determination of the content of the five disks (wt %).

Aluminum Alloys Si Fe Cu Mn Mg

1050 0.09 0.23 0.01 0.01 0.03
5052 0.09 0.26 0.02 0.05 2.50
5083 0.27 0.38 0.09 0.59 4.70
6061 0.58 0.62 0.26 0.06 1.07
7075 0.60 0.20 0.16 0.07 1.00
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Figure 2. Size and shape of the specimens.

3. Results and Discussion

3.1. Friction Coefficient

Three reproducibility experiments were conducted. The typical results are shown in Figures 3–7.
Figure 3 shows that the average friction coefficient of 1050 is 1.1. Generally, the friction coefficient
changes in the range of 1.0 to 1.2, the amplitude is large, and the friction frequency is high. Occasionally,
during the experimental process, the friction coefficient suddenly decreases to 0, which may indicate
the jitter between the interfaces resulting from the wear particles. The oxidation film has broken into
small particles between the contact interfaces, and consequently there are some variations between the
frictional interfaces. The vibration amplitude of the machine is larger during the experimental process.
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Figure 4 shows that the average friction coefficient of 5052 aluminum alloy is about 0.85. At the
beginning of the friction process, the friction coefficient increases from 0.15, and the maximum friction
coefficient appears at a sliding distance of 80 m. The large amplitude of the friction coefficient means
that the friction is very severe, and because of the sharp change in the friction coefficient, it matches
the large vibration amplitude of the machine during the experiment.
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Figure 4. Typical response of the friction coefficient of 5052 alloy at 30 N.

The average friction coefficient of 5083 is about 0.73 as shown in Figure 5. At the beginning of
the friction process, the friction coefficient increases from 0.9 to 1.2. The friction coefficient swings at
around 0.7 after the sliding distance of 5 m. Moreover, it shows a large amplitude and high friction
frequency which indicate that the oxidation film has broken into small particles between the contact
interfaces. As a result, the vibration amplitude of the machine is larger during the experimental process.
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The friction coefficient shown in Figure 6 is between that in Figures 4 and 5; it is representative of
a few exceptions in the series. It shows that the average friction coefficient of 6061 aluminum alloy is
about 0.9, the amplitude is large and the friction frequency is high. During the experimental process,
the friction coefficient value changes very drastically. This may indicate the jitter between the interfaces
resulting from the wear particles. Moreover, the temperature rises during the friction process [24,25],
and the material is therefore softened, resulting in adhesion; and the softened surface is ploughed,
generating a large and long slip tongue.
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The average friction coefficient of 7075 aluminum alloy is about 0.7 as shown in Figure 7.
At the beginning of the friction process, the friction coefficient increases from 0.5, and the maximum of
friction coefficient appears at a sliding distance of 38 m. This may indicate that the temperature rises
during the friction process, the material is therefore softened, resulting in adhesion, and low frequency
wear arises; and the softened surface is ploughed, generating a large and long slip tongue. As a result,
the response frequency of the friction coefficient is low. On the other hand, the friction coefficient
slightly increases with the sliding distance until the experiment ends.
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According to the above results of the friction coefficient and the data in Table 1, it is shown that as
the Si content gradually increases, the friction coefficient of the material with a higher percentage of
Si decreases.

3.2. Wear Loss

Three reproducibility experiments were conducted. The results of the average wear loss are
shown in Figure 8. As shown in Figure 8a of 30 N, the average wear loss of 1050 aluminum alloy
is 37 mg; 51 mg for 5052 aluminum alloy; 38 mg for 5083 aluminum alloy; 60 mg for 6061
aluminum alloy; and 38 mg for 7075 aluminum alloy. In Figure 8b of 60 N, the average wear loss of
1050 aluminum alloy is 44 mg, 78 mg for 5052 aluminum alloy; 57 mg for 5083 aluminum alloy;
153 mg for 6061 aluminum alloy; and 58 mg for 7075 aluminum alloy. Hence, the average wear losses
are proportional to the normal loads. This indicates that the wear modes are regular. Moreover,
the average wear loss of 6061 aluminum alloy is especially larger. Compared to the data in Table 1,
the higher the contents of iron and copper, the more materials are removed, representing better
machinability. Since the Fe/Fe and Cu/Fe pairs are compatible, this indicates that the wear losses for
the compatible doping elements are larger [18]. On the other hand, it is worth noting that the wear
loss of 5083 is quite small. This indicates that a higher content of Mn or Mg is harmless to the wear
loss. Namely, if the pairs are incompatible, the wear losses are smaller [18]. As aluminum alloys are
relatively soft and have a lower melting point, the wear particles produced in the friction process easily
deviate from the contact interfaces, and the high temperature due to frictional heat results in material
transfer. Therefore, optical microscopy of the wear track and SEM observation of the wear particle are
both required for observing the wear mechanisms.
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3.3. Optical Microscopy of the Wear Track

