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Assessment of the gene mosaicism 
burden in blood and its implications 
for immune disorders
Manuel Solís‑Moruno1,2, Anna Mensa‑Vilaró3,4, Laura Batlle‑Masó1,2, Irene Lobón1, 
Núria Bonet2, Tomàs Marquès‑Bonet1,5,6,7, Juan I. Aróstegui3,4,8 & Ferran Casals2,9*

There are increasing evidences showing the contribution of somatic genetic variants to non-cancer 
diseases. However, their detection using massive parallel sequencing methods still has important 
limitations. In addition, the relative importance and dynamics of somatic variation in healthy tissues 
are not fully understood. We performed high-depth whole-exome sequencing in 16 samples from 
patients with a previously determined pathogenic somatic variant for a primary immunodeficiency 
and tested different variant callers detection ability. Subsequently, we explored the load of somatic 
variants in the whole blood of these individuals and validated it by amplicon-based deep sequencing. 
Variant callers allowing low frequency read thresholds were able to detect most of the variants, 
even at very low frequencies in the tissue. The genetic load of somatic coding variants detectable 
in whole blood is low, ranging from 1 to 2 variants in our dataset, except for one case with 17 
variants compatible with clonal haematopoiesis under genetic drift. Because of the ability we 
demonstrated to detect this type of genetic variation, and its relevant role in disorders such as primary 
immunodeficiencies, we suggest considering this model of gene mosaicism in future genetic studies 
and considering revisiting previous massive parallel sequencing data in patients with negative results.

The distribution and effect of somatic genetic variants in disease has been studied mostly in cancer. However, in 
the past years, they have also been identified in a wide spectrum of syndromes including neurological disorders 
as schizophrenia1, autism spectrum disorder2, Alzheimer3–6 or Huntington disease7, coronary heart disease and 
stroke8 and kidney diseases such as the Alport syndrome9–11. In fact, at least theoretically, all monogenic diseases 
could be originated by a postzygotic mutation and the resulting somatic mosaicism. In the field of immune-
related diseases, a remarkable number of somatic variants have been described in monogenic autoinflamma-
tory diseases12–20, and a recent work has shown its important contribution to these disorders and other primary 
immunodeficiencies (PIDs)21.

Understanding the relative abundance of somatic variants in health is critical to design efficient tools for 
mosaicism detection in disease studies. Different studies have measured the presence of somatic variation in 
normal tissues, most assessing the presence of mutations in cancer-driver genes, such as NOTCH1 mutations, 
which undergo expansion through positive selection22–24. They reported the colonization of the tissue by mutant 
clones increasing with age and exposure to mutagenic agents (sun radiation, tobacco). Other studies, based on 
single cell25 or transcriptome analysis26 revealed tissue-specific patterns of somatic variant distribution, as well 
as negative selection of functional variants in non-cancer samples.

The detection of somatic variants from massive parallel sequencing (MPS) data presents some difficulties. 
Standard variant calling methods are based on the presence of germline heterozygous mutations in about 50% 
of the sequencing reads, and may fail to detect somatic variants in allelic imbalance and lower frequencies. Most 
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of the algorithms developed for somatic variant analyses have been optimized for cancer studies where a tumour 
sample is compared with the healthy tissue from the same individual27–30. Of note, studies comparing the output 
of different variant callers have revealed low levels of overlap29,30. The tumour vs. healthy tissue approach is not 
suitable for somatic variant detection in mosaicisms, where the same postzygotic variant might be present in 
several tissues at similar frequencies. Alternatively, other variant calling tools can be applied to non-matched 
samples31,32. In this case, allelic imbalance thresholds will need to be relaxed to detect low frequency variants, at 
the cost of substantially increasing the number of candidate variants. Then, an adequate filtering strategy will be 
essential to differentiate sequencing artefacts from true genetic variants. These filters are based both on techni-
cal criteria to exclude sequencing or mapping errors and biological knowledge to restrict the analysis to a set of 
candidate regions. A validation step, such as amplicon-based deep sequencing (ADS), will be ultimately required 
to confirm the presence of a somatic variant and better determine its frequency.

In the present study we aim to assess the load of somatic coding variants in peripheral blood at detectable 
frequencies from MPS data, which is relevant to detect somatic causal variants in monogenic Mendelian diseases, 
in particular PIDs. These diseases represent a privileged scenario for the study of the somatic pathogenic variation 
because of the needed presence of the causal variant in blood, as well as probably in other easily accessible tissues, 
and the reported important contribution of somatic mutation in these disorders21. For this, we initially performed 
whole-exome sequencing (WES) in a total of 16 samples belonging to 12 individuals. All individuals carry a 
pathogenic and previously described somatic mutation related to a PID while one patient carries a germline vari-
ant. We then selected the best candidate somatic variants, based on read quality and mapping information, to be 
validated with ADS. With this analysis we have tested the ability to detect causal somatic variation in PID as well 
as estimated the actual number of functional coding variants in blood at detectable frequencies from WES data.

