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Background: Accurate interpretation of coronary computed tomography angiography (CCTA) is a labor-
intensive and expertise-driven endeavor, as inexperienced readers may inadvertently overestimate stenosis 
severity. Recent artificial intelligence (AI) advances in medical imaging present compelling prospects for 
auxiliary diagnostic tools in CCTA. This study aimed to externally validate an AI-assisted analysis system 
capable of rapidly evaluating stenosis severity, exploring its potential integration into routine clinical workflows.
Methods: This multicenter study consisted of an internal and external cohort of patients who underwent 
CCTA scans between April 2017 and February 2023. CCTA scans were evaluated using Coronary Artery Disease 
Reporting and Data System (CAD-RADS) scores to determine stenosis severity, while ground-truth stents were 
manually annotated by expert readers. The InferRead CT Heart (version 1.6; Infervision Medical Technology 
Co., Ltd., Beijing, China), which incorporates AI-assisted coronary artery stenosis quantification and automatic 
stent segmentation, was employed for CCTA scan analysis. AI-based stenosis assessment performance was 
determined using sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), 
while the AI-based stent segmentation overlap was assessed using the Dice similarity coefficient (DSC).
Results: For ≥50% stenosis diagnoses, the AI system attained per-patient sensitivity, specificity, PPV, and 
NPV surpassing 90.0% for the internal dataset; for the external dataset, the per-patient values were 88.0% 
[95% confidence interval (CI): 81.0–94.4%], 94.5% (95% CI: 90.7–97.6%), 90.0% (95% CI: 83.3–95.6%), 
and 93.4% (95% CI: 89.2–96.8%), respectively. For ≥70% stenosis diagnoses, the per-patient values on the 
internal dataset were 94.2% (95% CI: 89.2–98.1%), 95.8% (95% CI: 94.1–97.4%), 80.8% (95% CI: 73.5–
87.7%), and 98.9% (95% CI: 97.9–99.6%), respectively; for the external dataset, the per-patient values were 
91.9% (95% CI: 82.6–100.0%), 97.3% (95% CI: 94.9–99.1%), 85.0% (95% CI: 72.5–94.6%), and 98.6% 
(95% CI: 96.8–100.0%), respectively. Regarding CAD-RADS categorization, the Cohen kappa was 0.75 and 
0.81 for the internal per-patient and per-vessel basis, respectively, and 0.72 and 0.76 for the external per-
patient and per-vessel basis, respectively. The DSC for stent segmentation was 0.96±0.06.
Conclusions: The AI-assisted analysis system for CCTA interpretation exhibited exceptional proficiency 
in stenosis quantification and stent segmentation, indicating that AI holds considerable potential in advancing 
CCTA postprocessing techniques.
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Introduction

The Global Burden of Diseases, Injuries, and Risk 
Factors Study of 2017 identifies cardiovascular disease as 
a major cause of mortality, accounting for approximately 
17.8 million annual deaths and ranking first among 
noncommunicable diseases, with neoplasms following at 
9.6 million deaths (1). Coronary computed tomography 
angiography (CCTA) has evolved as a potent noninvasive 
technique for the identification and exclusion of coronary 
artery disease (CAD) and has demonstrated its efficacy 
as a primary diagnostic instrument for coronary stenosis 
(2-5). The introduction of the Coronary Artery Disease 
Reporting and Data System (CAD-RADS) has streamlined 
CAD categorization, allowing for the identification of 
patients who may require further functional testing or 
invasive angiography (6). Furthermore, the CAD-RADS 
categorization provides a crucial prognostic function. 
Xie et al. reported that patients with high CAD-RADS 
scores exhibited significantly increased 5-year event rates 
compared to those with lower CAD-RADS scores (7). 
However, accurately assessing stenosis severity using CCTA 
demands substantial expertise and may involve labor-
intensive manual or semiautomated evaluations (8). A 
substantial 16% discordance in CAD-RADS categorization 
between on-site and expert readers was observed in a major 
clinical trial, with on-site readers overestimating severe 
stenosis (CAD-RADS ≥3) in over 40% of instances (9).