Figure 9 shows that the wear surface of the 1050 aluminum alloy presents rough wavy scratching
at different widths, meaning that the vibration is relatively violent for the SUJ2 ball sliding against
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this material, i.e., there is significant material transfer and deformation during the friction process.
As a result, many materials are extruded and adhere to areas outside the wear marks. This can be used
to demonstrate that while the material is soft, the wear loss is not the largest.
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The wear scratching of 5052 aluminum alloy is similar to the case of 1050 aluminum alloy, the
surfaces of which present rough and wavy scratching in different widths, the vibration is slightly
violent and there is some material transfer and deformation during the friction process. Thus, part of
the materials that are extruded adhere to areas outside the wear marks. Moreover, it is believed that
high temperatures result in material transfer and deformation during the friction process of 1050 and
5052 aluminum alloys, and the friction scratching presents many crash and melting patterns.
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For 5083 aluminum alloy, the friction marks are narrower but deeper than for 1050 or 5083
aluminum alloys. This means that the wear mechanism of 5083 aluminum alloy is quite different from
that of 1050 or 5083 aluminum alloys.

The wear surface of 6061 aluminum alloy is wide but with smooth friction tracks. Since the
7075 alloy sample has the highest hardness, it is to be expected that the scratched wear surface is the
smoothest and the friction tracks are the narrowest. Moreover, the scratched wear surfaces of 6061 and
7075 aluminum alloys look quite smooth. These results match the previous results of wear loss.

3.4. SEM Observation of Wear Particle

Figure 10 shows that the wear particles of 1050 and 5052 aluminum alloys are flake-like and
laminated; it can be reasonable explained by the fact that these materials are relatively soft and have
a lower melting point, thus resulting in deformation and material transfer due to high temperature
during the friction process. A large number of wear particles of large size can be found. The large wear
particles are caused by the junction growth during the adhesive wear. Therefore, in these experiments,
the friction coefficient is larger than the other cases due to the action of the junction growth [29].
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Most of the wear particles of 5083 aluminum alloy materials are similar to those of 1050 and
5052 aluminum alloy materials. Moreover, it is worth noting that some thick ridge-like particles are
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observed and the fracture mechanism of the wedge can be revealed. The wedge growth by plowing is
quite significant. It is believed that the thick ridge-like particles result from the adhesive transfer of the
wedge [30].

The 6061 and 7075 aluminum alloy materials produce strip-shaped wear particles. Several
examples of ploughed particles are shown. In these two cases, ploughing is comparatively significant
and large. It is believed that the ploughing wear particles are caused by grooving wear during the
wear test [31].

3.5. Frictional Models and Wear Mechanisms

By considering all of the above experimental results as well as the previous studies by the
authors [29–31], three frictional models and wear mechanisms that describe the effects of the content of
doping elements on the friction and wear of SUJ2 steel sliding against aluminum alloys are proposed.
It is observed from Figure 11a that the flake-like particles resulted from the higher adhesion at the
junction growth region for the low content of silicon (only 0.09%): 1050 and 5052 aluminum alloys.
Hence, more friction is caused. Figure 11b shows that medium adhesion is present at the interfaces
for the medium content of silicon (0.27%): 5083 aluminum alloy. The flake-like particles with some
wedge particles were developed from both the junction growth and the adhesive transfer of the wedge.
Figure 11c shows that the relatively large ploughing particles were caused by the grooving wear
mechanism for the high content of silicon (~0.6%): 6061 and 7075 aluminum alloys. Hence, less friction
is caused due to the lower adhesion. These results correspond to the previous friction coefficient
responses. Wear mechanisms change as the silicon content increases, from the junction growth to the
wedge particles, and even to the ploughing particles.
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4. Conclusions

From the variations of the friction coefficient with optical microscopy and SEM observations of
the wear, the following conclusions have been drawn:

1. The materials with a higher Si content percentage show lower friction. Generally, the friction
coefficient decreases with increases in the Si content, and the variation of the friction coefficient
is milder.

2. The 6061 aluminum alloy has severe ploughing and wear particles. The wear losses for the
compatible doping elements are larger. Therefore, the higher the contents of iron and copper, the
more materials are removed, representing better machinability.

3. Three frictional models and wear mechanisms that describe the effects of the content of doping
elements on the friction and wear of SUJ2 steel sliding against aluminum alloys are proposed.
The wear mechanisms change as the silicon content increases, from the junction growth to the
wedge and the ploughing particles.

4. Based on the above three models, better choices of aluminum alloys with regards to friction
and wear can be made. These results have great practical importance for the precision
machinery industry.
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