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Assessment of the gene mosaicism
burden in blood and its implications
for immune disorders

Manvuel Solis-Moruno®?, Anna Mensa-Vilaré®*, Laura Batlle-Masé'?, Irene Lobén?,
Nuria Bonet?, Tomas Marqués-Bonet*%7, Juan |. Aréstegui®“® & Ferran Casals?°*

There are increasing evidences showing the contribution of somatic genetic variants to non-cancer
diseases. However, their detection using massive parallel sequencing methods still has important
limitations. In addition, the relative importance and dynamics of somatic variation in healthy tissues
are not fully understood. We performed high-depth whole-exome sequencing in 16 samples from
patients with a previously determined pathogenic somatic variant for a primary immunodeficiency
and tested different variant callers detection ability. Subsequently, we explored the load of somatic
variants in the whole blood of these individuals and validated it by amplicon-based deep sequencing.
Variant callers allowing low frequency read thresholds were able to detect most of the variants,

even at very low frequencies in the tissue. The genetic load of somatic coding variants detectable

in whole blood is low, ranging from 1 to 2 variants in our dataset, except for one case with 17

variants compatible with clonal haematopoiesis under genetic drift. Because of the ability we
demonstrated to detect this type of genetic variation, and its relevant role in disorders such as primary
immunodeficiencies, we suggest considering this model of gene mosaicism in future genetic studies
and considering revisiting previous massive parallel sequencing data in patients with negative results.

The distribution and effect of somatic genetic variants in disease has been studied mostly in cancer. However, in
the past years, they have also been identified in a wide spectrum of syndromes including neurological disorders
as schizophrenial, autism spectrum disorder?, Alzheimer®-® or Huntington disease’, coronary heart disease and
stroke® and kidney diseases such as the Alport syndrome®'!. In fact, at least theoretically, all monogenic diseases
could be originated by a postzygotic mutation and the resulting somatic mosaicism. In the field of immune-
related diseases, a remarkable number of somatic variants have been described in monogenic autoinflamma-
tory diseases'>, and a recent work has shown its important contribution to these disorders and other primary
immunodeficiencies (PIDs)?!.

Understanding the relative abundance of somatic variants in health is critical to design efficient tools for
mosaicism detection in disease studies. Different studies have measured the presence of somatic variation in
normal tissues, most assessing the presence of mutations in cancer-driver genes, such as NOTCH1 mutations,
which undergo expansion through positive selection?>-**. They reported the colonization of the tissue by mutant
clones increasing with age and exposure to mutagenic agents (sun radiation, tobacco). Other studies, based on
single cell®® or transcriptome analysis® revealed tissue-specific patterns of somatic variant distribution, as well
as negative selection of functional variants in non-cancer samples.

The detection of somatic variants from massive parallel sequencing (MPS) data presents some difficulties.
Standard variant calling methods are based on the presence of germline heterozygous mutations in about 50%
of the sequencing reads, and may fail to detect somatic variants in allelic imbalance and lower frequencies. Most
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WES ADS
Sample Coordinate (hg38) | Gene Change in DNA | Change in protein | VAF (%) | DP/VD | Mean coverage | VAF (%)
Sla (PB) chr1:247,424,492 NLRP3 | c.1049C>T p-Thr350Met 0 192/0 232 2.80
S1b (OM) chr1:247,424,492 NLRP3 | c.1049C>T p-Thr350Met 7.22 9717 153 6.90
S2 (PB) chr1:247,424,357 NLRP3 | c.914A>C p-Asp305Ala 36.26 171/62 274 34.80
S3a (PB) chr16:50,710,912 NOD2 c.1001G>A p-Arg334Gln 10.13 592/60 220 9.40
S3b (OM) chr16:50,710,912 NOD2 c.1001G>A p-Arg334Gln 5.46 1171/64 | 349 4.90
S4a (PB) chr16:50,710,912 NOD2 c.1001G>A p-Arg334GIn 46.44 618/287 | 231 -
S4 (OM) chr16:50,710,912 NOD2 c.1001G>A p-Arg334Gln 5.21 576/30 179 8.50
S5a (PB) chr1:247,425,355 NLRP3 | c.1912C>G p-Gln638Glu 19.67 422/83 318 18.40
S5b (OM) chr1:247,425,355 NLRP3 | c.1912C>G p.GIn638Glu 8.72 390/34 274 6.00
S6 (PB) chr1:247,424,367 NLRP3 | c.924A>T p-GIn308His 8.57 175/15 308 5.10
S7a (PB) chrX:71,109,309 IL2RG c.676C>T p.Arg226Cys 18.75 192/36 247 17.80
S7b (UR) chrX:71,109,309 IL2RG c.676C>T p.-Arg226Cys 11.24 169/19 213 8.30
S8 (PB) chr1:247,424,356 NLRP3 | c913G>A p-Asp305Asn 8.00 125/10 234 7.20
S9 (PB) chr16:50,710,912 NOD2 c.1001G>A p.Arg334Gln 2.12 1038/22 | 312 2.70
S10 (PB) chr14:35,007,365 SRP54 c.338G>T p.Gly113Val 2.34 128/3 146 2.30
S11 (PB) chr19:855,967 ELANE | c.607G>C p.Gly203Arg 9.10 99/9 219 16.20

Table 1. Samples and mutations included in the study. VAFs from ADS were extracted from a previous
publication?'. DP total depth; VD variant depth.

