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ABSTRACT
Background. Ovine milk is a rich source of bioactive proteins that supports the early
growth and development of the newborn lambs. A large number of researches had
targeted to the identification of ovine milk fat globule membrane proteins (MFGMPs),
caseins (CNs), mastitis milk proteins in past years, but the dynamic change tendency
of milk whey proteins during postnatal development has received limited attention.
This research aimed to investigate the dynamic changes of ovine milk whey proteins
after delivery, and explore the functions of whey proteins on early development of the
newborns.
Methods. In this research, Hu sheepmilk samples were collected from six individuals by
manual milking manner, at 0 d, 3 d, 7 d, 14 d, 28 d and 56 d after delivery, respectively.
The milk whey proteins were identified and quantified by the isobaric tag for relative
and absolute quantification (iTRAQ) coupled with liquid chromatography (LC)-
electrospray ionization (ESI) tandem MS (MS/MS) methods. In addition, biological
functions of differentially expressed proteins (DEPs) were annotated by Gene Ontology
(GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis.
Results. A total of 310 proteins were identified , of which 121 were differentially ex-
pressed. In detail, 30 (10 up-regulated and 20 down-regulated), 22 (11 up-regulated and
11 down-regulated), 11 (four up-regulated and seven down-regulated), 11 (eight up-
regulated and three down-regulated), 10 (six up-regulated and four down-regulated)
DEPs were identified in 3 d vs. 0 d, 7 d vs. 3 d, 14 d vs. 7 d, 28 d vs. 14 d, 56 d
vs. 28 d comparison groups, respectively. The GO annotation analysis revealed that
biological process principally involved metabolic and biological regulation, the major
cellular location were organelle, cell and extracellular region, and the mainly molecular
function were binding and catalytic activity. Circadian rhythm, fatty acid biosynthesis
and African trypanosomiasis were enriched by KEGG annotation analysis.
Conclusion. The study reveals a comprehensive understanding of Hu sheep milk
proteome, suggesting whey proteins change dramatically in early development of
newborn lambs, which provide a potential guidance for early weaning of lambs.
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INTRODUCTION
Milk as a complex body fluid synthesized by mammals, contains a large number of
secreted proteins that contribute to the growth, development and immune system of
neonates (Roncada et al., 2012; Hernandez-Castellano et al., 2015b; Li et al., 2019). Sheep
milk contains a wide range of proteins, including the high-abundance proteins αs1-casein
(αs1-CN), αs2-casein (αs2-CN), β-casein (β-CN), κ-casein (κ-CN), β-lactoglobulin (β-Lg)
and α-lactalbumin (α-Lac; Gidlund et al., 2015) and low-abundance proteins such as
immunoglobulin, lactoferrin, hormones and enzymes (Le et al., 2011). The proteins in
mammalian milk can be mainly divided into three classes: caseins (CNs), whey proteins
and milk fat globule membrane proteins (MFGMPs). Among these classes, CNs are
primary proteins that present in micellar form, whereas whey fractions occur in soluble
form (Roncada et al., 2012). MFGMPs are mainly present in the cream portion of milk,
which is composed by proteins and lipids at a 1:1 weight ratio (Yang et al., 2016; Li et
al., 2020). These three different protein fractions can be separated by centrifugation for
proteomics analysis of raw milk (Roncada et al., 2012).

Among the three protein fractions described above, whey accounts for approximately
13∼20% of the total proteins in sheep milk and is generally regarded as having measurable
effects on health outcomes such as immunomodulatory, antimicrobial properties, acute
inflammatory response, complement activation and innate immune response (Hernández-
Ledesma, Ramos & Gómez-Ruiz, 2011; Ha et al., 2015). In addition, the natural digestion
of sheep whey proteins in the gastrointestinal tract can generate peptides with a variety
of bioactivities, for instance, antihypertensive, opioid, antibacterial, antioxidant, and
immunomodulatory activities (Recio & Visser, 2000; Tina et al., 2010). The proteome of
cow and sheep whey has attracted extensive research. To date, up to 606 proteins have been
identified in sheep whey, while 783 proteins have been found in cow whey (D’Alessandro,
Zolla & Scaloni, 2011; Le et al., 2011; Nissen et al., 2013; Reinhardt et al., 2013; Ha et al.,
2015). A comparative analysis between the two whey proteomes revealed only 233 common
proteins, most of which were associated with immunity (Ha et al., 2015). Gene Ontology
(GO) analysis of whey proteins unique to the cow revealed significant involvement in
cellular development and metabolism, while proteins unique to sheep were found to
function in cellular establishment, signaling, protein maturation, and inflammatory and
other immune responses (Ha et al., 2015). Previous proteomic studies on sheep milk have
mainly focused on the characterization of the sheep colostrum proteome, MFGMPs,
skimmed milk and whey proteins at specific time points (Pisanu et al., 2012; Hernandez-
Castellano et al., 2015a) and the proteomic analysis of sheep milk to detect mastitis
(Chiaradia et al., 2013). The available differential proteomic studies of milk proteins at
different lactation stages have mainly been conducted in bovines (Murgiano et al., 2009;
Zhang et al., 2015; Tacoma et al., 2016), while very few such studies have been reported
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for sheep milk. The changes of protein constituents in the milk whey proteome during
the transition from colostrum to mature milk are therefore important for a more detailed
understanding of the biological significance of milk whey and can supply a reference for
developing lamb weaning strategies and milk replacer formula.

