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Abstract

Bovine respiratory disease (BRD), the leading disease complex in beef cattle production

systems, remains highly elusive regarding diagnostics and disease prediction. Previous

research has employed cellular and molecular techniques to describe hematological and

gene expression variation that coincides with BRD development. Here, we utilized weighted

gene co-expression network analysis (WGCNA) to leverage total gene expression patterns

from cattle at arrival and generate hematological and clinical trait associations to describe

mechanisms that may predict BRD development. Gene expression counts of previously

published RNA-Seq data from 23 cattle (2017; n = 11 Healthy, n = 12 BRD) were used to

construct gene co-expression modules and correlation patterns with complete blood count

(CBC) and clinical datasets. Modules were further evaluated for cross-populational preser-

vation of expression with RNA-Seq data from 24 cattle in an independent population (2019;

n = 12 Healthy, n = 12 BRD). Genes within well-preserved modules were subject to func-

tional enrichment analysis for significant Gene Ontology terms and pathways. Genes which

possessed high module membership and association with BRD development, regardless of

module preservation (“hub genes”), were utilized for protein-protein physical interaction net-

work and clustering analyses. Five well-preserved modules of co-expressed genes were

identified. One module (“steelblue”), involved in alpha-beta T-cell complexes and Th2-type

immunity, possessed significant correlation with increased erythrocytes, platelets, and BRD

development. One module (“purple”), involved in mitochondrial metabolism and rRNA matu-

ration, possessed significant correlation with increased eosinophils, fecal egg count per
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gram, and weight gain over time. Fifty-two interacting hub genes, stratified into 11 clusters,

may possess transient function involved in BRD development not previously described in lit-

erature. This study identifies co-expressed genes and coordinated mechanisms associated

with BRD, which necessitates further investigation in BRD-prediction research.

Introduction

Despite decades of research involved in discovering novel management tools, developing

interventional systems, and advancing antimicrobial therapeutics, bovine respiratory disease

(BRD) remains the leading cause of morbidity and mortality in beef cattle operations across

North America [1–3]. Due to its widespread prevalence, BRD is considered one of the most

economically devastating components of beef cattle production systems [2–4]. BRD is a poly-

microbial, multifactorial disease complex, incorporating infectious agents, host immunity, and

environmental elements as predisposing factors [5–7]. Previous research over the past several

decades has greatly detailed these factors and risks associated with BRD, yet there is minimal

evidence that overall rates of disease have improved [5, 8–10]. Furthermore, diagnostic evalua-

tion of BRD often relies on visual signs attributed to the disease complex, which are commonly

non-specific to airway and lung disease, and lack clinical sensitivity [11, 12]. Therefore, data

driven approaches which capture the biological intricacies associated with clinical BRD devel-

opment and provide candidate molecular targets capable of stratifying or predicting risk of dis-

ease and/or production loss would offer a more precise method of managing BRD.

Clinical BRD progression and severity often presents as an acute inflammatory disease [13].

However, molecular and cellular changes precede physiological changes in terms of disease

development. As such, identifying consistent molecular and/or cellular components that relate

to BRD development would allow for the development of rapid diagnostics capable of being

performed with cattle at the time of facility arrival. Such a tool could facilitate precision medi-

cine practices in stocker and feedlot operations and improve both speed and success of tar-

geted therapy. Accordingly, hematological samples are ideal, as they represent a relatively

noninvasive, cost effective, and readily obtainable source that reflects dynamic biological pro-

cesses throughout the body [14, 15].

Previous research has investigated cellular and molecular components that may indicate or

predict clinical BRD. Richeson and colleagues, utilizing complete blood count (CBC) variables

and castration status at facility arrival, identified significant associations with BRD in calves

with comparatively decreased numbers of eosinophils and increased numbers of erythrocytes

[16]. When evaluating the relationships between cytokine gene expression and CBC data in

cattle with concurrent BRD, Lindholm-Perry and colleagues discovered that cattle with BRD

possessed a comparative increase in numbers of neutrophils, decrease in numbers of basophils,

and increased expression of CCL16, CXCR1, and CCR1 [17]. Recent RNA sequencing studies,

performed by both our group and others, have identified mechanisms and candidate biomark-

ers in whole blood associated with BRD development [18–20]. However, these studies primar-

ily sought to identify differentially expressed genes (DEGs) between cattle that were or were

not treated for BRD based on clinical signs. Focus on identifying DEGs meant that much of

the data generated by these studies was neglected. Therefore, we aimed to leverage global gene

expression patterns across high-risk cattle, and incorporate available cellular-level hematologi-

cal data from the same cattle, to infer mechanisms associated with BRD development with a

more holistic approach.
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As gene expression operates in tandem with biological regulatory networks and complexes,

investigation of gene co-expression levels may reveal transcriptional coordination, distinguish

protein production relationships, and measure cellular composition and function relevant to

specific disease states such as BRD [21, 22]. This analysis approach falls into the field of systems

biology, where, in contrast to reductionist biology, molecular components are pieced and

scaled together to better understand disease and generate novel hypotheses [23, 24]. In this

respect, we sought to build networks of co-expressed genes, utilizing the full structure of previ-

ously published gene expression data [20], and discover relationships between gene expression

and cellular hematological components, which may elucidate and/or further confirm genes

and mechanisms related to BRD development or resistance.