Advancements in artificial intelligence (AI) technology, 
particularly deep learning, have substantially improved 
medical image analysis (10). In recent years, AI has been 
employed to identify coronary stenosis using CCTA scans, 
aiding clinicians in enhancing diagnostic efficiency and 
precision in CAD (11-17). Notably, Choi et al. (14) were 
the first to perform external validation of an AI product 
approved by the USA Food and Drug Administration (FDA) 
for CCTA-supported analysis, marking a critical milestone 
in AI’s transition from research to clinical practice. Current 
AI methods typically include coronary stenosis detection, 
plaque quantification, and classification, with limited focus 

on coronary stents. As percutaneous coronary intervention 
(PCI) technology develops, postoperative stent follow-
up has become a vital aspect of CCTA (18). In addition to 
evaluating stent deformation and fracture, addressing in-
stent restenosis (ISR) is critical, as it significantly impacts 
CAD patient prognosis (19). Therefore, automated stent 
identification is essential for comprehensive AI-based 
CCTA analysis.

The aim of this study was to externally validate an AI-
assisted analysis system (InferRead CTA Coronary version 
1.0; Infervision Medical Technology Co., Ltd., Beijing, 
China) capable of rapidly evaluating stenosis severity and 
CAD-RADS categorization using CCTA. Additionally, the 
AI system features automated segmentation for coronary 
stents, and its performance in this regard was also evaluated. 
This study will help to improve our understanding of the 
currently available AI products and their use in clinical 
practice. We present this article in accordance with the 
STARD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-423/rc).

Methods

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013) and was approved by 
institutional board of The Affiliated Chuzhou Hospital 
of Anhui Medical University. Individual consent for this 
retrospective analysis was waived.

Study population

This retrospective, multicenter study included patients 
from 2 independent cohorts, internal and external. Patients 
included in the internal cohort hailed from the same 
center as those utilized for AI system’s deep learning model 
training, yet there was no overlap. Owing to commercial 
considerations, the internal cohort remains anonymous. 
The external cohort originated from the Affiliated Chuzhou 
Hospital of Anhui Medical University and contained data 
entirely independent from that employed in the AI system’s 
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development.
We initially included patients aged ≥18 years who 

had undergone CCTA scans (slice thickness ≤1 mm) 
between April 2017 and February 2023. Exclusion criteria 
encompassed CCTA contraindications (such as allergies 
to iodine contrast agent, unconsciousness, or renal 
impairment) and poor image quality. According to the 
exclusion criteria, the internal cohort excluded 27 patients 
due to poor image quality, and finally 887 patients were 
enrolled to form a random series; the external cohort 
excluded 21 patients due poor image quality, and finally 
256 patients were enrolled to form a random series  
(Figure 1). CCTA scans from the internal cohort were split 
into 2 subsets: Dataset-internal stenosis quantification (ISQ) 
comprised 652 patients and was used for evaluating stenosis 
quantification performance, and Dataset-internal stent 
segmentation (ISS) included the remaining 235 patients and 
was used for evaluating stent segmentation performance. 
Dataset-external stenosis quantification (ESQ) contained 
256 patients from the external cohort. Clinical information 
for the internal cohort was restricted to gender and age, 
while additional characteristics for the external cohort 
were reported if available and included hypertension, 

dyslipidemia, diabetes, smoking, alcohol, and coronary 
artery calcium score.

Image acquisition

CCTA scans were acquired using multidetector-row CT 
scanners from 4 vendors: GE HealthCare (n=251; Chicago, 
IL, USA), Philips Healthcare (n=172; Amsterdam, the 
Netherlands), Siemens Healthineers (n=620; Erlangen, 
Germany), and Toshiba (n=100; Tokyo, Japan). The names, 
types and parameters of the scanners included in each 
dataset are detailed in Table S1.