In China, milk production is dominated by cows and dairy goats, while sheep milk is
mostly exclusively consumed by newborn lambs and is not used for human consumption.
Local sheep breeds inChina are usually highly fecund.Hu sheep are excellent representatives
of Chinese sheep and are the most widely distributed sheep breed in China. In most cases,
ewes of this breed can give birth to 2∼4 lambs per parity and can produce three lambs
biennially (Yue, 1996). In addition, Hu sheep can produce 120–150 kg milk in 120–150
days of lactation, which is essential for a high survival rate and fast growth rate of Hu
lambs after birth (Yue, 1996). Proteomics have been used widely and effectively to analyze
milk-derived proteins, and proteomic technologies have greatly advanced our in-depth
knowledge of milk proteins (O’Donnell et al., 2004). In this study, the isobaric tags for
relative and absolute quantification (iTRAQ) method was used to explore whey proteome
changes in Hu sheep at the six time points of 0, 3, 7, 14, 28 and 56 d after delivery.
The method of hierarchical clustering was used to analyze the significantly differentially
expressed proteins in the different lactation stages. GO annotation and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis were used to analyze the biological function of
differentially expressed proteins (DEPs). The objective of this research was to detect the
protein profile of sheep milk during early lactation (within 56 d after delivery) and to
provide potential guidance for the early weaning of Hu lambs.

MATERIALS & METHODS
Ethics statement
The experimental procedures were approved by the ethics committee of College of Pastoral
Agriculture Science and Technology of Lanzhou University. All efforts were taken to
minimize animal suffering.

Sample collection and whey protein preparing
Sixmultiparous healthyHu sheep (Zhongtian sheep Ltd., Jinchang, Gansu Province, China)
were selected after brucellosis and mastitis testing. Mastitis was identified on the basis of
clinical signs (heat, pain, redness and swelling of the udder, or clots in the milk), as well as
the corresponding somatic cell counting parameters. All the ewes given the second birth
and with the litter size of two, and were reared at the same condition and fed by the same
feed during the milking period in the present study. The fresh milk samples from the whole
available milk were individually collected by manual milking manner, at 8:00–9:00 on 3
d, 7 d, 14 d, 28 d, 56 d and 4∼5 h (0 d) after delivery. Fresh milk was immediately frozen
at −20 ◦C until whey preparation. Whole-milk samples were defatted by centrifugation
at 3,000× g and 4 ◦C for 15 min (Biofuge Stratos, Heraeus). The precipitated casein was
further removed by ultracentrifugation at 100,000× g and 4 ◦C for 60 min (CS120GXL,
Hitachi) to obtain the milk whey fraction (Yang et al., 2013). Thereafter, STD buffer (4%
SDS, 1 mM DTT, 150 mM Tris-HCl pH 8.0) were added into the collected supernatant,
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and the mixed solution were heated at 95 ◦C for 5 min. The proteins concentration was
determined by bicinchoninic acid (BCA) Protein Assay Kit (PC0020, Solarbio Ltd., Beijing)
according to manufacturer’s instructions with bovine serum albumin (BSA) as a standard
for calibration curve.

Protein digestion and iTRAQ labeling
The filter-aided sample preparation (FASP) procedure was used to digest the whey protein
(Wisniewski et al., 2009). Total-proteins (300 µg) for each sample were mixed with UA
buffer (200 µL, 8 M Urea, 150 mM Tris-HCl pH 8.0), and loaded on an ultrafiltration
filter (Pall units, 10 kD). The detergent, DTT and other low-molecular-weight components
were removed by repeated centrifugation at 14,000× g for 15 min. Then, 100 µL of
iodoacetamide solution (50 mM iodoacetamide in UA buffer) were added and the samples
were shocked at 600 rpm for 1 min, followed by incubation in the dark for 30 min and
centrifuged at 14,000× g for 10 min. Using 100 µL UA buffer and 100 µL Dissolution
buffer (50 mM triethylammonium bicarbonate at pH 8.5) to wash the filters by centrifuged
at 14,000× g for 10 min, and every wash step was repeated twice. Finally, 2 µg Trypsin
(Promega, Southampton, UK) were incorporated into 40 µL Dissolution buffer and the
solution was used to digest the protein suspensions at 37 ◦C for 16–18 h. The filtrate was
collected after centrifugation at 14,000× g for 10 min. Using UV light spectral density at
280 nm to estimate the concentration of the resulting peptides.