of the algorithms developed for somatic variant analyses have been optimized for cancer studies where a tumour
sample is compared with the healthy tissue from the same individual®’-*°. Of note, studies comparing the output
of different variant callers have revealed low levels of overlap*°. The tumour vs. healthy tissue approach is not
suitable for somatic variant detection in mosaicisms, where the same postzygotic variant might be present in
several tissues at similar frequencies. Alternatively, other variant calling tools can be applied to non-matched
samples®"2, In this case, allelic imbalance thresholds will need to be relaxed to detect low frequency variants, at
the cost of substantially increasing the number of candidate variants. Then, an adequate filtering strategy will be
essential to differentiate sequencing artefacts from true genetic variants. These filters are based both on techni-
cal criteria to exclude sequencing or mapping errors and biological knowledge to restrict the analysis to a set of
candidate regions. A validation step, such as amplicon-based deep sequencing (ADS), will be ultimately required
to confirm the presence of a somatic variant and better determine its frequency.

In the present study we aim to assess the load of somatic coding variants in peripheral blood at detectable
frequencies from MPS data, which is relevant to detect somatic causal variants in monogenic Mendelian diseases,
in particular PIDs. These diseases represent a privileged scenario for the study of the somatic pathogenic variation
because of the needed presence of the causal variant in blood, as well as probably in other easily accessible tissues,
and the reported important contribution of somatic mutation in these disorders®!. For this, we initially performed
whole-exome sequencing (WES) in a total of 16 samples belonging to 12 individuals. All individuals carry a
pathogenic and previously described somatic mutation related to a PID while one patient carries a germline vari-
ant. We then selected the best candidate somatic variants, based on read quality and mapping information, to be
validated with ADS. With this analysis we have tested the ability to detect causal somatic variation in PID as well
as estimated the actual number of functional coding variants in blood at detectable frequencies from WES data.

Material and methods

Ethical approval. Written informed consents for genetic analyses and participation in the study were
obtained from each enrolled individual. The Ethics Committees of Hospital Clinic and Universitat Pompeu
Fabra (reference number 7HCB/2019/0631), both located in Barcelona, approved the study, which was carried
out in accordance with the principles and last amendments of the Declaration of Helsinki.

Samples. The present study included both unique and matched samples from peripheral blood (PB), oral
mucosa (OM) and urine (UR) for 12 individuals: (i) 11 unrelated PID patients carrying a pathogenic and previ-
ously described somatic variant, and ii) one of the descendants with the same pathogenic variant in germline
status (Table 1). In eight individuals, the only analysed sample was PB (S2, S4a, S6, S8, S9, S10 and S11) or OM
(S4). In four individuals, we analysed samples from paired tissues: from PB and OM in three patients (S1a-S1b,
S3a-S3b and S5a-S5b) and, in the remaining patient, from PB and UR (S7a-S7b).

All of the PID mutations are missense single nucleotide variants (SN'Vs), and are the disease causing mutation
either in the proband or in its offspring, where they are germline variants. The range of variant allele frequencies
(VAFs) for the somatic variants previously estimated by ADS* ranges from 2.3 to 34.8%.

For patient S5 we included additional samples from urine, oral mucosa, whole blood (before and after anti-
IL-1 treatment), and different cell type populations previously isolated by flow cytometry*’: neutrophils, mono-
cytes, B cells, T CD4 + cells and T CD8 + cells (all pre-treatment).
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Sequencing and genomic analysis.  After DNA extraction, library preparation and exome capture were
performed with the Nextera Rapid Capture kit (Illumina) according to the manufacturer’s instructions. The
libraries were sequenced in a NextSeq Illumina platform in three High Output 2x 150 paired-end cycles runs
to a mean coverage of 245X. We used BWA-mem version 0.7.16a-r1181%* (https://github.com/lh3/bwa) to map
the samples to the human reference genome hg38 (UCSC). We marked duplicated reads using Picard version
2.18.6 (https://github.com/broadinstitute/picard) MarkDuplicates and realigned indels using GATK’s version
3.7% (https://github.com/broadgsa/gatk) IndelRealigner. We also performed base quality score recalibration
using GATK’s BaseRecalibrator.

We used eight publicly available tools to call genetic variants: FreeBayes version 0.9.14-8-g1618f7¢e* (https://
github.com/freebayes/freebayes), HaplotypeCaller version 3.7°* (https://github.com/broadgsa/gatk), LoFreq
version 2.1.2% (https://github.com/CSB5/lofreq), MuTect2 version 3.7%* (https://github.com/broadgsa/gatk),
SomVarlIUS version 1.1% (https://github.com/kylessmith/SomVarIUS), Strelka2 version 2.7.1* (https://github.
com/Illumina/strelka), VarDict version 1.0* (https://github.com/AstraZeneca-NGS/VarDict) and VarScan2 ver-
sion 2.4.3%° (https://sourceforge.net/projects/varscan/files/). FreeBayes and HaplotypeCaller are purely germline
callers. SomVarIUS is a caller designed to detect somatic variants in unpaired samples. The rest of them support
a single mode and a paired mode. Although in our study we were not analysing cancer samples, we tested the
behaviour of variant callers’ paired mode in this context with the matched PB-OM and PB-UR samples. We
used default parameters for all the callers except for VarScan2, where we lowered the allele frequency threshold
of 20% and set the p-value to 1 to retrieve all the possible calls. For HaplotypeCaller, we first used the default
ploidy parameter of 2 and next we considered other ploidy values: 4, 5, 6 and 10.