Material and methods
Ethical approval.  Written informed consents for genetic analyses and participation in the study were 
obtained from each enrolled individual. The Ethics Committees of Hospital Clínic and Universitat Pompeu 
Fabra (reference number 7HCB/2019/0631), both located in Barcelona, approved the study, which was carried 
out in accordance with the principles and last amendments of the Declaration of Helsinki.

Samples.  The present study included both unique and matched samples from peripheral blood (PB), oral 
mucosa (OM) and urine (UR) for 12 individuals: (i) 11 unrelated PID patients carrying a pathogenic and previ-
ously described somatic variant, and ii) one of the descendants with the same pathogenic variant in germline 
status (Table 1). In eight individuals, the only analysed sample was PB (S2, S4a, S6, S8, S9, S10 and S11) or OM 
(S4). In four individuals, we analysed samples from paired tissues: from PB and OM in three patients (S1a-S1b, 
S3a-S3b and S5a-S5b) and, in the remaining patient, from PB and UR (S7a-S7b).

All of the PID mutations are missense single nucleotide variants (SNVs), and are the disease causing mutation 
either in the proband or in its offspring, where they are germline variants. The range of variant allele frequencies 
(VAFs) for the somatic variants previously estimated by ADS21 ranges from 2.3 to 34.8%.

For patient S5 we included additional samples from urine, oral mucosa, whole blood (before and after anti-
IL-1 treatment), and different cell type populations previously isolated by flow cytometry20: neutrophils, mono-
cytes, B cells, T CD4 + cells and T CD8 + cells (all pre-treatment).

Table 1.   Samples and mutations included in the study. VAFs from ADS were extracted from a previous 
publication21. DP total depth; VD variant depth.

Sample Coordinate (hg38) Gene Change in DNA Change in protein

WES ADS

VAF (%) DP/VD Mean coverage VAF (%)

S1a (PB) chr1:247,424,492 NLRP3 c.1049C>T p.Thr350Met 0 192/0 232 2.80

S1b (OM) chr1:247,424,492 NLRP3 c.1049C>T p.Thr350Met 7.22 97/7 153 6.90

S2 (PB) chr1:247,424,357 NLRP3 c.914A>C p.Asp305Ala 36.26 171/62 274 34.80

S3a (PB) chr16:50,710,912 NOD2 c.1001G>A p.Arg334Gln 10.13 592/60 220 9.40

S3b (OM) chr16:50,710,912 NOD2 c.1001G>A p.Arg334Gln 5.46 1171/64 349 4.90

S4a (PB) chr16:50,710,912 NOD2 c.1001G>A p.Arg334Gln 46.44 618/287 231 –

S4 (OM) chr16:50,710,912 NOD2 c.1001G>A p.Arg334Gln 5.21 576/30 179 8.50

S5a (PB) chr1:247,425,355 NLRP3 c.1912C>G p.Gln638Glu 19.67 422/83 318 18.40

S5b (OM) chr1:247,425,355 NLRP3 c.1912C>G p.Gln638Glu 8.72 390/34 274 6.00

S6 (PB) chr1:247,424,367 NLRP3 c.924A>T p.Gln308His 8.57 175/15 308 5.10

S7a (PB) chrX:71,109,309 IL2RG c.676C>T p.Arg226Cys 18.75 192/36 247 17.80

S7b (UR) chrX:71,109,309 IL2RG c.676C>T p.Arg226Cys 11.24 169/19 213 8.30

S8 (PB) chr1:247,424,356 NLRP3 c.913G>A p.Asp305Asn 8.00 125/10 234 7.20

S9 (PB) chr16:50,710,912 NOD2 c.1001G>A p.Arg334Gln 2.12 1038/22 312 2.70

S10 (PB) chr14:35,007,365 SRP54 c.338G>T p.Gly113Val 2.34 128/3 146 2.30

S11 (PB) chr19:855,967 ELANE c.607G>C p.Gly203Arg 9.10 99/9 219 16.20
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Sequencing and genomic analysis.  After DNA extraction, library preparation and exome capture were 
performed with the Nextera Rapid Capture kit (Illumina) according to the manufacturer’s instructions. The 
libraries were sequenced in a NextSeq Illumina platform in three High Output 2 × 150 paired-end cycles runs 
to a mean coverage of 245X. We used BWA-mem version 0.7.16a-r118133 (https://​github.​com/​lh3/​bwa) to map 
the samples to the human reference genome hg38 (UCSC). We marked duplicated reads using Picard version 
2.18.6 (https://​github.​com/​broad​insti​tute/​picard) MarkDuplicates and realigned indels using GATK’s version 
3.735 (https://​github.​com/​broad​gsa/​gatk) IndelRealigner. We also performed base quality score recalibration 
using GATK’s BaseRecalibrator.