Materials and methods

Animal enrollment

All animal use and procedures were approved by the Mississippi State University Animal Care

and Use Committee (IACUC protocol #17–120) and carried out in accordance with relevant

IACUC and agency guidelines and regulations. This study was carried out in accordance with

Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines (https://

arriveguidelines.org). This study was conducted in accompaniment with previous work

focused on differential gene expression analysis and candidate biomarker validation [20]; the

RNA-Seq data of these animals were previously deposited in the National Center for Biotech-

nology Information (NCBI) Gene Expression Omnibus (GEO) database under accession num-

ber GSE161396. Briefly, 24 samples (n = 12 BRD, n = 12 Healthy) from the 2017 study were

previously selected based on randomized stratification of vaccine and oral anthelminthic

administration upon facility arrival (d0), and 24 samples from the 2019 study randomly

selected with equal distribution of clinical BRD development within 28 days of arrival [20]. All

cattle within each population (year) were of proportional arrival weight (S1 Table) and age

(estimated 4–6 months). All animals enrolled in these two groups were commercial cattle, with

unknown genetic characteristics and background; this is a typical attribute of newly received

stocker cattle in commercial production systems. Of the 24 cattle from the 2017 population

having RNA-Seq data, one individual (ID: 162–2017_S24; GSM4906455) was not incorporated

into the network analysis due to missing CBC data. The following clinical data were recorded

for each animal: at-arrival fecal egg counts per gram via modified-Wisconsin procedure (FEC-

d0), body weight in pounds (WT) at arrival, Day 12, Day 26, and Day 82, average daily weight

gain at each time point (ADG), growth rate (slope of weight over days recorded; GR), at-arrival

castration status (Sex), at-arrival rectal temperature (Temp-d0), development of clinical BRD

within 28 days post-arrival (BRD), number of clinical BRD treatments (Treat_Freq), and tim-

ing to first BRD treatment (Risk_Days). Ages (not recorded) were estimated to be similar

upon facility arrival. Clinical data for these cattle are found in S1 Table.

Hematology analysis

Approximately 6 mL of whole blood was collected at arrival into K3-EDTA glass blood tubes

(BD Vacutainer; Franklin Lakes, NJ, USA) via jugular venipuncture. Blood samples were

stored at 4˚C and analyzed the same day of collection with the flow cytometry-based Advia

2120i hematology analyzer (Siemens Healthcare Diagnostics Inc., Tarrytown, NY, USA), test-

ing for the following parameters: white blood cells (WBC; K/μL), erythrocytes (RBC; M/μL),

hemoglobin (HGB; g/dL), hematocrit (HCT; %), mean corpuscular volume (MCV; fL), mean

corpuscular hemoglobin (MCH; pg), mean corpuscular hemoglobin concentration (MCHC;

g/dL), red blood cell distribution width (RDW; %), and platelets (PLT; K/μL). Blood smear
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staining was performed with a Hematek 3000 Slide Stainer (Siemens Healthcare Diagnostics

Inc., Tarrytown, NY, USA) via Wright-Giemsa stain reagents. Stained blood smears were eval-

uated for leukocyte distribution via a manual 300-count white blood cell differential by trained

clinical pathology technical staff at Mississippi State University College of Veterinary Medi-

cine. Neutrophil, eosinophil, basophil, monocyte, and lymphocyte percentages were recorded,

with accompanying neutrophil-to-lymphocyte ratios (NL Ratio). Hematology data for these

cattle are found in S2 Table.

RNA-Seq data processing and normalization

The gene-level raw count matrix generated from our previous research was utilized for this

study [20]. Briefly, RNA was isolated via Tempus Spin RNA Isolation Kits (Thermo Fisher Sci-

entific; Waltham, MA, USA), following manufacturer’s protocol. TruSeq RNA Library Kit v2

(Illumina; San Diego, CA, USA) was utilized for mRNA sequencing library preparation, fol-

lowing manufacturer’s protocol. Single-lane, high-throughput RNA sequencing was per-

formed with NovaSeq 6000 S4 reagent kit and flow cell (Illumina). Sequence read files were

quality assessed and trimmed with FastQC v0.11.9 [25] and Trimmomatic v0.39 [26], respec-

tively. Reference-guided (Bos taurus; ARS-UCD1.2) read mapping, indexing, and gene-level

assembly were performed with HISAT2 v2.2.1 [27, 28] and StringTie v2.1.2 [29, 30], respec-

tively. The python program prepDE.py [31] was utilized for gene-level count matrix

construction.

Raw gene counts were imported to R v4.0.4 and processed with the filterByExpr toolkit

[32], removing genes with a minimum total count of less than 200 and counts-per-million

(CPM) below 1.0 across a minimum of 12 libraries. Libraries were normalized with the

trimmed mean of M-values method (TMM) [33, 34] and converted into log2-counts per mil-

lion values (log2CPM). A total of 12,795 genes were identified after count processing and were

utilized for weighted network analysis.

Weighted gene co-expression network analysis (WGCNA)

Weighted network analysis was performed with the R package WGCNA v1.70.3 [35]. Clinical

and hematology trait data were compiled and aligned to each respective sample library. To

remove any outlier sample, canonical Euclidean distance-based network adjacency matrices

were estimated and used to identify outliers based on standardized connectivity. Estimated

adjacency matrices had network connectivity standardized with the provided equation, where

the z-score normalized network connectivity (Z.kμ) for each sample is calculated from mean-

center scaling of the raw network adjacencies (k) [36]:

Z:km ¼ scaleðkÞ
m
¼

km � meanðkÞ
p
varðkÞ

:

Samples with a standardized connectivity < -5.0 were considered outliers and to be

removed from further analysis; no samples were considered outliers in this study (S1 Fig). An

adjacency matrix was constructed from the calculated signed Pearson coefficients between all

genes across all samples. We utilized signed networks as they better capture gene expression

trends (up- and down-regulation) and classify co-expressed gene modules which improve the

ability to identify functional enrichment, when compared to unsigned networks [24, 35–37].

Soft thresholding was used to calculate the power parameter (β) required to exponentially raise

the adjacency matrix, to reach a scale-free topology fitting index (R2) of>80%; β = 8 was

selected for this study. The relationship between each unit β and R2 is seen in S2 Fig. Co-

expression modules were constructed with the automatic, one-step blockwiseModules
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function within the WGCNA R package, using the following parameters: power = 8, corType

= “pearson,” TOMType = “signed,” networkType = “signed,” maxBlockSize = 12795, minMo-

duleSize = 30, mergeCutHeight = 0.25, and pamRespectsDendro = FALSE; all other parame-

ters were set to default. Constructed co-expression modules were assigned a color by the

WGCNA R package, with any gene not assembling into a specific module placed in the “grey”

module. Module-trait associations were identified with Pearson correlation between module

eigengene (ME; first principal component of the co-expression matrix [38] and clinical and

hematology data). Modules were considered weakly or strongly correlated with each trait hav-

ing a p-value� 0.10 and |R|� 0.3 or p-value� 0.05 and |R|� 0.4, respectively. Color scaling

was performed with the Bioconductor package viridis v0.6.1 [39] to allow ease of visual inter-

pretation for individuals with color blindness.