For variant calling, the manufacturer’s targeted regions were intersected with our VCEF files to retrieve the on
target genetic variants, and we restricted our analysis to these regions. We annotated the variants using SnpEff
version 4.3t*! (https://sourceforge.net/projects/snpeff/files/) and SnpSift version 4.3t** (https://sourceforge.net/
projects/snpeff/files/). Using the database dbNSFP version 4.0bla*’, we added parameters of interest such as
CADD score**, GERP score, ExAC* and gnomAD allele frequencies. We also added two functional predictions,
gene haploinsufficiency values*® and Residual Variation Intolerance Score (RVIS)*.

We performed ADS with rhAmpSeq from Integrated DNA Technologies (IDT, Coralville, USA) to validate
the candidate somatic variants. We sequenced every selected position to a mean coverage >20,000X in a NextSeq
Hlumina platform in a High Output 2 x 150 paired-end cycles run. The confirmed in blood plus 19 additional
candidate somatic variants in S5 were analysed for validation in different tissues and cell population samples.
They were sequenced in a MiSeq v3 run (2 x 300) to a final depth>155,000X. We used BWA-mem version 0.7.16a-
r1181 to map the fastq files to the human reference genome hg38 (UCSC). We then used pysam version 0.15.2
(https://github.com/pysam-developers/pysam) to count the number of reads supporting every allele, requiring
a minimum mapping quality of 20 to calculate VAFs.

Results

Detection of somatic pathogenic variants from WES in PID patients. We performed WES in all
DNA samples to a mean coverage of 245X (Table 1). The total number of genetic variants differs among the
different callers (Supplementary Fig. S1), mostly because of VarDict and VarScan2, the two callers with relaxed
allelic imbalance parameters, which called more than 200,000 variants each. These two callers also show high
heterogeneity across samples, which correlates with sequencing depth, as expected in MPS experiments. The
amount of overlapping variants across the different callers is uneven, especially for SomVarIUS, due to the low
number of variants it calls. The number of concordant variants between VarDict and VarScan?2 is also low, prob-
ably because VarDict calls 3-4 times the number of indels of Varscan2 and because of discrepancies calling low
frequency variants (Supplementary Fig. S2).

Figure 1 shows which known causal somatic variants (Table 1) are detected by each software. FreeBayes and
HaplotypeCaller have the lowest detection ratios. For the rest, the ability of detection is similar and seems to
depend on the frequency of the mutations, along with the coverage of the sample and the mapping quality. The
Sla causal variant has not been called by any software, but visual inspection of the mapped reads revealed that
none of them supported the alternative allele (Supplementary Fig. S3). Excluding it, VarDict and VarScan2 were
able to detect all the causal variants. To increase the power of detection of HaplotypeCaller, we explored the
effect of modifying the ploidy parameter. We used ploidy 2 (default), 4, 5, 6 and 10 in order to call variants with
lower frequencies than expected in a germline scenario. This parameter is normally tuned when working with
organisms with ploidies different than 2. For instance, decaploid plants have been reported***, and genotypes
0/0/0/0/0/0/0/0/0/1 are possible. This way, the increase of the ploidy parameter makes HaplotypeCaller more
sensible to low frequency variants. The percentage of detected variants increased sequentially with the ploidy
parameter, although some remained undetected. HaplotypeCaller seems to be sensitive to mapping quality as in
the case of the ELANE region (Supplementary Fig. S4), where a variant with moderate frequency is not detected
by this caller. Interestingly, we lost one variant using ploidy 10 while it was previously detected with ploidies 5
and 6 due to memory reasons (Fig. 1, expanded in Supplementary Fig. S5).

Next, we assessed the performance of the five variant callers including a paired mode in the four cases with
available paired samples (S1, S3, S5 and S7), where the same variant is present in two tissues with different
frequencies. As a general trend, there is no improvement of the detection rate when using the paired mode
compared to the single mode, probably because of the small differences in allele frequency between tissues. The
use of one or the other paired sample as cancer/healthy tissue does not seem to affect the capacity of detection.
Again, VarDict and VarScan2 showed the best detection ratios (Supplementary Table S1).

Scientific Reports |

(2021) 11:12940 | https://doi.org/10.1038/s41598-021-92381-y nature portfolio


https://github.com/lh3/bwa
https://github.com/broadinstitute/picard
https://github.com/broadgsa/gatk
https://github.com/freebayes/freebayes
https://github.com/freebayes/freebayes
https://github.com/broadgsa/gatk
https://github.com/CSB5/lofreq
https://github.com/broadgsa/gatk
https://github.com/kylessmith/SomVarIUS
https://github.com/Illumina/strelka
https://github.com/Illumina/strelka
https://github.com/AstraZeneca-NGS/VarDict
https://sourceforge.net/projects/varscan/files/
https://sourceforge.net/projects/snpeff/files/
https://sourceforge.net/projects/snpeff/files/
https://sourceforge.net/projects/snpeff/files/
https://github.com/pysam-developers/pysam

www.nature.com/scientificreports/

0
Q | w|lN|s(n|w]| 8 v
< | 9| > > >| > N| Dl N =] Y
e | 3| B|E|E|E|5|8|8|5|8|2|&
o m|lo|o|lo|lols|l&lB|3S|T| S &
& | 9] alalafa|lg| 0| 3| E| 5| 8| %
e | 2l ololelelo]l 7| 2|ls|lal?|S
<>t'-'-:|::|::|::|:I )