We used eight publicly available tools to call genetic variants: FreeBayes version 0.9.14-8-g1618f7e34 (https://​
github.​com/​freeb​ayes/​freeb​ayes), HaplotypeCaller version 3.735 (https://​github.​com/​broad​gsa/​gatk), LoFreq 
version 2.1.236 (https://​github.​com/​CSB5/​lofreq), MuTect2 version 3.735 (https://​github.​com/​broad​gsa/​gatk), 
SomVarIUS version 1.137 (https://​github.​com/​kyles​smith/​SomVa​rIUS), Strelka2 version 2.7.138 (https://​github.​
com/​Illum​ina/​strel​ka), VarDict version 1.039 (https://​github.​com/​Astra​Zeneca-​NGS/​VarDi​ct) and VarScan2 ver-
sion 2.4.340 (https://​sourc​eforge.​net/​proje​cts/​varsc​an/​files/). FreeBayes and HaplotypeCaller are purely germline 
callers. SomVarIUS is a caller designed to detect somatic variants in unpaired samples. The rest of them support 
a single mode and a paired mode. Although in our study we were not analysing cancer samples, we tested the 
behaviour of variant callers’ paired mode in this context with the matched PB-OM and PB-UR samples. We 
used default parameters for all the callers except for VarScan2, where we lowered the allele frequency threshold 
of 20% and set the p-value to 1 to retrieve all the possible calls. For HaplotypeCaller, we first used the default 
ploidy parameter of 2 and next we considered other ploidy values: 4, 5, 6 and 10.

For variant calling, the manufacturer’s targeted regions were intersected with our VCF files to retrieve the on 
target genetic variants, and we restricted our analysis to these regions. We annotated the variants using SnpEff 
version 4.3t41 (https://​sourc​eforge.​net/​proje​cts/​snpeff/​files/) and SnpSift version 4.3t42 (https://​sourc​eforge.​net/​
proje​cts/​snpeff/​files/). Using the database dbNSFP version 4.0b1a43, we added parameters of interest such as 
CADD score44, GERP score, ExAC45 and gnomAD allele frequencies. We also added two functional predictions, 
gene haploinsufficiency values46 and Residual Variation Intolerance Score (RVIS)47.

We performed ADS with rhAmpSeq from Integrated DNA Technologies (IDT, Coralville, USA) to validate 
the candidate somatic variants. We sequenced every selected position to a mean coverage > 20,000X in a NextSeq 
Illumina platform in a High Output 2 × 150 paired-end cycles run. The confirmed in blood plus 19 additional 
candidate somatic variants in S5 were analysed for validation in different tissues and cell population samples. 
They were sequenced in a MiSeq v3 run (2 × 300) to a final depth > 155,000X. We used BWA-mem version 0.7.16a-
r1181 to map the fastq files to the human reference genome hg38 (UCSC). We then used pysam version 0.15.2 
(https://​github.​com/​pysam-​devel​opers/​pysam) to count the number of reads supporting every allele, requiring 
a minimum mapping quality of 20 to calculate VAFs.

Results
Detection of somatic pathogenic variants from WES in PID patients.  We performed WES in all 
DNA samples to a mean coverage of 245X (Table 1). The total number of genetic variants differs among the 
different callers (Supplementary Fig. S1), mostly because of VarDict and VarScan2, the two callers with relaxed 
allelic imbalance parameters, which called more than 200,000 variants each. These two callers also show high 
heterogeneity across samples, which correlates with sequencing depth, as expected in MPS experiments. The 
amount of overlapping variants across the different callers is uneven, especially for SomVarIUS, due to the low 
number of variants it calls. The number of concordant variants between VarDict and VarScan2 is also low, prob-
ably because VarDict calls 3–4 times the number of indels of Varscan2 and because of discrepancies calling low 
frequency variants (Supplementary Fig. S2).

Figure 1 shows which known causal somatic variants (Table 1) are detected by each software. FreeBayes and 
HaplotypeCaller have the lowest detection ratios. For the rest, the ability of detection is similar and seems to 
depend on the frequency of the mutations, along with the coverage of the sample and the mapping quality. The 
S1a causal variant has not been called by any software, but visual inspection of the mapped reads revealed that 
none of them supported the alternative allele (Supplementary Fig. S3). Excluding it, VarDict and VarScan2 were 
able to detect all the causal variants. To increase the power of detection of HaplotypeCaller, we explored the 
effect of modifying the ploidy parameter. We used ploidy 2 (default), 4, 5, 6 and 10 in order to call variants with 
lower frequencies than expected in a germline scenario. This parameter is normally tuned when working with 
organisms with ploidies different than 2. For instance, decaploid plants have been reported48,49, and genotypes 
0/0/0/0/0/0/0/0/0/1 are possible. This way, the increase of the ploidy parameter makes HaplotypeCaller more 
sensible to low frequency variants. The percentage of detected variants increased sequentially with the ploidy 
parameter, although some remained undetected. HaplotypeCaller seems to be sensitive to mapping quality as in 
the case of the ELANE region (Supplementary Fig. S4), where a variant with moderate frequency is not detected 
by this caller. Interestingly, we lost one variant using ploidy 10 while it was previously detected with ploidies 5 
and 6 due to memory reasons (Fig. 1, expanded in Supplementary Fig. S5).