Subsequently, the 8-plex iTRAQ reagent kit (Applied Biosystems, Forster City, CA)
was used to label the resulting peptide mixture. The labeling procedure was carried out
according to the manufacturer’s instructions. The protein samples were labeled as (Sample
0 d)-113, (Sample-3 d)-114, (Sample-7 d)-115, (Sample-14 d)-116, (Sample-28 d)-117,
(Sample-56 d)-118, and the labeling solution reaction was incubated at room temperature
for 60 min.

Peptide fractionation with strong cation exchange chromatography
All of the labeled peptides were mixed and then fractionated by strong cation exchange
(SCX) chromatography using AKTAPurifier 100 system (GEHealthcare). The used column
was Polysulfoethyl 4. 6×100 mm column (5 µm, 200 Å) (PolyLCInc, Maryland, USA), and
solvent A was 10 mM KH2PO4 pH 3.0 in 25% of ACN, solvent B was 500 mM KCl, 10 mM
KH2PO4 pH 3.0 in 25% of ACN. The solvents were applied using the time gradient from
0–100% solvent B and followed by 10 min at 0%. A total of 36 fractions were collected and
finally combined into 15 pools. C 18Cartridges (66872-U, Sigma) was used to desalt the
freeze-dried samples and all samples were stored at −80 ◦C until LC-MS/MS analysis.

Liquid chromatography (LC)-electrospray ionization (ESI) tandem MS
(MS/MS) analysis by Q Exactive
The liquid chromatography was carried out using a Easy nano-LC system (Proxeon
Biosystems, now Thermo Fisher Scientific), which was coupled with a Q Exactive mass
spectrometer. Chosen 0.1% Formic acid as buffer A, and 80% acetonitrile with 0.1% Formic
acid as buffer B. The chromatographic column was balanced by 95% buffer A. 10 µL of
peptide mixture was loaded onto the Thermo scientific EASY column (two cm ×100 µm
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5 µm-C18), and then separated by analytical column (75 µ×100 mm 3 µm-C18) at a flow
rate of 250 nL/min. Peptides were eluted using a 60 min gradient with 0% B to 40% B over
55 min, 40% B to 100% B for 3 min, and held at 100% B for 2 min.

Mass spectrometry analyses were performed on Q-Exactive (Thermo Finnigan, San Jose,
CA). The data was acquired in the positive ion mode, and the total analytical time was 60
min. Mass range was 300–1,800 m/z with the resolving power of 70,000 at m/z 200 for the
MS scan, and mass range was 200–2,000 with the resolution of 17,500 at m/z 200 for the
MS/MS scan. Dynamic exclusion duration was 60 s. The maximum ion injection time for
the survey scan was 10 ms, and 45 ms in MS/MS scan. Top 10 most abundant ion maps
were collected after scan. Normalized collision energy was 30 eV and the underfill ratio
was defined as 0.1%. The instrument was run with peptide recognition mode enabled.

Sequence database searching and data analysis
Raw data files were submitted to MASCOT engine (Matrix Science, London, UK; version
2.2) through Proteome Discoverer 1.4 (Thermo Electron, San Jose, CA.). The MS/MS
spectra were searched against UniProt ovis aries (27065 sequences, download at 09, 10,
2015) and UniProt cetartiodactyla (712254 sequences, download at 15, 10, 2015). For
protein identification, the following options were used: Peptide mass tolerance=20 ppm,
MS/MS tolerance=0.1 Da, Enzyme=Trypsin, Missed cleavage=2, Fixed modification:
Carbamidomethyl (C), iTRAQ 8 plex (K), iTRAQ 8 plex (N-term), Variable modification:
Oxidation (M), FDR ≤ 0.01.