Sla 2.80%

Sib 6.90%

S2 34.80%

S3a 9.40%

S3b 4.90%

S4a Germ

S4 8.50%

S5a 18.40%

S5b 6.00%

S6 5.10%

S7a 17.80%

S7b 8.30%
S8 7.20%
S9 2.70%
S10 2.30%

S11 16.20%

Figure 1. Previously reported causal somatic mutations detected by each variant caller (in green), assessed as
the presence of the variant in the raw VCF files. The germline variant in S4a was detected in Strelka germline
mode but not in the somatic one. All VAF were extracted from a previous publication®..

Filtering strategies for the identification of true causal variants. Once genetic variants have been
called, a set of different filters is commonly applied to reduce the number of false positives. This is a crucial issue
in the study of monogenic syndromes, where the aim is moving from the approximately 20,000 genetic variants
identified in a typical WES to one or a few candidate variants. Relaxing or disabling the VAF filters to increase
the ability to detect causal somatic variants, as we did in this study, produces an important increase of the num-
ber of mutations per individual, making this process highly recommended.

We evaluated the ability to identify the known pathogenic variants after applying the standard filters to the
variants called by VarDict and VarScan2, the most successful programs in calling them (Fig. 1). We started by
intersecting the two VCF files for every individual, given that in all cases the true variants were retained by both
of them. Next, we applied a set of additional filters sequentially (see below), checking in every step if the causal
variant was retained or filtered out (Table 2). First, we filtered out SNPs located 6 bp around indels. Second,
as suggested previously, we restricted our analysis to the 1000 Genomes Project strict mask filter. Third, we
required the positions to be covered by, at least, 50 reads (DP >50) and to show a minimum quality value of 25
(QUAL > 25). Fourth, we only kept loss of function and missense variants. Fifth, we applied a stringent popula-
tion allele frequency threshold of 0.001 in gnomAD. With a high probability, a somatic variant will be absent
in the population because of its de novo nature, although the possibility of having a recurrent mutation cannot
be excluded. Sixth, following the recommendations in the literature, we kept variants with a likely damaging
predicted effect (CADD > 15*) and a high evolutionary conservation score, as an indicator of its functional
importance (GERP >2°'). Seventh, we required at least three reads supporting the alternative allele (VD >3) in
every call. Finally, we used the list of 333 genes of the International Union Of Immunological Societies (IUIS,
updated in February 2018)°? as a set of candidate genes for PIDs. Excluding the causal somatic variant of sample
Sla, which was not detected in the sequencing process, 13 out of the 14 somatic mutations were included in the
final list of candidate variants. The remaining one (S6), was filtered out because of a GERP value lower than 2.

Mosaicism abundance detection in whole blood. As mentioned above, the consideration of genetic
variants deviating from the approximate expectation of 50% read frequency increases substantially the number
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Filtering Sla S1b S2 S3a S3b S4 S5a S5b S6 S7a S7b S8 S9 S10 S11
8,‘;:‘[‘;%?_ 298,250 | 363,209 | 239,526 | 286,381 | 241,135 |382,519 |231,469 | 312,808 |276,040 |293,494 | 315825 |274,664 |191,603 |223,731 | 302,540
VarScan2) 173,072 | 101,637 | 266,542 | 200,507 | 453,494 | 119,025 | 263,604 | 245467 |273,296 | 176,720 |171,718 |317,568 | 720,791 | 261,383 | 172,629
Intersection | 48,715 | 44,246 |49,871 51,066 |70,617 |49,399 |52,849 |61,889 | 62,644 |53,951 |51,705 58201 |64,366 |50,684 | 53,268
6pb indels 48,187 | 43,598 |49,246 |50,477 | 69,885 |48451 |52286 |61,126 |61,954 |53,382 |50,880 |57,646 | 63,757 |50,157 | 52,621
1000G mask | 35,864 |31,825 |37231 |37,437 |55243 [35592 |39,619 |47,635 |48200 |40.621 |38732 |44,829 |50966 |37.963 |39,983
DP>50 34,091 | 27,692 |36459 |35706 |54,052 |31,989 |38734 |45779 |46,668 |37,906 |35927 |42349 |[49,958 33,123 |36816
QUAL>25 |33771 |27,346 |35991 |[35272 |[53,184 |[31,542 |38295 |45035 |45851 |37,388 |[35353 |41,439 |48835 |[32,584 |36,282
LoF & mis-

sonse 18,476 | 15154 |19,998 |18,929 |31,534 |18,100 |21,148 |26962 |27,596 |22,103 |20,585 |24,283 |28,888 |18518 |21,472
gno- 12,135 | 10,119 | 13,562 | 11,980 |24,001 |12,871 | 14,427 |20,553 |21,178 |16,281 |14781 |17,977 |21,910 |12711 |15634
mAD<0.001

CADD>15 |9,035 |7,904 10,085 | 8,864 19,044 | 9,994 10,828 | 16271 | 16,808 | 12,662 |11,077 | 13,887 |17,086 | 9,547 12,155
GERP>2 7,787 | 6,771 8,703 | 7,604 16486 | 8582 | 9,374 13,979 | 14,498 | 10,953 | 9,528 11,976 | 14,633 | 8,161 10,409
VD>3 6977 | 6086 |7446 | 6,528 14473 | 7,720 | 8,560 12,509 | 13231 |9764 | 8,181 9,719 11,024 |5162 |8991
(g::nnecl‘date 174 177 174 172 319 219 187 276 275 226 255 263 243 144 229

Table 2. Numer of called variants and after sequential variant filtering process for each sample. The last step
where the causal somatic variant is retained is shown in bold.