Next, we assessed the performance of the five variant callers including a paired mode in the four cases with 
available paired samples (S1, S3, S5 and S7), where the same variant is present in two tissues with different 
frequencies. As a general trend, there is no improvement of the detection rate when using the paired mode 
compared to the single mode, probably because of the small differences in allele frequency between tissues. The 
use of one or the other paired sample as cancer/healthy tissue does not seem to affect the capacity of detection. 
Again, VarDict and VarScan2 showed the best detection ratios (Supplementary Table S1).
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https://github.com/broadgsa/gatk
https://github.com/CSB5/lofreq
https://github.com/broadgsa/gatk
https://github.com/kylessmith/SomVarIUS
https://github.com/Illumina/strelka
https://github.com/Illumina/strelka
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Filtering strategies for the identification of true causal variants.  Once genetic variants have been 
called, a set of different filters is commonly applied to reduce the number of false positives. This is a crucial issue 
in the study of monogenic syndromes, where the aim is moving from the approximately 20,000 genetic variants 
identified in a typical WES to one or a few candidate variants. Relaxing or disabling the VAF filters to increase 
the ability to detect causal somatic variants, as we did in this study, produces an important increase of the num-
ber of mutations per individual, making this process highly recommended.

We evaluated the ability to identify the known pathogenic variants after applying the standard filters to the 
variants called by VarDict and VarScan2, the most successful programs in calling them (Fig. 1). We started by 
intersecting the two VCF files for every individual, given that in all cases the true variants were retained by both 
of them. Next, we applied a set of additional filters sequentially (see below), checking in every step if the causal 
variant was retained or filtered out (Table 2). First, we filtered out SNPs located 6 bp around indels. Second, 
as suggested previously50, we restricted our analysis to the 1000 Genomes Project strict mask filter. Third, we 
required the positions to be covered by, at least, 50 reads (DP > 50) and to show a minimum quality value of 25 
(QUAL > 25). Fourth, we only kept loss of function and missense variants. Fifth, we applied a stringent popula-
tion allele frequency threshold of 0.001 in gnomAD. With a high probability, a somatic variant will be absent 
in the population because of its de novo nature, although the possibility of having a recurrent mutation cannot 
be excluded. Sixth, following the recommendations in the literature, we kept variants with a likely damaging 
predicted effect (CADD > 1544) and a high evolutionary conservation score, as an indicator of its functional 
importance (GERP > 251). Seventh, we required at least three reads supporting the alternative allele (VD ≥ 3) in 
every call. Finally, we used the list of 333 genes of the International Union Of Immunological Societies (IUIS, 
updated in February 2018)52 as a set of candidate genes for PIDs. Excluding the causal somatic variant of sample 
S1a, which was not detected in the sequencing process, 13 out of the 14 somatic mutations were included in the 
final list of candidate variants. The remaining one (S6), was filtered out because of a GERP value lower than 2.

Mosaicism abundance detection in whole blood.  As mentioned above, the consideration of genetic 
variants deviating from the approximate expectation of 50% read frequency increases substantially the number 

Figure 1.   Previously reported causal somatic mutations detected by each variant caller (in green), assessed as 
the presence of the variant in the raw VCF files. The germline variant in S4a was detected in Strelka germline 
mode but not in the somatic one. All VAF were extracted from a previous publication21.
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of called variants. In the previous analyses we assessed how many of the true causal variants in 11 PID samples 
were detected. Now we wonder what proportion of the called variants in these samples corresponds to real 
postzygotic mutations, and not to sequencing, mapping or calling errors. We restricted the analysis to coding 
variants, more prone to have a functional impact and to be related to monogenic disorders. For this, we applied 
the following filters to select the variants more plausible to be validated as true: we intersected the SNPs called 
by VarDict and VarScan2, removed SNPs located 6 bps around indels, applied 1000G strict mask, required a 
minimum depth of 50 and a minimum quality of 25, removed variants classified as common in dbSNP and 
those shared among samples in the study, removed SNPs located within homopolymers, and removed SNPs in 
positions where the mappability was not perfect. We also performed a binomial test to exclude potential het-
erozygous mutations, to estimate the possibility of the observed number of reads supporting the alternative allele 
given the total number of reads. We finally required a minimum number of reads supporting the alternative 
allele of 7, due to the large number of variants below this threshold in our dataset (Supplementary Fig. S6). After 
this filtering, we moved from the approximately 250,000 variants called per individual to around 40. (Fig. 2), rep-
resenting a total of 461 candidate somatic variants (Supplementary Table S2) for the 11 blood samples. 327 (70%) 
of the variants were missense, while 92 (20%) were synonymous and 19 (4%) were stop-gain. The remaining 23 
variants were annotated as structural interaction variants and splice variants. Remarkably 30 of the variants were 
located in zinc finger proteins, 20 of them located in chromosome 19, and none of them were validated.

The 461 candidate variants were analysed by ADS with the rhAmpSeq technology (see Methods). All candi-
date positions were resequenced in the individual in which they were called and in the rest of individuals, plus 
two healthy individuals as controls. The average coverage per position was 22,500X (max = 272,401, min = 0, 
sd = 21,296). The overall validation ratio was very low. For five individuals (S6, S7, S8, S9 and S10), only the initial 
pathogenic variant was validated, with none of the other additional candidate variants confirmed. In other six 
individuals, including the individual with no somatic variants (S4a), we validated one additional variant: one 

Table 2.   Numer of called variants and after sequential variant filtering process for each sample. The last step 
where the causal somatic variant is retained is shown in bold.