AI-assisted analysis and image analysis

In this study, we validated an AI-assisted analysis system 
(InferRead CTA Coronary version 1.0; Infervision Medical 
Technology Co., Ltd.) developed using deep learning for 
CCTA interpretation support. For each CCTA scan, the 
process begins with the binary segmentation of coronary 
arteries, followed by coronary segmental staining, 
plaque detection, and stent segmentation in 3 mutually 
independent substeps. The final step of the analysis 

Internal dataset

914 patients (age ≥18 years) who 

underwent CCTA 

between April 2017 and November 2021

Excluded due to

poor image quality

(n=27)

CCTA imaging data available

n=887

Dataset-ISQ

Patients were evaluated with CAD-RADS

for stenosis quantification

n=652

Dataset-ISS

Patients with stents were identified

for stent segmentation

n=235

Excluded due to

poor image quality

(n=21)

Dataset-ESQ

Patients were evaluated with CAD-RADS

for stenosis quantification

n=256

External dataset

277 patients (age ≥18 years) who  

underwent CCTA 

between November 2017 and February 2023

Figure 1 Data exclusion flowchart. This study incorporated 2 independent cohorts. The internal dataset refers to data originating from 
the same center as the training data used in the deep learning model within the AI system, without overlap. Conversely, the external 
dataset contains data entirely independent from that employed in the AI system’s development. CCTA, coronary computed tomography 
angiography; ISQ, internal stenosis quantification; ISS, internal stent segmentation; ESQ, external stenosis quantification; CAD-RADS, 
Coronary Artery Disease Reporting and Data System; AI, artificial intelligence.

https://cdn.amegroups.cn/static/public/QIMS-23-423-Supplementary.pdf
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involves the quantification of stenosis severity. Initially, 
the corresponding coronary segment is identified based 
on each plaque detection result, the relevant segment is 
then straightened using the centerline of the segment to 
obtain multiplanar reformatted (MPR) images, and the 
severity of stenosis is finally calculated based on the MPR. 
By combining the results of staining and stenosis severity 
calculation, the severity of stenosis for each coronary 
segment can be obtained.

Two imaging cardiologists (Xu W with 12 years’ 
experience and Wu C with 10 years ’  experience) 
incorporated clinical information, when available, to 
interpret CCTA scans. In cases of disagreement, a third, 
expert imaging cardiologist (Meng Q with 20 years’ 
experience) was consulted for the final determination. A 
visual assessment of each coronary segment, measuring at 
least 1.5 mm, was conducted, using the 18-segment Society 
of Cardiovascular Computed Tomography (SCCT) model 
of the coronary tree (20). Stenosis severity categorization 
was based on CAD-RADS, with grades evaluated on the 
following scale of stenosis percentage: 0, absence of stenosis; 
1, 1–24%; 2, 25–49%; 3, 50–69%; 4, 70–99%; and 5,  
100% (6). The performance analysis in our study focused on 
the 3 primary vessels: the right coronary artery (RCA), the 
left main artery with the left anterior descending artery (LM 
+ LAD), and left circumflex artery (LCX). CAD-RADS 
categories were determined on a per-vessel and per-patient 
basis, with the highest-grade of stenosis used to establish 
the category (14).

To evaluate the accuracy of stent segmentation, a 
manual annotation of the stent region was performed slice 
by slice on CCTA scans by a junior imaging cardiologist 
(Chang Y with 3 years’ experience) using research software 
(InferScholar; Infervision Medical Technology Co., Ltd.). 
The annotation results were further verified and refined by 
the expert imaging cardiologist (Meng Q) and used as the 
reference standard for stent segmentation.

Statistical analysis

Continuous variables are presented as the median with 
interquartile range (IQR), while categorical variables are 
presented as frequency and percentage.

To evaluate the performance of the AI-based stenosis 
quantification, assessments were conducted on Dataset-
ISQ and Dataset-ESQ for both the per-patient and per-
vessel levels. Two thresholds (≥50% and ≥70% of maximal 

diameter stenosis) were used to compute measures of 
sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV), along with their 
corresponding confidence intervals (CIs). Bootstrap analysis 
(1,000 iterations) was employed to estimate the 95% CIs. 
Additionally, the Cohen kappa coefficient was used to 
measure the agreement in CAD-RADS categories between 
the AI-assisted analysis system and the consensus evaluation 
of the imaging cardiologists.