Cross-population module preservation analysis

Based on our previous work, it can be inferred that host gene expression captured at facility

arrival is variable across BRD severity cohorts [20, 40, 41]. Therefore, we assessed whether the

at-arrival co-expression patterns and modules found in this study were well preserved across

an RNA-Seq data set from an independent population of cattle. We investigated cross-popula-

tional module preservation across the whole blood transcriptomes of cattle previously assessed

for differential gene expression (GSE161396; 2019 population (n = 24)) with the modulePre-

servation function found within the WGCNA R package. The gene-level raw count matrix

from previous analysis [20] was utilized and processed, filtered, and normalized in identical

procedures as the 2017 RNA-Seq data set (see RNA-Seq data processing and normalization

section); a total of 12,803 genes were identified in the 2019 data set after count processing and

normalization. Permutation testing (n = 200 permutations) was conducted to assess the signifi-

cance of module preservation across the 2017 and 2019 RNA-Seq data sets, utilizing the two

composite statistical measurements Zsummary and medianRank scores [36, 42]. Briefly, the

identified modules within the test network are randomly permuted n times, where, for each

permuted index, the mean and standard deviation is calculated for defining the corresponding

Z statistic [42, 43]. Through the combination of additional preservation statistics (average of

Zdensity and Zconnectivity), the calculated Zsummary statistic determines the level of mean

connectivity among all genes within a module (i.e., network density) across the two data sets

[24, 42]. Higher Zsummary values indicate a stronger level of module preservation between

data sets but is dependent on the number of genes within the module (i.e., module size) [42].

To further evaluate preservation in a module size-independent manner, medianRank scores

are calculated from the mean connectivity and density measurements observed from each

module and assigned a rank score [42]. Lower medianRank values indicate a stronger level of

module preservation between data sets. For this study, any module possessing Zsummary� 10

and medianRank� 5 was considered highly preserved.

Functional enrichment analysis of preserved modules

WebGestalt 2019 [44] (WEB-based Gene SeT AnaLysis Toolkit; accessed September 13, 2021)

was utilized for over-representation analysis to identify enriched Gene Ontology (GO) biologi-

cal processes, cellular components, molecular functions, and pathways from genes found in

each module considered well preserved. Pathway enrichment analysis was performed with the

pathway database Reactome [45]. Human (Homo sapiens) gene orthologs and functional data-

bases were utilized for GO term and pathway enrichment analyses. Over-representation analy-

sis parameters within WebGestalt 2019 included between 3 and 3000 genes per category,

Benjamini-Hochberg (BH) procedure for multiple hypothesis correction, adjusted p-value
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(FDR) cutoff of 0.05 for significance, and a total of 10 expected reduced sets of the weighted set

cover algorithm for redundancy reduction.

BRD-associated hub gene identification and network analyses

Hub genes are those genes found within a module (eigengenes) that possess high connectivity

which may exhibit a greater degree of biological significance in respect to significantly associ-

ated clinical traits, when compared to all other eigengenes [38, 46, 47]. Here, we sought to

identify hub genes found from modules which are significantly associated with any of the clini-

cal BRD categories (BRD, Treat_Freq, and Risk_Days). This was performed in the WGCNA R

package with two procedures. First, Pearson correlation between gene expression and module

eigengenes was calculated, resulting in the level of module membership (kME) for each gene.

Second, the Pearson correlation between individual gene expression level and clinical trait was

calculated, resulting in the level of gene significance (GS) for each gene. Any gene possessing

kME and GS values� 0.7 and� 0.3, respectively, were considered hub genes for clinical traits

[36]. All BRD-associated hub genes were used for network construction of known and pre-

dicted protein-protein interactions with the Search Tool for the Retrieval of Interacting Genes

(STRING) database v11.5 [48], utilizing bovine (Bos taurus) annotations. STRING analysis

was performed with the physical subnetwork setting, where edges only display protein interac-

tions that have evidence of binding to or forming a physical complex. Any interaction above a

combined score (confidence) of 0.200 was incorporated into the complete network prior to

network clustering; disconnected nodes were removed from the network. The Markov Cluster

(MCL) algorithm was utilized for network clustering due to its superior performance in com-

plex extraction without the need of additional parameter tuning [49]. Hub genes within the

interaction network were placed into distinct clusters based on MCL clustering of the distance

matrix acquired from the combined interaction scores, using a MCL inflation parameter of

1.4.

Statistical analysis

Clinical and hematology data (described in animal enrollment and hematology analysis) were

compared between cattle treated for naturally-acquired clinical BRD within the first 28 days

following facility arrival (BRD) and those never being diagnosed nor treated (Healthy). Resid-

ual normality was assessed in R v4.0.4 with the Shapiro-Wilk test [50], with an a priori level of

significance set at 0.10; neutrophil percentage (Neu%), eosinophil percentage (Eos%), basophil

percentage (Baso%), lymphocyte percentage (Lymph%), neutrophil-to-lymphocyte ratio (NL

ratio), FEC-d0, MCHC, RDW, and Sex were considered non-normally distributed. Differences

in normally distributed variables between BRD and Healthy cattle were assessed with the Stu-

dent’s t-test. Differences in non-normally distributed variables were assessed with the Welch’s

t-test; differences between the two groups with respect to Sex was assessed with Pearson’s chi-

square test with Yates’ continuity correction. Differences between BRD and Healthy cattle

were considered significant having a p-value� 0.05.

Results

Statistical analysis of clinical and hematological parameters

Descriptive statistics for the clinical and hematological data are provided in Table 1. Regarding

the hematological parameters, average values of Lymph%, RDW, and PLT were outside of the

internal reference intervals for both BRD and Healthy cattle. In this study, RBC was considered

significantly higher at arrival in BRD cattle compared to Healthy cattle; no other parameter
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was considered significantly different between the two groups. Regarding clinical data, BRD

cattle possessed significantly lower weight gain by end of study (ADG-d82; 2.273 lbs/day in

BRD and 2.946 lbs/day in Healthy) and lower calculated slopes of weight gain over time

(Growth Rate; 2.370 in BRD and 2.995 in Healthy); no other clinical parameter was considered

significantly different between the two groups. We did not include the at arrival weight (WT-

d0) as an analysis variable because there was no significant difference between the Healthy

(mean: 477.0, s.d.:24.8) and BRD (mean: 475.3, s.d.:26.9) cohorts.