Filtering S1a S1b S2 S3a S3b S4 S5a S5b S6 S7a S7b S8 S9 S10 S11

On target 
(VarDict − 
VarScan2)

298,250
173,072

363,209
101,637

239,526
266,542

286,381
200,507

241,135
453,494

382,519
119,025

231,469
263,604

312,808
245,467

276,040
273,296

293,494
176,720

315,825
171,718

274,664
317,568

191,603
720,791

223,731
261,383

302,540
172,629

Intersection 48,715 44,246 49,871 51,066 70,617 49,399 52,849 61,889 62,644 53,951 51,705 58,201 64,366 50,684 53,268

6pb indels 48,187 43,598 49,246 50,477 69,885 48,451 52,286 61,126 61,954 53,382 50,880 57,646 63,757 50,157 52,621

1000G mask 35,864 31,825 37,231 37,437 55,243 35,592 39,619 47,635 48,200 40,621 38,732 44,829 50,966 37,963 39,983

DP > 50 34,091 27,692 36,459 35,706 54,052 31,989 38,734 45,779 46,668 37,906 35,927 42,349 49,958 33,123 36,816

QUAL > 25 33,771 27,346 35,991 35,272 53,184 31,542 38,295 45,035 45,851 37,388 35,353 41,439 48,835 32,584 36,282

LoF & mis-
sense 18,476 15,154 19,998 18,929 31,534 18,100 21,148 26,962 27,596 22,103 20,585 24,283 28,888 18,518 21,472

gno-
mAD < 0.001 12,135 10,119 13,562 11,980 24,001 12,871 14,427 20,553 21,178 16,281 14,781 17,977 21,910 12,711 15,634

CADD > 15 9,035 7,904 10,085 8,864 19,044 9,994 10,828 16,271 16,808 12,662 11,077 13,887 17,086 9,547 12,155

GERP > 2 7,787 6,771 8,703 7,604 16,486 8,582 9,374 13,979 14,498 10,953 9,528 11,976 14,633 8,161 10,409

VD ≥ 3 6,977 6,086 7,446 6,528 14,473 7,720 8,560 12,509 13,231 9,764 8,181 9,719 11,024 5,162 8,991

Candidate 
genes 174 177 174 172 319 219 187 276 275 226 255 263 243 144 229

Figure 2.   Filtering process followed to obtain somatic candidate variants. We got around 40 variants per blood 
sample that we then experimentally validated by ADS.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12940  | https://doi.org/10.1038/s41598-021-92381-y

www.nature.com/scientificreports/

Table 3.   VAF of the 20 somatic candidate variants studied in S5 patient. In bold, values below the sequencing 
error threshold.

Chr Position Gene Type
Whole 
blood

Whole 
blood 
post Urine

Oral 
mucosa Neutrophils Monocytes B cells TCD4 TCD8 Control1 Control2 Validated

chr1 153,003,501 SPRR3 Mis-
sense 7.7216 3.7419 7.3138 1.6876 7.165 9.5398 0.1088 0.1049 0.0976 0.0832 0.1081 YES

chr1 247,425,355 NLRP3 Mis-
sense 24.6228 12.4922 25.3693 7.0918 24.3422 33.993 0.0825 0.0794 0.0787 0.0437 0.0571 YES

chr2 24,300,108 ITSN2 Mis-
sense 4.7359 3.4122 5.0154 1.8296 5.6246 2.2179 0.3675 0.1288 0.1415 0.1035 0.1628 YES

chr2 209,888,127 UNC80 Synoni-
mous 26.5932 13.452 28.2002 6.9989 26.8757 34.7143 0.2961 0.2798 0.2896 0.2373 0.2993 YES

chr2 219,251,622 TUBA4A Synoni-
mous 4.5508 3.2531 4.6625 1.3055 5.3645 1.9301 0.2923 0.1629 0.1553 0.0815 0.1322 YES

chr3 52,913,506 SFMBT1 Mis-
sense 1.4477 1.2013 1.3699 0.4748 1.7193 1.453 2.5658 0.1158 0.1569 0.062 0.068 YES

chr4 143,695,587 FREM3 Mis-
sense 24.3856 12.176 24.6201 6.1085 23.192 31.5614 0.167 0.1334 0.1238 0.0887 0.1295 YES

chr4 165,059,454 TRIM60-
TMEM192

Inter-
genic 0.073 0.0596 0.0601 0.0673 0.0659 0.0515 0.0646 0.0892 0.0532 0.0676 0.0533 NO

chr6 36,270,463 PNPLA1 Mis-
sense 4.8759 4.0553 5.5917 1.7713 6.4759 2.6609 0.3096 0.0835 0.0768 0.0657 0.0772 YES