The degree of overlap between the stent volumes 
automatically segmented by the AI-assisted analysis system 
and the stent reference standard was measured using the 
Dice similarity coefficient (DSC) (21). DSC calculation 
was performed exclusively for cases where stents were 
manually identified; that is, Dataset-ISS. Moreover, Bland-
Altman analysis with limits of agreement was conducted to 
assess the concordance between the automatic and manual 
segmentations of the stent.

A 2-tailed P value <0.05 was considered indicative 
of a statistically significant difference. All analyses were 
performed using Python v. 3.8.10 (Python Software 
Foundation, Delaware, USA) and the libraries numpy  
v. 1.22.4, scipy v. 1.6.3, sklearn v. 0.24.2, and pandas v. 1.2.4. 
Based on the sensitivity and specificity values reported by 
Choi et al. (14) and the sample size calculation formula, the 
minimum sample size was determined to be 204.

Results

Baseline characteristics and analysis time

Dataset-ISQ comprised 652 patients with a median age of 
60 years (IQR, 53–68 years), of whom 257 (39.4%) were 
female. Dataset-ISS included 235 patients with a median 
age of 63 years (IQR, 56–69 years), and 51 (21.7%) of whom 
were female. Table 1 presents the characteristics of the study 
population for Dataset-ESQ, which consisted of 256 patients 
with a median age of 60 years (IQR, 52–69 years), of whom 
91 (35.5%) were female, 110 (43.0%) had hypertension, 
29 (11.3%) had diabetes, 134 (52.3%) had dyslipidemia, 42 
(16.4%) were smokers, and 27 (10.5%) were alcohol drinkers.

The AI-assisted analysis system required a median 
time of 4.97 min (IQR, 4.60–5.42 min) to perform 
stenosis quantification and stent segmentation, whereas 
the standard-of-care workflow took radiologists 38.5 min 
(IQR, 21.7–70.1 min) to draft a report. An example of AI-
generated report is shown in Figure S1.

https://cdn.amegroups.cn/static/public/QIMS-23-423-Supplementary.pdf
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Diagnostic performance

Table 2 presents the diagnostic performance of the AI system 
on both internal and external datasets. In Dataset-ISQ, 
41.7% (272/652) of patients exhibited stenosis ≥50%, while 
15.8% (103/652) displayed stenosis ≥70%. The AI system’s 

sensitivity and specificity surpassed 90% for both the ≥50% 
and ≥70% stenosis conditions. For ≥50% stenosis, the AI 
system’s PPV and NPV were 90.6% (95% CI: 87.1–93.9%) 
and 94.1% (95% CI: 91.6–96.2%), respectively. For ≥70% 
stenosis, the NPV of the AI system was higher at 98.9% 
(95% CI: 97.9–99.6%), but the PPV was lower at 80.8% 
(95% CI: 73.5–87.7%).

Regarding the 3 main vessels, the highest proportion of 
≥50% stenosis occurred in LM + LAD (217/652, 33.3%), 
followed by the LCX (147/652, 22.5%) and the RCA 
(108/652, 16.7%), accounting for 24.1% (472/1,956) of 
the total number of vessels. The trend for ≥70% stenosis 
mirrored that of ≥50% stenosis (LM + LAD: 75/652, 11.5%; 
LCX: 54/652, 8.3%; RCA: 28/652, 4.3%), accounting for 
8.0% (157/1,956) of the total number of vessels. The AI 
system’s sensitivity for both stenosis severities was close to 
90%, at 89.2% (95% CI: 86.3–91.8%) for ≥50% stenosis 
and 89.8% (95% CI: 84.9–94.1%) for ≥70% stenosis.

In the external dataset Dataset-ESQ, stenosis ≥50% 
was observed in 83.2% (213/256) of patients and 47.7% 
(366/768) of vessels, while stenosis ≥70% was observed in 
35.9% (92/256) of patients and 17.7% (136/768) of vessels. 
At the per-patient level, the AI system’s sensitivity for 
detecting stenosis ≥50% was 88.0% (95% CI: 81.0–94.4%), 
and that for detecting stenosis ≥70% was 91.9% (95% CI: 
82.6–100.0%).