Bioinformatic analysis
The selected differentially expressed proteins (DEPs)were in batchesmatched inUniProtKB
database (Release 2019_10) to retrieve the sequence data in FASTA format. To find
homologue sequences, the retrieved sequences were locally searched against SwissProt
database (mammal) using the NCBI BLAST+ client software (ncbi-blast-2.2.28+-
win32.exe). GO mapping and annotation was conducted by Blast2GO (Version 2.7.2;
(Gotz et al., 2008; Ashburner et al., 2000) under the configuration: an E-value filter of 1e-6,
default gradual EC weights, a GO weight of 5, and an annotation cutoff of 55. The KOs of
the DEPs were blasted against KEGG GENES (mammal), and then the pathway analysis
was conducted by mapping the KOs in KEGG (Kanehisa et al., 2012).

RESULTS
Identification of differential proteins in the whey fractions of Hu sheep
after delivery
The iTRAQ-LC-MS/MS proteomics analysis conducted in this study resulted in the
identification of 1,068 unique peptides and 310 proteins in Hu sheep milk whey at the six
time points of 0, 3, 7, 14, 28 and 56 d after delivery. Among these proteins, 111 were directly
matched to the sheep proteomics database, and 199 proteins werematched to the vertebrate
proteomics database (Table S1). The pairwise comparison of the six time points identified
121 DEPs (Table S2). The analysis of whey protein expression levels between adjacent time
points revealed 30 (10 up-regulated and 20 down-regulated), 22 (11 up-regulated and 11
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Table 1 The differentially expressed proteins between 3 d and 0 d.

NO. Accession no. Protein name Fold changea P value

1 G3LUQ4 alpha s1 casein 3.97 3.33E−04
2 P04654 alpha-s2-casein precursor 3.47 1.19E−03
3 W5Q6B8 low quality protein: type ii cytoskeletal 6a isoform x1 3.30 1.87E−03
4 W5PF70 low quality protein: biorientation of chromosomes in cell

division protein 1-like 1 isoform x1
3.19 2.48E−03

5 W5NQP5 superoxide dismutase [Cu-Zn] 2.72 9.09E−03
6 W5NXZ8 g protein- regulated inducer of neurite outgrowth 1 2.28 3.12E−02
7 E7BQS5 alpha-s2-casein variant 2.28 3.17E−02
8 W5NUD7 collectin43 isoform x1 2.15 4.62E−02
9 W5QB61 peptidyl-prolyl cis-trans isomerase 2.13 4.88E−02
10 W5QDQ1 predicted: uncharacterized protein C1 or f94 homolog 2.03 6.43E−02
11 W5PHP6 60s ribosomal protein l27 0.48 8.75E−02
12 P12303 transthyretin 0.47 7.62E−02
13 W5P0V6 saccharopine dehydrogenase-like oxidoreductase 0.47 7.62E−02
14 W5QHZ8 immunoglobulin kappa-4 light chain variable region 0.41 3.83E−02
15 W5NTD9 chitinase-3-like protein 1 0.41 3.78E−02
16 W5QAL0 glucosidase 2 subunit beta x3 0.39 2.82E−02
17 W5P673 pyruvate dehydrogenase phosphatase regulatory

mitochondrial
0.38 2.41E−02

18 W5PK06 low affinity immunoglobulin gamma fc region receptor ii-
like isoform x3

0.37 2.08E−02

19 W5PSP9 immunoglobulin lambda-2c light chain variable region 0.36 1.79E−02
20 W5PH95 immunoglobulin heavy chain constant region of tetrameric

1a membrane form
0.36 1.76E−02

21 W5Q3H4 ribosomal protein s2 0.36 1.70E−02
22 W5NV14 immunoglobulin v lambda chain 0.36 1.61E−02
23 W5PSQ7 immunoglobulin lambda light chain f7-299 0.34 1.12E−02
24 W5Q524 poly polymerase alpha isoform x1 0.33 1.06E−02
25 B3F206 cryptochrome 1 0.33 9.35E−03
26 W5PFM6 iq domain-containing protein d 0.31 6.61E−03
27 W5PGT9 immunoglobulin epsilon- partial 0.30 4.64E−03
28 W5NUN9 mortality factor 4 like 1 0.27 2.07E−03
29 W5QHZ5 Ig k protein 0.22 4.28E−04
30 W5PXV3 connective tissue growth factor 0.16 2.45E−05

Notes.
aRelative abundance of whey proteins in 3 d versus 0 d.

down-regulated), 11 (four up-regulated and seven down-regulated), 11 (eight up-regulated
and three down-regulated), 10 (six up-regulated and four down-regulated) DEPs in the
3 d vs. 0 d, 7 d vs. 3 d, 14 d vs. 7 d, 28 d vs. 14 d, and 56 d vs. 28 d comparison groups,
respectively (Tables 1–5).
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Table 2 The differentially expressed proteins between 7 d and 3 d.