chr6 52,082,518 PKHD1 Mis-
sense 26.3027 12.7771 27.3696 6.8415 26.0161 35.482 0.1139 0.1225 0.0916 0.0923 0.111 YES

chr6 151,349,029 AKAP12 Mis-
sense 1.496 1.2648 1.6739 0.4203 1.8367 1.2469 2.7175 0.0769 0.1867 0.0872 0.0911 YES

chr7 157,614,060 PTPRN2 Intronic 47.7712 48.8889 46.9676 46.2124 49.503 48.0925 48.1535 43.1712 46.6121 0.0656 0.0674 NO

chr9 91,410,553 NFIL3 Mis-
sense 0.1427 0.1298 0.127 0.1367 0.109 0.0848 0.1351 0.118 0.1174 0.129 0.1463 NO

chr11 111,853,480 ALG9 Synoni-
mous 4.2723 3.1181 4.6411 1.3842 5.2542 2.2404 0.2136 0.2158 0.229 0.1434 0.2365 YES

chr12 128,705,237 TMEM132C Mis-
sense 2.4998 1.2072 2.4715 0.5706 2.2107 3.4175 0.1087 0.0703 0.0635 0.081 0.0814 YES

chr13 24,912,928 CENPJ Mis-
sense 1.5069 1.1153 1.8446 0.6136 1.8944 0.9268 1.2501 0.1418 0.2347 0.0655 0.0754 YES

chr17 50,840,691 WFIKKN2 Mis-
sense 4.1908 2.7357 4.4201 1.3373 4.4152 1.9862 0.1779 0.1208 0.1042 0.0674 0.0797 YES

chr19 16,529,871 CHERP Synoni-
mous 4.6041 2.2909 4.4651 1.1656 4.6677 5.4904 0.1021 0.1105 0.0973 0.0697 0.0885 YES

chr20 13,915,139 SEL1L2 Intronic 24.5724 11.9959 24.142 6.1982 23.3935 33.2716 0.0564 0.0719 0.0733 0.0562 0.0869 YES

chrX 71,537,899 OGT Mis-
sense 49.978 25.1551 48.1124 12.4303 48.9245 32.2739 0.2688 0.275 0.2301 0.1665 0.2497 YES

Figure 3.   VAF of validated somatic variants in S5 patient per tissue and cell type. Green is used for the group 
of variants with higher VAF (around 24%), red for those with intermediate VAF (around 4%) and blue for 
those with low VAF (around 1.5%, the only group present in B cells). Of note, there is one variant in the X 
chromosome whose frequency has been divided by 2 in order to visualize it grouped with the others.
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missense variant in ODF2 (S1), SHISHA2 (S2), STRIP1 (S3) and IL2RG (S11), and one synonymous variant in 
CACNAS1 (S4) and ROBO4 (S11). Of note, in patient S5 we validated a total of eleven variants: seven missense, 
being one of them the causal variant in NLRP3, and four synonymous. The twelve variants seemed to cluster in 
two frequency groups: one with variants of about 25% (including the pathogenic variant) and other with variants 
about 4.5% (Supplementary Table S2).

Cell type distribution of somatic variants in S5 patient.  Given the high number of validated somatic 
variants in patient S5, we expanded the analysis selecting nine additional candidate genetic variants. These vari-
ants were analysed for validation, along with the twelve previously confirmed, both in the whole blood sam-
ple and different cell populations separated by flow cytometry20 (Table 3). We also added a whole blood DNA 
extraction obtained after the anti-IL-1 treatment this patient received. In this experiment, the average coverage 
per position was 158,000X (max = 484,219, min = 16,689, sd = 80,940). We considered that a somatic variant was 
validated in a given cell type or tissue when the proportion of reads supporting the alternative allele was above 
0.30%, a value close to the average error type of sequencing by synthesis technologies, which also varies with 
features such as sequence context or the specific nucleotide change53,54. Six of the nine new genetic variants were 
validated, with one (chr7:157,614,060) being a germline variant according to its frequency (Table 3).

Overall, we detected 17 somatic variants in this patient, 16 protein coding and one intronic (Table 3), now 
clustered in three groups with similar VAFs around 24%, 4.5% and 1.5% in whole-blood pre-treatment (Fig. 3) 
and cell type distribution. VAFs changes across different cell types and tissues are coordinated within each group, 
being the two main groups only present in the myeloid line as well as in urine and cell mucosa, but absent in 
the lymphoid line. In general, we found higher allele frequencies in monocytes and lower in oral mucosa. The 
presence of the somatic variants in oral mucosa and urine was produced by leukocyte infiltration, which was 
detected by flow cytometry20. On the other hand, the lowest VAF group of variants are detected in myeloid cells 
and B cells, but not in T cells. The VAF of all the somatic variants is reduced in the whole-blood sample after the 
anti-IL-1 treatment (Whole blood 3 post, in Table 3). This decrease is more important for the variants restricted 
to the myeloid line, and it is likely observed because of the increased proliferation of inflammatory cells, which 
is now controlled with the treatment20.