For the 3 main vessels, the highest proportion of ≥50% 
stenosis occurred in LM + LAD (76/256, 29.7%), followed 
by the LCX (31/256, 12.1%) and RCA (29/256, 11.3%). 
The AI system’s sensitivity for ≥50% stenosis vessels was 
89.0% (95% CI: 82.7–93.8%). The LM + LAD showed 
the highest proportion of ≥70% stenosis (26/256, 10.2%), 
followed by the RCA (15/256, 5.9%) and the LCX (12/256, 
4.7%). The AI system’s sensitivity for ≥70% stenosis vessels 
was 86.8% (95% CI: 76.8–95.3%).

CAD-RADS categorization

Figure 2 presents the contingency tables displaying the 
comparison between AI results and the consensus evaluation 
of the imaging cardiologists. Dataset-ISQ shows that 81.0% 
(528/652) of patients demonstrated categorical agreement 
in CAD-RADS, with 99.7% (650/652) showing agreement 
within 1 category (Figure 2A). The calculated Cohen 
kappa coefficient was 0.75, indicating a substantial level 
of agreement between the 2 methods. The most frequent 
disagreement occurred between AI CAD-RADS 3 and 
consensus CAD-RADS 2, which was observed in 26 patients 

Table 1 Dataset characteristics

Variable
External test dataset 

(Dataset-ESQ)

Number of cases, n 256

Age (years), median [IQR] 60 [52–69]

Gender, n (%)

Female 91 (35.5)

Male 165 (64.5)

Hypertension, n (%)

Yes 110 (43.0)

No 54 (21.1)

Unknown 92 (35.9)

Diabetes, n (%)

Yes 29 (11.3)

No 126 (49.2)

Unknown 101 (39.5)

Dyslipidemia, n (%)

Yes 134 (52.3)

No 27 (10.5)

Unknown 95 (37.1)

Smoker, n (%)

Yes 42 (16.4)

No 124 (48.4)

Unknown 90 (35.2)

Alcohol, n (%)

Yes 27 (10.5)

No 139 (54.3)

Unknown 90 (35.2)

Coronary artery calcium score,  
mean ± SD [range]

152±408 [0–3,945]

A portion of the patients originated from outpatient clinics, 
leading to the presence of incomplete clinical data. EQS, 
external stenosis quantification; IQR, interquartile range; SD, 
standard deviation.
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and accounted for 3.9% of the cases. On a per-vessel basis, 
85.8% (1,678/1,956) showed categorical agreement in 
CAD-RADS, with 99.0% (1,937/1,956) demonstrating 
agreement within 1 category (Figure 2B). The calculated 
Cohen kappa coefficient was 0.81, indicating substantial 
agreement between the 2 methods. The most frequent 
disagreement observed was between AI CAD-RADS 1 and 
consensus CAD-RADS 2, which was found in 53 vessels and 
accounted for 2.7% of the cases.

Regarding the external dataset Dataset-ESQ, the results 
showed that 80.1% (205/256) of patients demonstrated 
categorical agreement in CAD-RADS, with 99.2% 
(254/256) showing agreement within 1 category (Figure 2C). 
The calculated Cohen kappa coefficient was 0.72, indicating 
substantial agreement between the 2 methods. The most 
frequent disagreement occurred between AI CAD-RADS 
1 and consensus CAD-RADS 2, which was observed in 13 
patients and accounted for 5.1% of the cases. On a per-
vessel basis, 83.5% (641/768) demonstrated categorical 
agreement in CAD-RADS, with 96.2% (739/768) 
demonstrating agreement within 1 category (Figure 2D). 
The calculated Cohen kappa coefficient was 0.76, indicating 
a substantial level of agreement between the 2 methods. 
The most frequent disagreement observed was between AI 
CAD-RADS 1 and consensus CAD-RADS 0, which was 
found in 36 vessels and accounted for 4.7% of the cases. 
Example cases of Dataset-ISQ and Dataset-ESQ were are 
shown in Figure 3A,3B, respectively.