Weighted gene co-expression network construction

The remaining filtered genes (n = 12,795) were used for WGCNA network and module con-

struction. The resulting network identified a total of 41 color-coded modules of co-expressed

genes, excluding the grey module which incorporates uncorrelated genes (n = 1,235) (Fig 1).

Across the 41 assigned modules, the turquoise module possessed the largest number of co-

expressed genes (n = 2,503) and the lightsteelblue1 module possessed the smallest number of

co-expressed genes (n = 38); the average size of each module was approximately 282 genes.

The complete list of genes and module assignment is found in S3 Table.

Automated block-wise module detection of interconnected genes were grouped into 41

unique color-coded modules, excluding the grey module (uncorrelated genes). The x-axis cor-

responds to the gene-module assignment and the y-axis (Height) depicts the calculated dis-

tance between co-expressed genes from hierarchical average linkage clustering.

Table 1. Statistical analysis of hematological and clinical traits between BRD and healthy groups.

Variable Internal Reference BRD mean (s.d.) Healthy mean (s.d.) p-value

Neu% 37.000–80.000 35.917 (5.547) 37.213 (9.748) 0.717

Eos% 0.000–12.000 3.944 (3.237) 2.635 (1.616) 0.251

Baso% 0.000–2.500 0.193 (0.213) 0.151 (0.218) 0.658

Mono% 0.000–12.000 8.862 (4.603) 8.363 (4.507) 0.805

Lymph% 10.000–50.000 51.083 (4.756) 51.635 (11.928) 0.893

NL Ratio N/A 0.711 (0.141) 0.859 (0.660) 0.504

WBC (K/μL) 4.000–12.000 7.430 (2.722) 7.320 (1.292) 0.913

RBC (M/μL) 5.000–9.990 9.605 (0.568) 9.032 (0.676) 0.047

HGB (g/dL) 7.700–15.000 13.075 (1.071) 12.491 (0.906) 0.194

HCT (%) 25.000–45.000 36.125 (3.269) 35.000 (2.534) 0.391

MCV (fL) 36.000–55.000 37.725 (3.843) 38.845 (2.851) 0.460

MCH (pg) 12.000–22.000 13.625 (1.112) 13.855 (0.806) 0.597

MCHC (g/dL) 32.000–40.000 36.225 (1.190) 35.691 (0.977) 0.272

RDW (%) 11.600–14.800 29.258 (2.362) 27.564 (3.023) 0.171

PLT (K/μL) 200.000–900.000 1413.083 (506.885) 1149.000 (401.516) 0.203

FEC-d0 N/A 761.250 (768.795) 618.364 (408.492) 0.597

ADG-d12 N/A 0.667 (1.604) 2.167 (1.838) 0.059

ADG-d26 N/A 1.917 (1.204) 2.710 (0.948) 0.110

ADG-d82 N/A 2.273 (0.599) 2.946 (0.432) 0.008

Growth Rate N/A 2.370 (0.554) 2.995 (0.435) 0.009

Temp-d0 (F˚) N/A 103.333 (0.712) 103.291 (0.667) 0.890

Sex N/A 10 bulls, 2 steers 10 bulls, 1 steer 1.000

Means, standard deviations (in parentheses), and statistical probability values of differences in hematological and clinical parameters between BRD (n = 12) and Healthy

(n = 11) cattle. Parameters were considered significantly different with p-values� 0.05.

https://doi.org/10.1371/journal.pone.0277033.t001
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Module-trait relationship with hematological and clinical datasets

Pearson correlation heatmaps were generated to assess the relationship between all modules

and hematological clinical datasets. Regarding hematological data, several significant relation-

ships of interest exist (Fig 2). The tan module possessed the highest number of significant cor-

relations with the hematological data (8), followed by turquoise, pink, lightgreen, and

lightcyan modules (7). With respect to RBC, considered significantly higher at arrival in BRD

cattle compared to Healthy cattle, six modules were strongly correlated: paleturquoise

(R = 0.44, p = 0.03), lightcyan (R = 0.51, p = 0.01), green (R = 0.41, p = 0.05), steelblue

(R = 0.50, p = 0.01), brown (R = -0.45, p = 0.03), turquoise (R = 0.49, p = 0.02). Additionally,

seven modules were considered weakly correlated with RBC: magenta (R = 0.32, p = 0.10),

darkgreen (R = 0.36, p = 0.09), lightsteelblue1 (R = -0.36, p = 0.09), blue (R = 0.36, p = 0.10),

saddlebrown (R = 0.36, p = 0.09), orangered4 (R = -0.33, p = 0.10), tan (R = -0.36, p = 0.09).

Regarding modules correlating with RBC, three modules possessed significant associations

with multiple related red cell indices (HGB, HCT, MCV, MCH, MCHC, and RDW): saddle-

brown, steelblue, and lightcyan. Saddlebrown was strongly associated with MCV (R = -0.63,

p = 0.001) and MCH (R = -0.62, p = 0.001), and weakly associated with HCT (R = -0.31,

p = 0.10) and MCHC (R = 0.36, p = 0.10). Steelblue was strongly associated with RDW

(R = 0.70, p = 2e-04) and weakly associated with HGB (R = 0.35, p = 0.10) and MCHC

(R = 0.40, p = 0.06). Lightcyan was strongly associated with HGB (R = 0.47, p = 0.02) and

RDW (R = 0.51, p = 0.01) and weakly associated with HCT (R = 0.38, p = 0.08).