NO. Accession no. Protein name Fold changea P value

1 W5NTK7 transmembrane protein c15orf27 homolog isoform x1 6.00 1.03E−10
2 W5NTD9 chitinase-3-like protein 1 2.92 9.39E−05
3 W5NVL1 lysosomal-associated transmembrane protein 5 2.83 1.44E−04
4 C7DLN1 fatty acid synthase (fragment) 2.55 5.95E−04
5 P68214 fibrinogen alpha chain (fragment) 2.44 1.08E−03
6 W5PZI1 clusterin 2.22 3.26E−03
7 W5QFH5 ras-related protein rab-1a 2.17 4.26E−03
8 W5PHP6 60s ribosomal protein l27 2.03 8.70E−03
9 D3G9G3 lactoferrin precursor 2.02 9.25E−03
10 P68116 fibrinogen beta chain (fragment) 2.01 9.79E−03
11 W5PN88 elongation factor 2 2.01 9.84E−03
12 B5B304 complement factor H (fragment) 0.47 3.64E−03
13 C6ZP47 I alpha globin 0.41 5.88E−04
14 W5PF70 low quality protein: biorientation of chromosomes in cell

division protein 1-like 1 isoform x1
0.39 2.76E−04

15 W5Q4D0 cyclin-g-associated kinase x6 0.38 1.69E−04
16 W5PXV3 connective tissue growth factor 0.37 1.25E−04
17 H9A6H7 myostatin variant A 0.35 5.46E−05
18 W5PJG0 serum amyloid A protein 0.32 1.07E−05
19 G3LUQ4 alpha s1 casein 0.31 6.31E−06
20 P02075 hemoglobin subunit beta 0.27 4.49E−07
21 W5NSJ5 serine threonine-protein kinase osr1 isoform x1 0.26 9.61E−08
22 W5QA36 lactase-like protein 0.19 6.63E−11

Notes.
aRelative abundance of whey proteins in 7 d versus 3 d.

Table 3 The differentially expressed proteins between 14 d and 7 d.

NO. Accession no. Protein name Fold changea P value

1 W5PDM2 fibroblast growth factor-binding protein 1 4.74 1.19E−07
2 W5PF70 low quality protein: biorientation of chromosomes in cell

division protein 1-like 1 isoform x1
3.24 7.52E−05

3 W5P0V6 saccharopine dehydrogenase-like oxidoreductase 2.53 1.99E−03
4 D2DRB7 alpha-s1-casein variant 2.26 7.27E−03
5 W5NSJ5 serine threonine-protein kinase osr1 isoform x1 0.50 4.09E−02
6 W5NTK7 transmembrane protein c15orf27 homolog isoform x1 0.46 2.33E−02
7 W5PZI1 clusterin 0.42 1.14E−02
8 W5PYA9 upstream-binding factor 1-like protein 1 0.41 1.08E−02
9 E7BQS3 alpha-s2-casein precursor 0.40 7.86E−03
10 D3G9G3 lactoferrin precursor 0.37 4.47E−03
11 W5NTD9 chitinase-3-like protein 1 0.23 3.16E−05

Notes.
aRelative abundance of whey proteins in 14 d versus 7 d.
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Table 4 The differentially expressed proteins between 28 d and 14 d.

NO. Accession no. Protein name Fold
changea

P value

1 G3LUQ4 alpha s1 casein 10.78 3.53E−22
2 Q9XSC0 beta-lactoglobulin C 3.08 4.27E−06
3 E7BQS5 alpha-s2-casein variant 2.82 2.24E−05
4 W5P559 odorant-binding protein 2b 2.65 6.51E−05
5 W5NXZ8 g protein-regulated inducer of neurite outgrowth 1 2.62 8.05E−05
6 W5PZS7 alpha-1-antiproteinase isoform x1 2.39 3.43E−04
7 W5NSJ5 serine threonine-protein kinase osr1 isoform x1 2.36 4.39E−04
8 W5Q629 protein ddi1 homolog 1 2.05 3.29E−03
9 W5P7S6 alpha-1-acid glycoprotein 0.48 9.41E−03
10 W5PZM9 annexin 0.42 1.92E−03
11 W5PDM2 fibroblast growth factor-binding protein 1 0.28 5.26E−06

Notes.
aRelative abundance of whey proteins in 28 d versus 14 d.

Table 5 The differentially expressed proteins between 56 d and 28 d.