Stent segmentation

The AI-assisted analysis system exhibited noninferiority 

to manual annotation performed by a junior imaging 
cardiologist concerning stent segmentation performance, 
with a DSC of 0.96±0.06 compared that of 0.97±0.01 
for manual annotation (P=0.44). Figure 3C presents 
representative examples of stent segmentation completed 
by the AI-assisted analysis system. Bland-Altman analysis  
(Figure 4) revealed a mean difference in DSC between the AI-
assisted analysis system and the junior imaging cardiologist of 
−0.01 (95% CI limits of agreement −0.13 to 0.11).

Discussion

In this multicenter study, we conducted internal and 
external validation of an AI-assisted analysis system for 
stenosis quantification and stent segmentation, leveraging 
CCTA scans.

As a noninvasive examination technique, CCTA plays a 
vital role in detecting and evaluating CAD. However, the 
high resolution of CCTA and the complex nature of cardiac 
structures make stenosis evaluation based on CCTA scans 
a considerable challenge. Expert imaging cardiologists can 
attain a semiquantitative estimation of coronary stenosis 
using the CAD-RADS after meticulous examination 
over an extended period. However, this process requires 
significant expertise and is labor-intensive for manual or 
semiautomated assessments.

AI techniques are being increasingly recognized as 
valuable tools for improving CCTA postprocessing, as 
numerous studies have investigated the development of AI 
algorithms for CCTA analysis. Zreik et al. (15) combined 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), using 98 CCTA cases for training and 

Table 2 Diagnostic performance of AI on a per-patient and per-vessel basis

Dataset Stenosis Basis Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Internal 
(Dataset-ISQ)

≥50% Per-vessel (n=1,956) 89.2 (86.3, 91.8) 97.1 (96.2, 98.0) 90.7 (87.9, 93.5) 96.6 (95.6, 97.4)

Per-patient (n=652) 91.9 (88.3, 94.9) 93.2 (90.7, 95.7) 90.6 (87.1, 93.9) 94.1 (91.6, 96.2)

≥70% Per-vessel (n=1,956) 89.8 (84.9, 94.1) 98.4 (97.9, 98.9) 83.4 (77.6, 88.5) 99.1 (98.6, 99.5)

Per-patient (n=652) 94.2 (89.2, 98.1) 95.8 (94.1, 97.4) 80.8 (73.5, 87.7) 98.9 (97.9, 99.6)

External 
(Dataset-ESQ)

≥50% Per-vessel (n=768) 89.0 (82.7, 93.8) 97.3 (96.0, 98.6) 87.7 (81.4, 93.3) 97.6 (96.3, 98.7)

Per-patient (n=256) 88.0 (81.0, 94.4) 94.5 (90.7, 97.6) 90.0 (83.3, 95.6) 93.4 (89.2, 96.8)

≥70% Per-vessel (n=768) 86.8 (76.8, 95.3) 98.6 (97.6, 99.4) 82.1 (69.8, 92.3) 99.0 (98.3, 99.7)

Per-patient (n=256) 91.9 (82.6, 100.0) 97.3 (94.9, 99.1) 85.0 (72.5, 94.6) 98.6 (96.8, 100.0)

Values in parentheses are 95% confidence intervals. AI, artificial intelligence; PPV, positive predictive value; NPV, negative predictive value; 
ISQ, internal stenosis quantification; ESQ, external stenosis quantification.
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Figure 2 Contingency tables comparing AI-based CAD-RADS scores and the imaging cardiologists’ consensus. (A) Per-patient contingency 
tables in the internal dataset (Dataset-ISQ): the categorical agreement was 81.0% (528/652), while agreement within 1 category reached 
99.7% (650/652). The Cohen kappa coefficient was 0.75. (B) Per-vessel contingency tables in Dataset-ISQ: the categorical agreement was 
85.8% (1,678/1,956), while agreement within 1 category was 99.0% (1,937/1,956). The Cohen kappa coefficient was 0.81. (C) Per-patient 
contingency tables in Dataset-ESQ: the categorical agreement was 80.1% (205/256), while agreement within 1 category was 99.2% (254/256). 
The Cohen kappa coefficient was 0.72. (D) Per-vessel contingency tables in Dataset-ESQ: the categorical agreement was 83.5% (641/768), 
while agreement within 1 category was 96.2% (739/768). The Cohen kappa coefficient was 0.76. CAD-RADS, Coronary Artery Disease 
Reporting and Data System; AI, artificial intelligence; ISQ, internal stenosis quantification; ESQ, external stenosis quantification.