Raw data
250,000
Filtering 1

Filtering 2 : .
— QUAL>258& DP>50 Intersection VarDict — VarScan2
— SNPs in coding sequences 50,000
— SNPs 6 bps next to indels
— Strict mask 1000G

— Notshared between individuals

— Not presentin dbSNP as COMMON
— Notin segmental duplications

— Notin homopolymers

— Mappability=1

Filtering 3
Somatic in-house filters

Final
candidates

Figure 2. Filtering process followed to obtain somatic candidate variants. We got around 40 variants per blood
sample that we then experimentally validated by ADS.

of called variants. In the previous analyses we assessed how many of the true causal variants in 11 PID samples
were detected. Now we wonder what proportion of the called variants in these samples corresponds to real
postzygotic mutations, and not to sequencing, mapping or calling errors. We restricted the analysis to coding
variants, more prone to have a functional impact and to be related to monogenic disorders. For this, we applied
the following filters to select the variants more plausible to be validated as true: we intersected the SNPs called
by VarDict and VarScan2, removed SNPs located 6 bps around indels, applied 1000G strict mask, required a
minimum depth of 50 and a minimum quality of 25, removed variants classified as common in dbSNP and
those shared among samples in the study, removed SNPs located within homopolymers, and removed SNPs in
positions where the mappability was not perfect. We also performed a binomial test to exclude potential het-
erozygous mutations, to estimate the possibility of the observed number of reads supporting the alternative allele
given the total number of reads. We finally required a minimum number of reads supporting the alternative
allele of 7, due to the large number of variants below this threshold in our dataset (Supplementary Fig. S6). After
this filtering, we moved from the approximately 250,000 variants called per individual to around 40. (Fig. 2), rep-
resenting a total of 461 candidate somatic variants (Supplementary Table S2) for the 11 blood samples. 327 (70%)
of the variants were missense, while 92 (20%) were synonymous and 19 (4%) were stop-gain. The remaining 23
variants were annotated as structural interaction variants and splice variants. Remarkably 30 of the variants were
located in zinc finger proteins, 20 of them located in chromosome 19, and none of them were validated.

The 461 candidate variants were analysed by ADS with the rhAmpSeq technology (see Methods). All candi-
date positions were resequenced in the individual in which they were called and in the rest of individuals, plus
two healthy individuals as controls. The average coverage per position was 22,500X (max=272,401, min=0,
sd=21,296). The overall validation ratio was very low. For five individuals (S6, S7, S8, S9 and S10), only the initial
pathogenic variant was validated, with none of the other additional candidate variants confirmed. In other six
individuals, including the individual with no somatic variants (S4a), we validated one additional variant: one
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Whole
Whole | blood Oral
Chr | Position Gene Type blood | post Urine | mucosa | Neutrophils | Monocytes | Bcells | TCD4 | TCD8 | Controll | Control2 | Validated
chrl 153,003,501 | SPRR3 if;lss_e 7.7216 | 3.7419 | 7.3138| 1.6876 | 7.165 9.5398 0.1088| 0.1049| 0.0976| 0.0832 0.1081 YES
chrl 247,425,355 | NLRP3 i\gli-e 24.6228 | 12.4922 | 25.3693 | 7.0918 | 24.3422 33.993 0.0825| 0.0794| 0.0787| 0.0437 0.0571 YES
chr2 | 24,300,108 | ITSN2 ?;I;Ss-e 4.7359 | 3.4122 | 5.0154 | 1.8296 | 5.6246 2.2179 0.3675| 0.1288| 0.1415] 0.1035 0.1628 YES
chr2 209,888,127 | UNC80 Is_r}llggsm_ 26.5932 | 13.452 | 28.2002 | 6.9989 | 26.8757 34.7143 0.2961| 0.2798| 0.2896| 0.2373 0.2993 YES
chr2 219,251,622 | TUBA4A Islzgl(l)sni_ 4.5508 | 3.2531 | 4.6625| 1.3055 | 5.3645 1.9301 0.2923| 0.1629| 0.1553| 0.0815 0.1322 YES
chr3 | 52,913,506 | SFMBTI ive[;ss-e 1.4477 | 1.2013 | 1.3699| 0.4748 | 1.7193 1.453 2.5658 | 0.1158| 0.1569| 0.062 0.068 YES
chr4 143,695,587 | FREM3 ivelxi’:e 24.3856 | 12.176 | 24.6201 | 6.1085 | 23.192 31.5614 0.167 0.1334| 0.1238| 0.0887 0.1295 YES
chr4 165,059,454 TRIMG0- Inte'r- 0.073 0.0596 | 0.0601| 0.0673 | 0.0659 0.0515 0.0646| 0.0892| 0.0532| 0.0676 0.0533 NO
TMEM192 genic
chr6 | 36,270,463 | PNPLAI i\grif;e 4.8759 | 4.0553 | 5.5917 | 1.7713 | 6.4759 2.6609 0.3096| 0.0835| 0.0768| 0.0657 0.0772 YES
chr6 | 52,082,518 | PKHDI if:;e 26.3027 | 12.7771 | 27.3696 | 6.8415 | 26.0161 35.482 0.1139| 0.1225| 0.0916| 0.0923 0.111 YES
chré 151,349,029 | AKAPI2 i\grllsge 1.496 1.2648 | 1.6739| 0.4203 | 1.8367 1.2469 2.7175| 0.0769| 0.1867| 0.0872 0.0911 YES
chr7 157,614,060 | PTPRN2 Intronic | 47.7712 | 48.8889 | 46.9676 | 46.2124 | 49.503 48.0925 48.1535| 43.1712 | 46.6121 | 0.0656 0.0674 NO
chr9 | 91,410,553 | NFIL3 i\gllfs_e 0.1427| 0.1298| 0.127 | 0.1367 | 0.109 0.0848 0.1351| 0.118 0.1174| 0.129 0.1463 NO
chrll | 111,853,480 | ALG9 fg’gssni- 42723 | 3.1181| 4.6411| 1.3842 | 5.2542 2.2404 0.2136| 0.2158| 0.229 | 0.1434 0.2365 YES
chrl12 | 128,705,237 | TMEM132C i\glilss_e 2.4998 | 1.2072| 2.4715| 0.5706 | 2.2107 3.4175 0.1087| 0.0703| 0.0635| 0.081 0.0814 YES
chrl3 | 24,912,928 | CENP] i\gxilsge 1.5069 | 1.1153 | 1.8446| 0.6136 | 1.8944 0.9268 1.2501| 0.1418| 0.2347| 0.0655 0.0754 YES
chrl7 | 50,840,691 | WFIKKN2 i‘\grilss—e 4.1908 | 2.7357 | 4.4201| 1.3373 | 4.4152 1.9862 0.1779| 0.1208| 0.1042| 0.0674 0.0797 YES
chrl9 | 16,529,871 | CHERP Is]}::l(l)snr 4.6041| 22909 | 4.4651| 1.1656 | 4.6677 5.4904 0.1021| 0.1105| 0.0973| 0.0697 0.0885 YES
chr20 | 13,915,139 | SELIL2 Intronic | 24.5724 | 11.9959 | 24.142 6.1982 | 23.3935 33.2716 0.0564| 0.0719| 0.0733| 0.0562 0.0869 YES
chrX | 71,537,899 | OGT i\g;fs-e 49.978 | 25.1551 | 48.1124 | 12.4303 | 48.9245 32.2739 0.2688| 0.275 0.2301| 0.1665 0.2497 YES