Pearson correlations between each of the unique color-coordinated modules and hemato-

logical traits are visualized and represented as a heatmap. Each row represents a distinct co-

expression module, and each column represents hematological traits as follows: white blood

cells (WBC; K/μL), erythrocytes (RBC; M/μL), hemoglobin (HGB; g/dL), hematocrit (HCT;

Fig 1. Cluster dendrogram of 12,795 genes generated through dissimilarity metrics (1-TOM) and hierarchical clustering.

https://doi.org/10.1371/journal.pone.0277033.g001
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%), mean corpuscular volume (MCV; fL), mean corpuscular hemoglobin (MCH; pg), mean cor-

puscular hemoglobin concentration (MCHC; g/dL), red blood cell distribution width (RDW;

%), and platelets (PLT; K/μL). Cells are represented by how positive (yellow/white) or negative

(purple/black) the correlation is between module and hematological trait, respectively.

The relationships between modules and clinical data are found in Fig 3. With respect to all

clinical disease associations (BRD, Treat_Freq, and Risk_Days), five modules possessed signifi-

cant correlations: steelblue, mediumpurple3, royalblue, orange, and violet. Steelblue was

strongly associated with BRD (R = 0.41, p = 0.05) and Risk_Days (R = -0.41, p = 0.05).

Fig 2. Module-trait relationships between co-expression modules and hematological traits.

https://doi.org/10.1371/journal.pone.0277033.g002
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Mediumpurple3 was weakly associated with Treat_Freq (R = -0.40, p = 0.06). Royalblue was

weakly associated with Treat_Freq (R = -0.40, p = 0.06). Orange was weakly associated with

BRD (R = -0.39, p = 0.07), Treat_Freq (R = -0.34, p = 0.10), and Risk_Days (R = 0.38, p = 0.07).

Violet was weakly associated with Treat_Freq (R = -0.38, p = 0.07). Regarding production traits

(ADG-d12, ADG-d26, ADG-d82, and GR), ten modules possessed significant correlations:

darkgreen, skyblue, darkturquoise, darkmagenta, purple, yellowgreen, orange, orangered4,

darkred, and lightyellow. However, to mitigate unexplained variation which may confound

differences in ADG-d12 and ADG-d26, coupled with the lack of significance between disease

cohorts, eight modules correlating with ADG-d82 and GR were prioritized. Darkred was

Fig 3. Module-trait relationships between co-expression modules and clinical traits.

https://doi.org/10.1371/journal.pone.0277033.g003
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strongly associated with ADG-d82 (R = 0.50, p = 0.02) and GR (R = 0.50, p = 0.02). Orangered4

was strongly associated with ADG-d82 (R = 0.41, p = 0.05) and weakly associated with GR

(R = 0.38, p = 0.07). Orange was strongly associated with ADG-d82 (R = 0.43, p = 0.04) and

GR (R = 0,41, p = 0.05). Yellowgreen was strongly associated with ADG-d82 (R = 0.41,

p = 0.05) and GR (R = 0.42, p = 0.05). Purple was weakly associated with GR (R = 0.32,

p = 0.10). Darkmagenta was weakly associated with ADG-d82 (R = -0.34, p = 0.10). Skyblue

was weakly associated with GR (R = -0.36, p = 0.10). Darkgreen was weakly associated with

ADG-d82 (R = -0.32, p = 0.10). Notably, orange was the only module which possessed signifi-

cant correlations with both disease-associated and weight gain traits. However, orange did not

possess any significant correlations with hematological traits.

Pearson correlations between each of the unique color-coordinated modules and clinical

traits are visualized and represented as a heatmap. Each row represents a distinct co-expression

module, and each column represents clinical traits as follows: at-arrival fecal egg counts per

gram via modified-Wisconsin procedure (FEC-d0), body weight in pounds (WT) at arrival,

Day 12, Day 26, and Day 82, calculated average daily weight gain at each time point (ADG),

growth rate (slope of weight over days recorded; GR), at-arrival castration status (Sex), at-

arrival rectal temperature (Temp-d0), development of clinical BRD within 28 days post-arrival

(BRD), number of clinical BRD treatments (Treat_Freq), and timing to first BRD treatment

(Risk_Days). Cells are represented by how positive (yellow/white) or negative (purple/black)

the correlation is between module and clinical trait, respectively.

Cross-populational network preservation analysis

Module preservation analysis identified five modules considered well preserved across the

2017 and 2019 populations: black (size = 432; Zsummary = 39.772; medianRank = 4), purple

(size = 296; Zsummary = 34.773; medianRank = 2), lightgreen (size = 123; Zsummary = 23.291;

medianRank = 1), tan (size = 222; Zsummary = 17.559; medianRank = 5), and steelblue

(size = 59; Zsummary = 11.555; medianRank = 3) (Fig 4). Notably, steelblue was the only well-

preserved module which possessed significant association with BRD-related clinical traits.

The medianRank and Zsummary values across all modules are depicted through the scat-

terplot x- and y-axes, respectively. Zsummary values� 10.0 and medianRank values� 5.0,

indicated by dashed lines, denote that a module identified with the 2017 gene expression data

is well preserved across the 2019 gene expression data.

Functional enrichment analysis of well-preserved modules

To explore the functionality and biological relevance of the five well preserved modules, we

performed over-representation analysis with all genes from each module (black, purple, light-

green, tan, and steelblue; S4 Table). Analysis of genes from the black module revealed 47 bio-

logical process terms, 49 cellular component terms, 17 molecular function terms, and five

significantly enriched pathways. Biological processes identified from genes within the black

module were related to neutrophil activity and degranulation, aldehyde metabolism, nitrogen

compound response and catabolism, and cellular transport. Cellular components identified

from genes within the black module involved intracellular and extracellular vesicles, secretory

granules, cellular junctions, and lysosomes. Molecular functions identified from genes within

the black module involve cytokine, enzyme, and calcium-dependent protein binding, aldehyde

dehydrogenase (NAD) activity, and interleukin-1 receptor activity. Enriched pathways identi-

fied from genes within the black module involved neutrophil degranulation, metabolic disease,

and signaling via tyrosine kinase receptor.
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Analysis of genes from the purple module revealed 54 biological process terms, 46 cellular

component terms, 16 molecular function terms, and 40 significantly enriched pathways. Bio-

logical processes identified from genes within the purple module involved mitochondrial pro-

cesses (cristae formation, respiratory chain complex assembly), non-coding RNA processing

and maturation, cellular protein transport, and metabolic processes and biosynthesis. Cellular

components identified from genes within the purple module involved cell substrate and adhe-

sion junction, ribosomes, cytoplasmic side of endoplasmic reticulum, mitochondrial inner

membrane and envelope, and the 48S preinitiation complex. Molecular functions identified

from genes within the purple module involved mRNA/rRNA binding, ubiquitin ligase inhibi-

tion, ATP synthase activity, and NADH dehydrogenase. Enriched pathways identified from

genes within the purple module involved infectious disease/viral infection, amino acid metab-

olism, translation initiation/termination, rRNA processing, and ATP synthesis and respiratory

electron transport.