68 for testing and achieving an 85% accuracy in detecting 
significant stenosis (≥50%). Ma et al. (22) proposed a 
transformer-based approach (23) for identifying ≥50% 
stenosis in CCTA. In contrast to RNN’s unidirectional 
context, the transformer offers increased flexibility in global 
semantic dependencies, allowing for more effective use of 
coronary anatomical structure priors. Ma et al. reported a 
92% accuracy rate with a 76-patient dataset. Muscogiuri  

et al. (13) introduced a deep learning method for CAD-
RADS categorization, evaluating its performance on 288 
single-center CCTA cases using 5-fold cross-validation. The 
study achieved a 3-category (CAD-RADS 0 vs. CAD-RADS 
1–2 vs. CAD-RADS 3–5) accuracy of 60%, while that for 2 
binary categories of CAD-RADS 0 vs. CAD-RADS >0 and 
CAD-RADS 0–2 vs. CAD-RADS 3–5 was 86% and 71%, 
respectively. In a recent international multicenter study, Lin 
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et al. (24) developed a hierarchical convolutional long short-
term memory (ConvLSTM) network for rapid, automated 
plaque quantification of CCTA. This method exhibited 
strong agreement with expert readers and intravascular 

ultrasound, demonstrating prognostic value for future 
myocardial infarction.

Another crucial aspect in this field is the validation 
research of AI-assisted analysis products, which is essential 
for integrating AI into real-world clinical settings. Choi 
et al. (14) conducted the first confirmatory study of an 
FDA-approved AI product for CCTA. The AI-assisted 
approach to CCTA interpretation showed close agreement 
with expert readers in identifying coronary stenosis and 
CAD-RADS categories. Subsequently, the AI product’s 
performance was further validated using data from 303 
patients in a prospective, multicenter diagnostic derivation-
validation, controlled clinical trial. The study reported 
high diagnostic performance for severe stenoses at both the 
≥50% and ≥70% levels, along with a strong correlation with 
invasive quantitative coronary angiography (QCA) (25). Our 
findings suggest that the AI-based CCTA analysis method 
can offer rapid and accurate diagnoses of severe stenosis. At 
the per-patient level, our AI system demonstrated superior 
performance in detecting ≥50% stenosis and further 
improvement in identifying ≥70% stenosis. For per-vessel 
level stenosis diagnosis, the system exhibited high specificity 
and satisfactory sensitivity. In both the internal and external 
dataset, the AI’s diagnosis of CAD-RADS categorization 
yielded a Cohen’s kappa coefficient of at least 0.7 when 

Figure 3 Example cases of the AI-based CAD-RADS categorization and stent segmentation. (A) A 69-year-old female with an LAD stenosis 
severity of CAD-RADS 3: axial view (top left), curved multiplanar reformatted image (bottom left), multiplanar along the centerline (second 
from right), and straightened MPR (right). AI identified a 54% stenosis (orange arrowheads) in the middle vessel segment. (B) A 57-year-old 
female with an RCA stenosis severity of CAD-RADS 1: axial view (top left), curved multiplanar reformatted image (bottom left), multiplanar 
along the centerline (second from right), and straightened MPR (right). AI identified a 19% stenosis (orange arrowheads) in the proximal 
vessel segment. (C) A 79-year-old male with a stent in the distal RCA: axial view of CCTA (top left), reference standard for stent volume (top 
right), AI-based stent segmentation prediction on CCTA (bottom left), and AI-based prediction compared to the reference standard (bottom 
right). AI, artificial intelligence; CAD-RADS, Coronary Artery Disease Reporting and Data System; LAD, left anterior descending artery; 
RCA, right coronary artery; MPR, multiplanar reformatted; CCTA, coronary computed tomography angiography. 
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compared to the reference standard, and the agreement 
within 1 category was no lower than 95%. Notably, the 
average execution time for this AI system was under 5 min, 
while the standard-of-care workflow requires approximately 
40 min for radiologists to draft a report.