Table 3. VAF of the 20 somatic candidate variants studied in S5 patient. In bold, values below the sequencing
error threshold.

30

20

Variant allele frequency (%)

Whole blood Neutrophils Monocytes Urine Oral mucosa B cells TCD4 cells TCD8cells  Control 1 Control 2
Tissue/cell type

Figure 3. VAF of validated somatic variants in S5 patient per tissue and cell type. Green is used for the group
of variants with higher VAF (around 24%), red for those with intermediate VAF (around 4%) and blue for
those with low VAF (around 1.5%, the only group present in B cells). Of note, there is one variant in the X
chromosome whose frequency has been divided by 2 in order to visualize it grouped with the others.
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missense variant in ODF2 (S1), SHISHA2 (S2), STRIPI (S3) and IL2RG (S11), and one synonymous variant in
CACNASI (S4) and ROBO4 (S11). Of note, in patient S5 we validated a total of eleven variants: seven missense,
being one of them the causal variant in NLRP3, and four synonymous. The twelve variants seemed to cluster in
two frequency groups: one with variants of about 25% (including the pathogenic variant) and other with variants
about 4.5% (Supplementary Table S2).

Cell type distribution of somatic variants in S5 patient.  Given the high number of validated somatic
variants in patient S5, we expanded the analysis selecting nine additional candidate genetic variants. These vari-
ants were analysed for validation, along with the twelve previously confirmed, both in the whole blood sam-
ple and different cell populations separated by flow cytometry* (Table 3). We also added a whole blood DNA
extraction obtained after the anti-IL-1 treatment this patient received. In this experiment, the average coverage
per position was 158,000X (max =484,219, min = 16,689, sd =80,940). We considered that a somatic variant was
validated in a given cell type or tissue when the proportion of reads supporting the alternative allele was above
0.30%, a value close to the average error type of sequencing by synthesis technologies, which also varies with
features such as sequence context or the specific nucleotide change®***. Six of the nine new genetic variants were
validated, with one (chr7:157,614,060) being a germline variant according to its frequency (Table 3).

Overall, we detected 17 somatic variants in this patient, 16 protein coding and one intronic (Table 3), now
clustered in three groups with similar VAFs around 24%, 4.5% and 1.5% in whole-blood pre-treatment (Fig. 3)
and cell type distribution. VAFs changes across different cell types and tissues are coordinated within each group,
being the two main groups only present in the myeloid line as well as in urine and cell mucosa, but absent in
the lymphoid line. In general, we found higher allele frequencies in monocytes and lower in oral mucosa. The
presence of the somatic variants in oral mucosa and urine was produced by leukocyte infiltration, which was
detected by flow cytometry®. On the other hand, the lowest VAF group of variants are detected in myeloid cells
and B cells, but not in T cells. The VAF of all the somatic variants is reduced in the whole-blood sample after the
anti-IL-1 treatment (Whole blood 3 post, in Table 3). This decrease is more important for the variants restricted
to the myeloid line, and it is likely observed because of the increased proliferation of inflammatory cells, which
is now controlled with the treatment®.