Analysis of genes from the lightgreen module revealed 38 biological process terms, 49 cellu-

lar component terms, three molecular function terms, and one significantly enriched pathway.

Biological processes identified from genes within the lightgreen module involved leukocyte/

neutrophil differentiation, activation, and degranulation, tissue remodeling, cell secretion and

exocytosis, phagocytosis and micropinocytosis, dendritic cell activation, and interleukin-8

secretion. Cellular components identified from genes within the lightgreen module involved

lysosome, secretory/azurophil granule, vesicular/vacuolar membrane, granule lumen, and

macropinosome. Molecular functions identified from genes within the lightgreen module

involved symporter activity, potassium-chloride symporter activity, and phosphatidylinositol

binding. The single enriched pathway identified from genes within the lightgreen module was

neutrophil degranulation.

Analysis of genes from the tan module revealed 35 biological process terms, 32 cellular

component terms, four molecular function terms, and two significantly enriched pathways.

Fig 4. Cross-populational module preservation analysis.

https://doi.org/10.1371/journal.pone.0277033.g004
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Biological processes identified from genes within the tan module involved B-cell activation,

receptor signaling, and regulation, immunoglobulin production, cytokine production, positive

regulation of interferon-gamma production, and mononuclear cell proliferation. Cellular

components identified from genes within the tan module involved MHC class II protein com-

plex, lytic vacuole membrane, clathrin-coated endocytic vesicle, endosomal membrane, and B-

cell receptor complex. Molecular functions identified from genes within the tan module

involved MHC class II receptor activity, MHC class II protein complex binding, and peptide

antigen binding. Enriched pathways identified from genes within the tan module were antigen

activates B-cell receptor (BCR) leading to generation of second messengers and CD22-me-

diated BCR regulation.

Analysis of genes from the steelblue module revealed three biological process terms, three

cellular component terms, no molecular function terms, and no significantly enriched path-

ways. Biological processes identified from genes within the steelblue module were cell surface

receptor signaling pathway, negative regulation of fibroblast growth factor receptor signaling

pathway, and antigen receptor-mediated signaling pathway. Cellular components identified

from genes within the steelblue module involved side of membrane, plasma membrane part,

and alpha-beta T cell receptor complex.

BRD-associated hub gene identification and in silico protein-protein

interaction and clustering analyses

Hub gene identification analysis included co-expressed genes from the following modules: vio-

let (54), orange (68), royalblue (100), mediumpurple3 (41), and steelblue (59). The kME and GS

value cutoffs within each module resulted in 24, 46, 30, 22, and 32 BRD-associated hub genes

from the violet, orange, royalblue, mediumpurple3, and steelblue modules, respectively (S5

Table). These resulting hub genes were further utilized for physical subnetwork protein-pro-

tein interactions and network clustering. After removal of all disconnected nodes, the interac-

tion network demonstrated significant connectivity between 52 proteins across 11 distinct

clusters with high inter-nodal connectivity (Fig 5); these gene products and their combined

interaction scores are found in S6 Table. These connected gene products demonstrate possible

at-arrival biomolecular complexes associated with BRD development and severity.

Interaction score analysis reveals 52 genes, with high intramodular and BRD-trait relation-

ship, which possess high connectivity. Interconnected gene products (nodes) were further

grouped into distinct clusters based on their interaction scores (edges). Edge thickness repre-

sents the level of interaction confidence between nodes.

Discussion

While at-arrival management practices are somewhat dependent upon anticipated risk of BRD

development, both inter- and intra-herd level disease prevalence is highly variable [5, 51]. To

counter this variability, beef production systems will often administer antimicrobials and/or

immunostimulants at arrival to reduce the risk of clinical BRD development and associated

production losses [52, 53]. However, immunostimulant administration alone as a metaphylac-

tic protocol for controlling BRD appears to have minimal impact on rates of morbidity [54–

56]. Metaphylactic use of antimicrobials at arrival reduces risk of morbidity and mortality

across beef production systems, however this management practice is variable in efficacy, in

both rates of disease across cattle populations and in pharmacological choice, and the practice

is suspected to drive expansion of antimicrobial resistance, a growing societal concern [52, 57,

58]. Given this background, our research group and others have focused on evaluating host

transcriptomes at arrival, to better characterize host-driven mechanisms and develop
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candidate mRNA biomarkers associated with clinical BRD outcomes [18, 19, 20]. These studies

have provided valuable information regarding cattle treated based on clinical signs of BRD, but

these studies heavily rely on semi-objective evaluation of BRD cases and may miss underlying

subclinical or misdiagnosed disease. As such, the underlying host mechanisms involved in BRD

development remain disputed. Therefore, to identify at facility arrival genes and mechanisms

which may represent the variable development of BRD cases and leverage the total expression

profile of individual cattle, we employed a systems biology approach with weighted co-expres-

sion network analysis. This methodology allows us to identify networks of genes exclusively co-

expressed, and to evaluate said networks in a reduced manner in order to identify molecules

and mechanisms of interest for future BRD prediction studies. Importantly, co-expression net-

work analysis serves as a complementary, yet distinct, approach to identifying genes and mecha-

nisms associated with disease status, when compared to differential expression analyses. The

network approach performed in this study evaluates and identifies genes that are strongly coor-

dinated in terms of expression, and determines correlation with overlapping metadata (clinical

data), whereas differential expression analyses typically follow a pairwise approach to determine

level of effect and probability of gene differences between groups. Co-expression network analy-

ses consider greater biological context when evaluating gene expression differences, compared

to more traditional pairwise approaches. Additionally, through utilization of hematological

parameters, we could capture changes in the cellular composition of whole blood as they may

relate to cellular and gross pathophysiology across individuals.