Discussion
We performed WES of DNA samples from patients with PIDs, carrying variable degree of gene mosaicism and 
assessed the ability to detect the somatic causal genetic variants by using different tools. Among the eight vari-
ant callers tested, VarDict and VarScan showed the higher detection rates of the causal somatic variants. The 
rest of the callers designed for somatic variant detection (MuTect2, SomVarIUS and Strelka2) mainly showed 
some limitations with the lower frequency variants at lower coverage. FreeBayes and HaplotypeCaller, designed 
for germline variant detection, failed to detect most of the somatic mutations. However, the performance of 
HaplotypeCaller increases when modifying the ploidy parameter, devised for non-diploid organisms and which 
allowed retrieving variants with less frequency than the expected 50% in the germline. Of interest, the efficiency 
of the five callers including a paired mode did not increase when using paired samples, probably because of the 
small frequency difference between the two samples carrying the same mutation.

Allele frequency is the main limitation for calling a somatic variant, with the risk of non-capturing the 
mutation because of its low frequency and/or insufficient coverage. To capture these low frequency variants, 
sequencing depths should ideally be higher than the commonly average depths achieved in WES studies (60-
100X). However, the average coverage value might not be informative enough on the sequencing performance 
for all genomic regions, given the non-uniformity of the capture process. The use of new metrics including this 
information has been proposed55, which should help to reduce false-negative results. As an example, the NOD2 
region is clearly captured more efficiently than the NLRP3 region in our study (Table 1). On the other side, only 
a few reads supporting the alternative allele seems enough to detect the variant, with as few as 3 (out of 128) 
for the S10 variant or 7 (out of 97) for the S1b variant (Table 1). Thus, an increase of the sequencing depth to 
100-200X is recommendable in cases in which somatic variation is suspected. Higher coverage facilitates the 
detection of very low frequency variants, but increases the risk of enlarging the list of candidate variants because 
of approaching the error rate of MPS technologies56.

Genetic studies usually implement a set of filters to reduce the number of candidate variants to the causal one 
or to a small group. This process is a trade-off between reducing the number of false positives (either sequencing 
or mapping artefacts, and non-causal variants) and false negatives (called but filtered true causal variants). At 
the risk of missing the causal variant, these filters are essential to determine, at least, a reduced list of candidate 
genes for monogenic syndromes. In the case of studies like this, where the relaxation of allele frequency thresh-
olds generates a list of up to hundreds of thousands of variants per sample (Supplementary Fig. S1), this step 
can be especially critical. After applying commonly used filtering parameters both for sequencing and biological 
features, only the causal variant in one patient was discarded because of low conservation score (GERP for S6 
causal variant: -8.07). In the case of applying more stringent filters, two more variants (S1b and S5a-b) would 
be missed due to GERP score vale lower than 457,58. On the other side, only S6 causal variant would not pass a 
CADD threshold of 20.

The final number of candidate genetic variants exceeds by about ten times the number of variants in studies 
analysing germline variants. Considering the IUIS list of 333 candidate genes for PIDs, this is still quite high, 
with approximately 0.5 variants per gene in each individual. Therefore, it seems recommendable to restrict the 
analysis to a reduced set of candidate genes according to the clinical phenotype of each patient. Alternatively, the 
use of some gene features could also help to reduce the list of candidate variants if there is not any a priori clear 
candidate. Several gene indexes have been developed to measure their possible contribution to human disease. 
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Among them, haploinsufficiency predictions could seem useful for identifying candidate genes in a somatic 
variant disease model expecting to follow a dominant inheritance pattern. However, all the genes with somatic 
causal variants included in this study show haploinsufficiency values below the consensus threshold of 0.5, with 
NLRP3, a gene that is proven to be mutated in different autoinflammatory diseases59, showing the highest value 
of 0.465. In contrast, NLRP3 has been reported as a gene with a high level of intolerance to functional variation 
(RVIS = − 0.95, in the top 9.38% of genes)21.

It is important to consider that exome sequencing was performed in DNA samples obtained from peripheral 
blood. Therefore, only somatic variants present in the major cell populations in blood can be detected. Neutro-
phils represent more than half of the nucleated blood cells (55–75%) in healthy individuals, while lymphocytes 
represent around 20% (from which T cells are ~ 70%, B cells are just ~ 20%, and NK cells ~ 10%)60. Thus, for early 
postzygotic mutations, the capacity of detection will most probably not be affected by the cell type implicated 
in the disorder, since the variant will have similar frequencies in all cell populations. In contrast, for later onset 
mutations restricted to particular lineages, the mutation will only be detectable if present in the major cell popula-
tions of the analysed tissue. Therefore, for immune disorders, the probability of detecting a causal variant from 
whole-blood extraction analysis will be much higher in those produced by alteration in the myeloid cells, such 
as in autoinflammatory disorders, than in the lymphoid cells. This fact can partially explain the larger number 
of reported cases in autoinflammatory disorders21 compared to other PIDs, as well as the lack of success in the 
identification of somatic variants in lymphoid immunodeficiencies such as CVID61. In these latter situations, it 
is expected that a big proportion of somatic causal variants would only be detectable if the analysis is restricted 
to particular cell types. Thus, cell subsets isolation can be essential to the identification and/or the validation of 
somatic genetic variants in these less represented cell types.