NO. Accession no. Protein name Fold
changea

P value

1 P04653 alpha-s1-casein variant 10.72 1.40E−36
2 W5P3X8 kinesin-like protein 3.10 2.55E−09
3 W5Q524 poly polymerase alpha isoform x1 2.70 1.72E−07
4 W5Q293 dynein heavy chain axonemal isoform x2 2.51 1.30E−06
5 W5PDJ7 60s ribosomal protein l5 2.44 2.82E−06
6 W5PJA0 protein isoform x4 2.39 5.03E−06
7 W5P559 odorant-binding protein 2b 0.43 1.97E−05
8 Q9XSC0 beta-lactoglobulin C (fragment) 0.36 3.86E−07
9 W5PZS7 alpha-1-antiproteinase isoform x1 0.11 2.56E−28
10 G3LUQ4 alpha s1 casein 0.10 6.09E−31

Notes.
aRelative abundance of whey proteins in 56 d versus 28 d.

Gene ontology analysis of the DEPs
To explore the regulatory mechanism of milk proteins and verify the potential molecular
associations among DEPs, we performed GO functional annotation analysis of these
proteins according to molecular function, cellular location and biological pathways.

The DEPs were classified according to molecular functions between the milk samples
from every two adjacent time points, and the results are shown in Fig. 1. The DEPs
identified between 0 d and 3 d presented the most comprehensive molecular functions
and were enriched in nine specific functional terms, with the majority being related to
binding activity and catalytic activity (accounting for 43% and 30%, respectively), followed
by transporter activity, structural molecular activity, antioxidant activity and molecular
transducer activity. Other proteins were associated with molecular function regulator,
chemoattractant activity and transcription factor activity. The number of molecular
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Figure 1 The GOmolecular function classification of DEPs in Hu sheep at different lactation stages.
(A) 3 d vs. 0 d; (B) 7 d vs. 3 d; (C) 14 d vs. 7 d; (D) 28 d vs. 14 d; (E) 56 d vs. 28 d.

Full-size DOI: 10.7717/peerj.10105/fig-1

function categories of the DEPs in the 3 d vs. 7 d group decreased to 7 that antioxidant
activity and transcription factor activity were lost. Furthermore, the function of structural
molecular activity was lost in the 7 d vs. 14 d and 14 d vs. 28 d groups but existed in the
28 d vs. 56 d group. Chemoattractant activity only existed in the 0 d vs. 3 d and 3 d vs. 7 d
groups.

The GO cellular location classifications of the DEPs identified in Hu sheep at different
lactation stages were mainly involved in organelle, cell, extracellular region, membrane-
enclosed lumen, synapse, cell junction, macromolecular complex, the extracellular matrix
and membrane (Fig. 2). All nine cellular location categories were included in the 0 d vs. 3 d
group, and the kinds decreased gradually in other comparison groups. The most prevalent
cellular locations were organelle, cell and extracellular region, which together accounted
for over 60% in all groups.

There were 17 biological process categories in which the identified DEPs were involved
(Fig. 3). The proteins in the 0 d vs. 3 d group exhibited the most complete classifications,
and six biological processes exhibited a major change between the remaining comparison
groups: behavior, rhythmic process, growth, biological adhesion, multi-organism process
and locomotion.
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Figure 2 The GO cellular location classification of DEPs in Hu sheep at different lactation stages. (A) 3
d vs. 0 d; (B) 7 d vs. 3 d; (C) 14 d vs. 7 d; (D) 28 d vs. 14 d; (E): 56 d vs. 28 d.

Full-size DOI: 10.7717/peerj.10105/fig-2

KEGG pathway analysis of the identified proteins
KEGG pathway analysis was also conducted for the DEPs identified by the comparison of
the milk whey proteins at adjacent time points. As shown in Table 6, the set of proteins was
enriched in three pathways: circadian rhythm was enriched in the 3 d vs. 0 d group, and
fatty acid biosynthesis and African trypanosomiasis were enriched in the 7 d vs. 3 d group.

Cluster analysis of the differentially expressed whey proteins
The 121 identified DEPs were analyzed by hierarchical clustering analysis based on their
affinity (Fig. 4). The high-abundance proteins α-La and β-Lg exhibited low expression
at 0 d, while both of these proteins presented their highest contents at 28 d, which were
approximately 2.4 and 4.7 times higher, respectively, than that at 0 d. Expression level
changes were also observed for low-abundance proteins between the 6 lactation stages,
such as superoxide dismutase [Cu-Zn], airway lactoperoxidase, lipoprotein lipase, and
peptidyl-prolyl cis-trans isomerase. In addition, significant differences were found for
proteins that were searched according to homology. Lysosomal-associated transmembrane
protein 5, G protein-regulated inducer of neurite outgrowth 1 and low-quality proteins such
as biorientation of chromosomes in cell division protein 1-like 1 isoform x1 presented a
low concentration in 0 d and 3 dmilk whey but exhibited high expression inmilk at 14 d, 28
d and 56 d after delivery. Proteins such as pyruvate dehydrogenase phosphatase regulatory
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Figure 3 The GO biological process classification of DEPs in Hu sheep at different lactation stages. (A)
3 d vs. 0 d; (B) 7 d vs. 3 d; (C) 14 d vs. 7 d; (D) 28 d vs. 14 d; (E) 56 d vs. 28 d.