Fig 5. Protein-protein interaction network of interconnected BRD-associated hub genes.

https://doi.org/10.1371/journal.pone.0277033.g005
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While we recognize that dynamic changes captured in whole blood may not completely

encompass biomolecular characteristics seen within lung tissue, whole blood serves as a practi-

cal and easily obtainable sample for respiratory and inflammatory disease diagnostics [14, 59].

After initial statistical assessment of CBC data, we identified that both BRD and Healthy cattle

possessed comparable lymphocytosis, thrombocytosis, and erythrocytic macrocytosis; the dis-

tribution of these values were not considered significantly different between the two groups.

Notably, mild to moderate levels of dehydration, a common condition in newly arrived post-

weaned beef animals, may cause elevated changes in hematocrit levels and lymphocytes [60,

61]. Lymphocytosis and thrombocytosis may also result from host responses to infection or

inflammation. Additionally, reticulocytosis (i.e., immature erythrocytosis) is the most com-

mon cause of erythrocytic macrocytosis [60] and was noted as a common feature found across

all blood samples submitted for analysis. While these cattle did not possess physiological nor

hematological evidence of hemolysis or blood loss upon facility arrival, this finding may be

associated with early regenerative anemia, systemic inflammation, or mineral deficiencies [60–

62]. Furthermore, blood-borne pathogens were not reported from blood smear assessment.

Nevertheless, it does not rule out the possibility of mild/subclinical intraerythrocytic pathology

or asymptomatic convalescence that may result in these increased hematological changes.

Such pathology is often caused by parasitic diseases such as anaplasmosis, a common infec-

tious disease of cattle across the United States [63, 64]. It is plausible that these findings indi-

cate that cattle at facility entry are undergoing similar physiological changes as it relates to

stressful and/or pathogenic events (long-distance transportation, co-mingling, etc.) and

underlying genomic mechanisms serve to resolve or prolong deleterious physiological condi-

tions that result in BRD.

With respect to distributions, we found that the majority of variables tested for module cor-

relations were normally distributed. Of the nine (of the 26 total) non-parametric testing vari-

ables, six demonstrated relative linearity upon visual distribution assessment (data not shown;

Neu%, Lymph%, NL Ratio, MCHC, RDW, and FEC-d0). Moreover, the non-parametric

nature of Eos%, Baso%, and Sex is perceived to be due to data sparsity and relative rarity of the

expected cell counts attributed to eosinophils and basophils in cattle (Table 1) [65]. We elected

to utilize Pearson correlation models as they can measure discrete and continuous datasets

without need for transformation, and preserve linearity from the raw data structure when

assessing these variables with gene co-expression modules. Additionally, calculated Pearson

correlations from WGCNA can better handle datasets with missing or censored data and is

highly computationally efficient [66]. We identified that RBCs were significantly increased in

cattle that would go on to develop BRD versus those that did not. Although this result was

identified in a relatively small number of cattle, it corresponds with the work of Richeson and

colleagues [16]. As discussed within their prior research, elevated RBCs may indicate dehydra-

tion and subsequent predisposition with BRD development [5, 16]. Interestingly, we were able

to identify one well-preserved co-expression module which possessed significant correlations

with RBCs, RDW, PLT, BRD, and Risk_Days (i.e., shorter time to first treatment): steelblue.

Upon further investigation, we discovered that the genes within this module were related to

antigen receptor-mediated signaling (BLK, CD247, CD276, CD3G, GATA3, and PLEKHA1)

and negative regulation of fibroblast growth factor receptor signaling (CREB3L1, GATA3, and

WNT5A), and specifically components of alpha-beta T-cell receptor complexes (CD247 and

CD3G). The upregulation of IL-7R and associated signaling molecules, which include CD3G
and CD247, initiate NOTCH-dependent proliferation of T-cell precursors [67]. Furthermore,

elevated levels of BLK and GATA3 tend to skew the immune response towards Th2-type

immunity [68–70]. In terms of RBC relationship, previous research has demonstrated that

Th2-stimulated bone marrow T-cells promote erythroid differentiation and lead to the
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development of erythroblasts [71]. Additionally, CXCL12, also identified within the steelblue

module and previously identified as a differentially expressed gene associated with BRD devel-

opment [20], is involved in Th2-cell migration and immune response [71, 72]. HNRNPH3,

found within the steelblue module, has previously been identified as a key transcription factor

associated with clinical BRD [18]. Lastly, several genes identified in the steelblue module were

also found in the “turquoise” module identified by Hasankhani and colleagues [24], which

enriched positive regulation of activated T-cell proliferation and Th1/Th2-cell differentiation

pathways. While this study cannot elucidate the exact mechanistic components nor temporal-

ity of molecular events, it suggests that promotion of Th2-mediated T-cells at arrival shares a

common mechanism with RBC elevation and risk of BRD development. Our previous research

has indicated that genes elevated at arrival in cattle that eventually develop BRD interact, and

may enhance, TLR-4 and IL-6 responses [20, 40, 73], which may contribute to the co-

expressed pattern related to Th2-mediated T-cell development [74]. Overall, this pattern of

Th2-mediated immunity is strongly associated with clinical BRD development and timing to

first treatment, and may further strengthen the depiction that early Th2 responses indicate

clinical disease development and lung pathology [75, 76].