Discussion

We performed WES of DNA samples from patients with PIDs, carrying variable degree of gene mosaicism and
assessed the ability to detect the somatic causal genetic variants by using different tools. Among the eight vari-
ant callers tested, VarDict and VarScan showed the higher detection rates of the causal somatic variants. The
rest of the callers designed for somatic variant detection (MuTect2, SomVarIUS and Strelka2) mainly showed
some limitations with the lower frequency variants at lower coverage. FreeBayes and HaplotypeCaller, designed
for germline variant detection, failed to detect most of the somatic mutations. However, the performance of
HaplotypeCaller increases when modifying the ploidy parameter, devised for non-diploid organisms and which
allowed retrieving variants with less frequency than the expected 50% in the germline. Of interest, the efficiency
of the five callers including a paired mode did not increase when using paired samples, probably because of the
small frequency difference between the two samples carrying the same mutation.

Allele frequency is the main limitation for calling a somatic variant, with the risk of non-capturing the
mutation because of its low frequency and/or insufficient coverage. To capture these low frequency variants,
sequencing depths should ideally be higher than the commonly average depths achieved in WES studies (60-
100X). However, the average coverage value might not be informative enough on the sequencing performance
for all genomic regions, given the non-uniformity of the capture process. The use of new metrics including this
information has been proposed®®, which should help to reduce false-negative results. As an example, the NOD2
region is clearly captured more efficiently than the NLRP3 region in our study (Table 1). On the other side, only
a few reads supporting the alternative allele seems enough to detect the variant, with as few as 3 (out of 128)
for the S10 variant or 7 (out of 97) for the S1b variant (Table 1). Thus, an increase of the sequencing depth to
100-200X is recommendable in cases in which somatic variation is suspected. Higher coverage facilitates the
detection of very low frequency variants, but increases the risk of enlarging the list of candidate variants because
of approaching the error rate of MPS technologies™.

Genetic studies usually implement a set of filters to reduce the number of candidate variants to the causal one
or to a small group. This process is a trade-off between reducing the number of false positives (either sequencing
or mapping artefacts, and non-causal variants) and false negatives (called but filtered true causal variants). At
the risk of missing the causal variant, these filters are essential to determine, at least, a reduced list of candidate
genes for monogenic syndromes. In the case of studies like this, where the relaxation of allele frequency thresh-
olds generates a list of up to hundreds of thousands of variants per sample (Supplementary Fig. S1), this step
can be especially critical. After applying commonly used filtering parameters both for sequencing and biological
features, only the causal variant in one patient was discarded because of low conservation score (GERP for S6
causal variant: -8.07). In the case of applying more stringent filters, two more variants (S1b and S5a-b) would
be missed due to GERP score vale lower than 4°”°%. On the other side, only S6 causal variant would not pass a
CADD threshold of 20.

The final number of candidate genetic variants exceeds by about ten times the number of variants in studies
analysing germline variants. Considering the TUIS list of 333 candidate genes for PIDs, this is still quite high,
with approximately 0.5 variants per gene in each individual. Therefore, it seems recommendable to restrict the
analysis to a reduced set of candidate genes according to the clinical phenotype of each patient. Alternatively, the
use of some gene features could also help to reduce the list of candidate variants if there is not any a priori clear
candidate. Several gene indexes have been developed to measure their possible contribution to human disease.
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Among them, haploinsufficiency predictions could seem useful for identifying candidate genes in a somatic
variant disease model expecting to follow a dominant inheritance pattern. However, all the genes with somatic
causal variants included in this study show haploinsufficiency values below the consensus threshold of 0.5, with
NLRP3, a gene that is proven to be mutated in different autoinflammatory diseases®’, showing the highest value
of 0.465. In contrast, NLRP3 has been reported as a gene with a high level of intolerance to functional variation
(RVIS=-0.95, in the top 9.38% of genes)*".

It is important to consider that exome sequencing was performed in DNA samples obtained from peripheral
blood. Therefore, only somatic variants present in the major cell populations in blood can be detected. Neutro-
phils represent more than half of the nucleated blood cells (55-75%) in healthy individuals, while lymphocytes
represent around 20% (from which T cells are ~ 70%, B cells are just ~20%, and NK cells ~ 10%)". Thus, for early
postzygotic mutations, the capacity of detection will most probably not be affected by the cell type implicated
in the disorder, since the variant will have similar frequencies in all cell populations. In contrast, for later onset
mutations restricted to particular lineages, the mutation will only be detectable if present in the major cell popula-
tions of the analysed tissue. Therefore, for immune disorders, the probability of detecting a causal variant from
whole-blood extraction analysis will be much higher in those produced by alteration in the myeloid cells, such
as in autoinflammatory disorders, than in the lymphoid cells. This fact can partially explain the larger number
of reported cases in autoinflammatory disorders?' compared to other PIDs, as well as the lack of success in the
identification of somatic variants in lymphoid immunodeficiencies such as CVIDC! In these latter situations, it
is expected that a big proportion of somatic causal variants would only be detectable if the analysis is restricted
to particular cell types. Thus, cell subsets isolation can be essential to the identification and/or the validation of
somatic genetic variants in these less represented cell types.