Full-size DOI: 10.7717/peerj.10105/fig-3

Table 6 Pathway categories of differentially expressed proteins.

Group Pathway name KO ID Protein name

3 d vs. 0 d Circadian rhythm oas04710 cryptochrome 1
Fatty acid biosynthesis oas00061 fatty acid synthase

(fragment)
7 d vs. 3 d

African trypanosomiasis oas05143 I alpha globin

mitochondrial, connective tissue growth factor, immunoglobulin epsilon-partial, Ig k
protein and mortality factor 4 like 1 were almost exclusively present in milk at 0 d after
delivery and absent in milk samples at other time points.
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Figure 4 Hierarchical clustering of DEPs. (A–F) means 0, 3, 7, 14, 28 and 56 d as the reference, based on
the level of protein affinity, the clustering analysis of the DEPs. The color bars from blue to red represents
scale 0∼3, 0∼1.532, 0∼1.526, 0∼1.455, 0∼1.458, 0∼1.460, respectively. Blue represented decreasing pro-
tein abundance, red represented increasing protein abundance.

Full-size DOI: 10.7717/peerj.10105/fig-4
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DISCUSSION
Of those animal milk proteome related researches, most of the studies have focused on
cow and goat milk, and few studies have investigated the dynamic changes in sheep milk
proteins during lactation stages. The lack of such research has led to the limitation of
the sheep protein database (Hernandez-Castellano et al., 2015a). This study analyzed the
differential expression of Hu sheep milk whey proteins at different lactation stages. In our
research, 121 DEPs were identified, and functional annotation and metabolic pathway
annotation were performed to illustrate the molecular functions of the sheep milk whey
proteins in infant growth and development. This research enriches the sheep protein
database and provides a direction for the exploitation of specific milk protein production.

With the rise of proteomics technology, many studies involving milk protein
quantification and qualitative analysis have been conducted, and varieties of research
methods have been derived. Researchers identified 149 whey proteins in bovine milk
by combinatorial peptide ligand library analysis combined with 1D-SDS-PAGE and
2D-PAGE analyses (D’Amato et al., 2009). Under the ion-exchange approach, 293 unique
gene products were identified in bovine colostrum and mature whey (Le et al., 2011). In
ovine whey, Scumaci et al. (2015) used a 1D-SDS-PAGE with LC-MS/MS method and
identified 343 unique proteins in Appenninic sheep.Ha et al. (2015) used the ProteoMiner
Kit to analyze sheep milk whey proteins in depth, and 669 proteins were identified,
representing the largest inventory of sheepwhey proteins identified to date. Low-abundance
proteins are a kind of active substances with low expression that participate in a variety of
biological metabolic processes (Righetti, Boschetti & Monsarrat, 2007) but may be covered
by high-abundance proteins. ProteoMiner Kit technology can be used to saturate high-
abundance proteins quickly and increase the number of minor peptides and proteins that
are detectable by LC MS/MS, which is specifically used to analyze low-abundance proteins
(Ha et al., 2015). The isobaric tags for relative and absolute quantification (iTRAQ)
method is a quantitative proteomics approach with a relatively high throughput that allows
simultaneous identification and peptide quantification by measuring the peak intensities
of reporter ions via MS/MS (Pottiez et al., 2012). Reinhardt et al. (2013) used iTRAQ
technology to quantify protein changes between milk fractions isolated from healthy and
S. aureus infected cows, and 748 whey proteins were identified. In this work, we used
iTRAQ technology combined with LC-MS/MS and 310 proteins were identified in Hu
sheep whey milk at different lactation stages. The number of the identified proteins varies
greatly in different researches, which illustrated that milk whey proteins present significant
differences between species, and the chosen method also has a great influence on protein
detection. The identified proteins were further quantified under the iTRAQ approach in
this study, and differentially expressed proteins were found.