While steelblue was the only well-preserved BRD-associated module detected, four other

modules were determined to be well-preserved across populations and warranted specific

functional enrichment investigation: black, purple, lightgreen, and tan. Genes within the black

module, largely involved with neutrophil activation and degranulation, IL-1 activity, and met-

abolic disease, was only significantly associated with hemoglobin and erythrocyte parameters

(HGB, HCT, MCV, and MCH); notably, the black module did not possess any significant asso-

ciations with clinical variables. This may indicate that neutrophilic and IL-1 activity was not

indicative of BRD within this population of cattle, and/or additional disease-associated vari-

ables were not recorded in this study. Genes within the purple module, associated with

increased eosinophil percentage, decreased neutrophil-lymphocyte ratio, decreased MCV and

MCH, increased at-arrival fecal parasitic egg count, and increased growth rate (weight gain

over 82 days), largely enriched for mitochondrial function and aerobic metabolism and RNA

processing. Importantly, this module possessed positive association to weight gain indepen-

dent of BRD development. Previous research has investigated many of these ribosomal pro-

tein-encoding genes for their potential for immune effector capacity [77] and cell regulation

[78], however this marks the first time, to our knowledge, that they have been implicated in

contributing to weight gain potential in high-risk cattle. Notably, one gene (RPS26) has been

previously identified as a differentially decreased marker in the diseased lungs of cattle experi-

mentally challenged with BRD-associated pathogens [79, 80]. Similar to the black module,

genes identified within the lightgreen module were associated with hemoglobin and erythro-

cyte parameters, but additionally positively correlated with neutrophil percentage and neutro-

phil-lymphocyte ratio, and negatively correlated with basophil percentage; likewise, the

lightgreen module did not possess significant associations with clinical variables. Lastly, the

tan module, possessing several significant hematological associations, and was negatively cor-

related with castration status at arrival, possessed genes which enriched for B-cell receptor

complexes and regulation and interferon-gamma production. Unfortunately, the underlying

physiological impact of co-expressed genes identified within the black, lightgreen, and tan

modules were not captured in this study. As this study was primarily focused on BRD develop-

ment and severity, the genes within these three modules may possess a role in other disease

complexes or immune-mediated events, such as gastrointestinal or apoptotic/necrotic

diseases.

Utilizing hub gene and interaction network analyses, we further identified genes related to

BRD development and severity. Here, we detected and mapped 52 genes into a protein-protein
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interaction network, further stratified into 11 distinct clusters based on their combined inter-

action scores. This procedure helps describe the physical relationship that multiple BRD-asso-

ciated gene products possess with one another in a more holistic approach. Here, we may infer

that these interactions possess accompanying transient functions involved in BRD develop-

ment not previously described in literature. As such, these predicted protein-protein network

interactions may infer potential modular units which participate in BRD development or resis-

tance [81, 82]. Further evidence of the associative importance related to BRD development

exists with these genes, as CXCL12 [20], TLL2 [20], ALOX15 [18, 20, 40], and LOC100298356
[73, 79, 80, 83] have been previously identified as differentially expressed when comparing cat-

tle with and without BRD development. Specifically, CXCL12, TLL2, and LOC100298356 are

considered drivers of innate surveillance and inflammation associated with BRD development,

whereas ALOX15 encodes for an enzyme involved in specialized proresolving mediator bio-

synthesis and associated with cattle that do not develop clinical BRD in high-risk systems [18,

20, 40, 79, 83]. Collectively, we detected these previously identified differentially expressed

genes, associated to BRD development, with an independent approach. This overlap empha-

sizes the potential capability of these genes and mechanisms to serve a predictive role for BRD.

Proteomic approaches have detailed that proteins infrequently operate as single biological enti-

ties and, when involved in similar biological functions, interact in dynamic, yet organized

complexes [84–87]. As such, these findings provide candidate protein complexes related to

BRD development and severity, which warrants further investigation for avenues of confirma-

tion in larger populations of cattle and novel therapeutic target development.

Conclusions

This study was conducted to utilize systems biology methodology to further establish genes,

mechanisms, and coordinated biological complexes associated with dynamic hematological

changes and BRD development. Utilizing our previously published RNA-Seq data and

WGCNA, we identified five well-preserved modules of highly co-expressed genes with signifi-

cant associations with hematological and clinical traits in cattle at facility arrival. The “steel-

blue” module, containing genes involved in alpha-beta T cell receptor complex and negative

regulation of fibroblast growth factor receptor signaling, possessed significant positive correla-

tions with erythrocyte count, platelet count, red cell width, and BRD diagnosis, and negative

correlation with days at risk for BRD. The “purple” module, containing genes involved in

mitochondrial processes and non-coding RNA processing and maturation, possessed signifi-

cant correlation with increased eosinophil percentage, decreased neutrophil-lymphocyte ratio,

and increased growth rate (weight gain over time). Protein-protein interaction network and

clustering analyses of BRD-related hub genes identified possible at-arrival biological com-

plexes strongly associated with BRD development; many of these hub genes have been

described as differentially expressed genes in previous BRD research. Through this holistic

molecular approach, we provide genes, mechanisms, and predicted protein complexes associ-

ated with BRD development and performance which are warranted for future analyses tar-

geted in predicting BRD at facility arrival.
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S1 Table. Clinical metadata of cattle selected for WGCNA analysis.
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S2 Table. CBC and leukocyte distribution data of cattle selected for WGCNA analysis.
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S3 Table. Full gene list and weighted module assignment.

(CSV)

S4 Table. Functional enrichment analysis of the five well-preserved modules.

(XLSX)

S5 Table. Hub gene analysis of all five BRD-associated modules.

(XLSX)

S6 Table. STRING identifiers and physical interaction scores (combined_score� 0.200).

(XLSX)

S1 Fig. Heatmap and hierarchical clustering of clinical and hematological data across the

23 cattle utilized for transcriptome network analysis. Standardized connectivity was calcu-

lated from network adjacency matrices and used to classify potential outliers (Z.k< -5); no

animal was identified as an outlier. The remaining rows represent the numerical values of all

clinical and hematological traits across each animal. Colors indicate an increase (yellow/white)

or decreased (purple/black) value for each trait; Sex and BRD are both represented as a value

of 1 for bulls and Yes, and 0 for steers and No, respectively.

(TIF)

S2 Fig. Soft threshold (β) selection for signed weighed correlation network construction

through scale free topology (SFT) plot analysis. A) SFT index R2 (y-axis) at increasing soft

threshold powers (β; x-axis). The value β = 8 was selected, seen where the saturation curve is

above 0.8 (orange horizontal line). B) Increasing soft threshold powers (β; x-axis) with respect

to decreasing mean connectivity (y-axis). The goal of selecting a value β is to maximize scale

independence (i.e., suppress low correlations) while simultaneously minimizing loss in mean

connectivity.

(TIF)
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