Beyond the detection of the known causal variants, the detected load of coding variants per exome was very
low. Except for S5, all the individuals carry none or only one somatic variant additionally to the causal variant.
The vast majority of candidate variants were false positives, even if they passed the mapping and quality filters.
Comparing our results to other studies is not straightforward because of the differences in the methodologies
used and the scanned VAFs, as well as the conceptual approach and targeted regions (see “Introduction”). A
whole-genome sequencing (WGS) data analysis of 11,262 blood samples revealed a median number of three
mosaic mutations for younger individuals, increasing after 35-45 years of age, and considering 20 somatic vari-
ants as the threshold for clonal expansion, that affecting 12.5% of the individuals®®. Although the minimum
detectable VAF of the study was limited because of the 34.8X mean coverage, the results seem concordant with
the low number of somatic variants described in our WES deep sequencing approach. In addition to scanning a
wide range of VAFs, we validated our results by ADS, which confirmed the low number of somatic coding variants
detectable in blood. At a finer level, the total number of somatic variants per cell has been estimated in single-cell
studies?>?, although most of this variation would remain undetected when the whole tissue is analysed. In fact,
when much lower frequencies have been scanned (VAF >0.0001), it has been shown that clonal haematopoiesis
is present in up to 97% of middle-aged people®. However, in absence of positive selection on a given mutation,
only those that occurred earlier would reach detectable frequencies.

We identified a particular patient with an excess of validated variants compared to the others. S5 is the
oldest individual of our dataset (64 years old), although another individual of similar age was also included in
this study. Especially for the higher VAF group of five variants (which includes the causal one in NLRP3), the
frequency pattern is quite uniform, except for one of the variants in chromosome X (chrX:71,537,899), with
lower frequency in monocytes. The presence of the genetic variants in the lowest frequency cluster in cells of
the myeloid lineage and in B cells, but not in T cells, could be explained by its origin in adult hematopoietic
stem cells generating multineage outputs®. Because of the seemingly aggrupation in three different clusters of
frequencies and cell type distribution, we propose simultaneous occurrence and clonal expansion as the most
parsimonious explanation. However, none of the genes with somatic variants in S5 (Table 3) seems to be related
with cellular proliferation that could be linked to an adaptive advantage of a clone of cells, and we also discarded
the presence of additional candidate variant in DNMT3A, TET2 and ASXLI genes, known to be implicated in
hematologic malignancies®*®. In fact, in the aforementioned study of WGS of 11,262 individuals®® only 12.6%
of the cases of clonal haematopoiesis had detectable cancer driver mutations. Thus, on the rest of cases as well
as for S5, clonal haematopoiesis could be produced by genetic drift, as suggested in simulation analysis®. In
contrast, a recent study®” proposes positive selection being the major driving force of clonal haematopoiesis, and
that it would take more than 2000 years for a mutation to reach a VAF > 1% by only drift. However, our results
do not seem to fit to this explanation, because of the abovementioned gene location as well as the presence of
synonymous and intronic variants.

Finally, although we believe that our study contributes to the understanding of the burden of functional
somatic mutations in blood and provides some practical advice on its detection, we would like to acknowledge
some limitations of our approach. Allele frequency and sequencing depth are the two main limiting factors to
detect a somatic variant as shown in our case by the failure to detect a variant with VAF <3%. Also, the number
of genetic variants depends on the selected software, that show a limited level of overlapping among them. In
this sense, we recommend an inclusive strategy by using the less stringent callers or parameters, followed by a
filtering strategy based on sequencing and mapping features. However, even by using stringent filters, the capac-
ity of detection of causal variants will be mostly limited to previously known candidate or related genes, given
the excessive number of variants when considering the whole exome. Gene functional relevance or mutation
tolerance indexes could be used to reduce the number of candidate genes, but they also show limited applicabil-
ity. Of importance, we also acknowledge the limitations derived from the small size of our cohort which, while
allowing the study of somatic variant discovery, makes it difficult to draw conclusions in terms of dynamics of
somatic variation.
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Conclusions

The detectable genetic load of somatic coding variants in blood is low. A moderate increase of the commonly
achieved depths in exome sequencing analyses can be enough to detect most of these variants at frequencies
above the technology error rate, for which we recommend using variant callers sensitive to low VAE Of impor-
tance, the high proportion of false positives makes mandatory their validation which will also provide a better
estimation of the VAF. Given both the feasibility of this approach and the reported contribution of gene mosai-
cism to PIDs?!, we think that this model should be considered in future sequencing studies. It can be of special
interest for those disorders related to major cell populations in blood, such as autoinflammatory diseases. We also
suggest reanalysing data of undiagnosed patients, especially those where the inheritance pattern in the pedigree
and/or the clinical features of the patient might fit this model. Because of the high number of possible somatic
variants called per individual, even after applying stringent filters, it is advisable to restrict the analysis to a set
of candidate genes defined according to the clinical phenotype. Finally, our results are in agreement with the
existence of clonal haematopoiesis produced by drift, and that can be related to non-cancer disorders.

Data availability

The datasets generated during and analysed during the current study are available in the European Nucleotide
Archive (ENA) repository under accession code PRJEB44742 (https://www.ebi.ac.uk/ena/browser/view/PRJEB
44742).
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