As PCI technology evolves and progresses, postoperative 
stent follow-up is becoming a key function of CCTA. 
Along with assessing stent deformation and fracture, it is 
crucial to address ISR, a significant factor affecting the 
prognosis of patients with CAD. Consequently, automated 
stent identification is essential for AI-based comprehensive 
CCTA analysis. Our AI-assisted system displayed notably 
excellent performance in automated coronary stent 
segmentation, achieving a DSC of up to 0.96, on par with 
that of the junior imaging cardiologists.

We examined cases in which the AI system’s stenosis 
severity assessment deviated from expert consensus on 
a per-vessel basis. First, we found that the AI system 
tended to overestimate the severity of CAD-RADS 
0 vessel stenosis, primarily due to its high sensitivity, 
resulting in misjudgment of poor or heterogeneous lumen 
opacification. Second, for vessels with stenosis, the most 
frequent discordant cases occurred between CAD-RADS 
1 and CAD-RADS 2, constituting 31.3% of disagreements 
in the internal dataset and 22.8% in the external dataset; 
this was followed by CAD-RADS 2 vs. CAD-RADS 
3, with 29.1% in the internal dataset and 16.5% in the 
external dataset. Given that CAD-RADS scores represent 
discretized continuous stenosis severity values, interclass 
distances are subtle and susceptible to noise in training set 
labels. These challenges affect algorithm development, 
primarily impacting performance within the CAD-RADS 
1–3 range. Finally, it is unsurprising that the AI system 
produced more cases of severe inconsistency in the external 
dataset. The agreement within 1 category was 99.0% for 
the internal dataset and 96.2% for the external dataset. 
The heterogeneity of imaging data represents the most 
significant limitation to the widespread application of AI 
systems in clinical practice, as it can profoundly degrade 
algorithm performance on unseen data.

This study has several limitations. First, the CAD-
RADS categorization in this study was established through 
consensus among imaging cardiologists rather than 
through invasive examinations, such as invasive coronary 
angiography (ICA). This might have resulted in ground 
truth errors and hindered accurate calculation of the 
AI-assisted analysis system’s performance concerning 
stenosis severity quantification. An important future work 

should involve collecting as much ICA data as possible to 
achieve a more accurate and comprehensive performance 
evaluation of the AI-assisted analysis systems. Second, the 
study primarily assessed the AI-assisted system’s ability to 
quantify stenosis severity without examining other CAD-
related indicators, such as plaque volume and type. Third, 
MPR is not sufficient for stenosis severity quantification. 
The AI-assisted analysis system used in this study solely 
employs MPR images for stenosis severity quantification 
in its deep learning model, which may result in suboptimal 
performance in certain instances. Our future work plans to 
take MPR images and cross-sectional images concurrently 
as input, integrating multiview information to improve the 
performance of the deep learning model. Fourth, we did 
not evaluate the performance of imaging cardiologists when 
supported by the AI system. Future research will investigate 
the role of AI-assisted analysis systems for imaging 
cardiologists with varying experience levels, focusing on 
both diagnostic performance and efficiency.

Conclusions

In summary, our multicenter study evaluated an AI-
assisted analysis system for stenosis quantification and 
stent segmentation using CCTA scans. The AI-based 
method demonstrated superior performance in stenosis 
quantification, CAD-RADS categorization, and stent 
segmentation, with an average execution time of under 
5 minutes. The system can potentially be integrated into 
routine workflows as a clinical decision support tool, 
assisting imaging cardiologists in enhancing the accuracy 
and efficiency of CCTA analysis.
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