The DEPs identified in our research were involved in multiple biological processes,
including immunity, growth, disease, lipid metabolism, and protein metabolism. A large
number of proteins were indicated to function as immune modulators, such as superoxide
dismutase [Cu-Zn], collectin43 isoform x1, haptoglobin isoform x1, fibrinogen alpha/beta
chain, complement factor I, complement C3, immunoglobulin, serum amyloid A protein

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.10105 13/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.10105


(fragment), and mannose-binding lectin. As the major immune factors, immunoglobulins
identified in this research, including immunoglobulin epsilon, immunoglobulin kappa-
4 light chain variable region, immunoglobulin lambda-2c light chain variable region,
immunoglobulin v lambda chain and immunoglobulin alpha heavy chain, were found to
be differentially expressed at different lactation stages, and the expression levels of these
proteins were significantly decreased in mature milk. Thus, colostrum is the main source
of immune factors for newborns. Roncada et al. (2012) reported that haptoglobins in whey
are up-regulated in cows with subclinical and clinical mastitis. Fibrinogen is mainly known
as a component of blood that infiltrates into the mammary gland and is increased in plasma
after colostrum feeding (Hernandez-Castellano et al., 2015a). The fibrinogen alpha chain
is the major precursor of blood clots (Tamzali, Guelfi & Braun, 2001) but also participates
in inflammation, stimulating the adhesion, migration, chemotaxis, and phagocytosis of
monocytes and macrophages at the point of infection (Akassoglou & Strickland, 2002).
Similarly, mannose-binding lectin can alleviate the symptoms of Mycoplasma pneumoniae
in sheep, enhance body resistance, and lessen inflammation (Cosenza et al., 2012). Growth-
related protein, myosin light chain 6 (fragment), cyclin-g-associated kinase isoform x6,
myostatin A, and connective tissue growth factor were also identified as DEPs, and all
of these proteins showed decreases after 0 d. Dietary fat intake during infancy is very
high, with approximately 50% of the total energy intake being acquired from milk lipids
during the first month after birth (Innis, 2007). In the present study, lipoprotein lipase and
apolipoprotein E expression levels also presented large differences, and fatty acid synthase
(fragment) was identified as a DEP in the 3 d vs. 7 d group. In addition, several proteins
involved in protein and nucleotide metabolism, such as histone H2B, are involved in the
maintenance of the nucleosome structure of chromosomal fibers in eukaryotes (Maruyama
et al., 2006); protein disulfide-isomerase functions in the regulation of protein misfolding;
alpha-mannosidase is a key enzyme invovled in the modification of the eukaryotic protein
N-glycan, which plays a decisive role in protein synthesis and conformational folding.
The decline in the expression levels of these proteins may be correlated with mammary
gland activity. In addition, the amounts of DEPs varied greatly in first 7 d after delivery,
illustrated that adequate milk intake during this stage is critical to the development of the
newborns.

Based on their GO functional annotations, the DEPs were classified in accordance with
molecular function, cellular localization and biological pathways. In a previous study,
66% of the DEPs identified in the colostrum and mature milk whey of yak were found to
be related to binding activity (Yang et al., 2015). Furthermore, researchers who analyzed
ovine colostrum found that approximately 44% of the identified proteins were involved in
catalytic activity and that 22.4% of the proteins were involved in binding activity (Scumaci
et al., 2015). Our results were highly consistent with previous reports that catalytic activity
and binding activity exist throughout the lactation period and account for the largest
proportion of the total identified proteins. The molecular function category of the DEPs is
most comprehensive in the 0 d vs. 3 d group, indicating that the whey proteins presented
the most abundant function at 0 d after delivery. For example, antioxidant activity was only
observed in the 0 d vs. 3 d group and was lost in the other groups, which also illustrated

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.10105 14/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.10105


that colostrum is very important for providing protection against infections in newborns.
Among the characterized processes, the proteins were classified into 17 categories, among
which the metabolic process category was the largest and was detected in all time points.
Another major process was the response to stimulus, suggesting that these proteins play a
complementary role in other immunological and nonimmunological defense mechanisms
in the gastrointestinal mucosa (Ogundele, 2001). In a total, the items of biological functions
were least in the 56 d vs. 28 d group, which means that the milk whey proteins is at a stable
state. Considering the argument of the early weaning time of sheep (Ayadi et al., 2011; Ma
et al., 2015), the present study indicated that weaning at 28 d after delivery is feasible.

CONCLUSIONS
This study explored the dynamic change tendency of Hu sheep milk whey proteins after
delivery for the first time. Using iTRAQ proteomics technology combined with LC-MS/MS
methods, a total of 310 whey proteins were identified and 121 DEPs were found. GO
annotation analysis revealed that the biological functions of the proteins were most
abundant in colostrum (4∼5 h after delivery) and lost in subsequent analysis gradually.
The results from this research enriched the proteomics database of sheep milk whey, and
are expected to provide a potential guidance for early weaning of lambs.
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