Beyond the detection of the known causal variants, the detected load of coding variants per exome was very 
low. Except for S5, all the individuals carry none or only one somatic variant additionally to the causal variant. 
The vast majority of candidate variants were false positives, even if they passed the mapping and quality filters. 
Comparing our results to other studies is not straightforward because of the differences in the methodologies 
used and the scanned VAFs, as well as the conceptual approach and targeted regions (see “Introduction”). A 
whole-genome sequencing (WGS) data analysis of 11,262 blood samples revealed a median number of three 
mosaic mutations for younger individuals, increasing after 35–45 years of age, and considering 20 somatic vari-
ants as the threshold for clonal expansion, that affecting 12.5% of the individuals62. Although the minimum 
detectable VAF of the study was limited because of the 34.8X mean coverage, the results seem concordant with 
the low number of somatic variants described in our WES deep sequencing approach. In addition to scanning a 
wide range of VAFs, we validated our results by ADS, which confirmed the low number of somatic coding variants 
detectable in blood. At a finer level, the total number of somatic variants per cell has been estimated in single-cell 
studies25,26, although most of this variation would remain undetected when the whole tissue is analysed. In fact, 
when much lower frequencies have been scanned (VAF ≥ 0.0001), it has been shown that clonal haematopoiesis 
is present in up to 97% of middle-aged people63. However, in absence of positive selection on a given mutation, 
only those that occurred earlier would reach detectable frequencies.

We identified a particular patient with an excess of validated variants compared to the others. S5 is the 
oldest individual of our dataset (64 years old), although another individual of similar age was also included in 
this study. Especially for the higher VAF group of five variants (which includes the causal one in NLRP3), the 
frequency pattern is quite uniform, except for one of the variants in chromosome X (chrX:71,537,899), with 
lower frequency in monocytes. The presence of the genetic variants in the lowest frequency cluster in cells of 
the myeloid lineage and in B cells, but not in T cells, could be explained by its origin in adult hematopoietic 
stem cells generating multineage outputs64. Because of the seemingly aggrupation in three different clusters of 
frequencies and cell type distribution, we propose simultaneous occurrence and clonal expansion as the most 
parsimonious explanation. However, none of the genes with somatic variants in S5 (Table 3) seems to be related 
with cellular proliferation that could be linked to an adaptive advantage of a clone of cells, and we also discarded 
the presence of additional candidate variant in DNMT3A, TET2 and ASXL1 genes, known to be implicated in 
hematologic malignancies8,65. In fact, in the aforementioned study of WGS of 11,262 individuals62 only 12.6% 
of the cases of clonal haematopoiesis had detectable cancer driver mutations. Thus, on the rest of cases as well 
as for S5, clonal haematopoiesis could be produced by genetic drift, as suggested in simulation analysis66. In 
contrast, a recent study67 proposes positive selection being the major driving force of clonal haematopoiesis, and 
that it would take more than 2000 years for a mutation to reach a VAF > 1% by only drift. However, our results 
do not seem to fit to this explanation, because of the abovementioned gene location as well as the presence of 
synonymous and intronic variants.

Finally, although we believe that our study contributes to the understanding of the burden of functional 
somatic mutations in blood and provides some practical advice on its detection, we would like to acknowledge 
some limitations of our approach. Allele frequency and sequencing depth are the two main limiting factors to 
detect a somatic variant as shown in our case by the failure to detect a variant with VAF < 3%. Also, the number 
of genetic variants depends on the selected software, that show a limited level of overlapping among them. In 
this sense, we recommend an inclusive strategy by using the less stringent callers or parameters, followed by a 
filtering strategy based on sequencing and mapping features. However, even by using stringent filters, the capac-
ity of detection of causal variants will be mostly limited to previously known candidate or related genes, given 
the excessive number of variants when considering the whole exome. Gene functional relevance or mutation 
tolerance indexes could be used to reduce the number of candidate genes, but they also show limited applicabil-
ity. Of importance, we also acknowledge the limitations derived from the small size of our cohort which, while 
allowing the study of somatic variant discovery, makes it difficult to draw conclusions in terms of dynamics of 
somatic variation.
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Conclusions
The detectable genetic load of somatic coding variants in blood is low. A moderate increase of the commonly 
achieved depths in exome sequencing analyses can be enough to detect most of these variants at frequencies 
above the technology error rate, for which we recommend using variant callers sensitive to low VAF. Of impor-
tance, the high proportion of false positives makes mandatory their validation which will also provide a better 
estimation of the VAF. Given both the feasibility of this approach and the reported contribution of gene mosai-
cism to PIDs21, we think that this model should be considered in future sequencing studies. It can be of special 
interest for those disorders related to major cell populations in blood, such as autoinflammatory diseases. We also 
suggest reanalysing data of undiagnosed patients, especially those where the inheritance pattern in the pedigree 
and/or the clinical features of the patient might fit this model. Because of the high number of possible somatic 
variants called per individual, even after applying stringent filters, it is advisable to restrict the analysis to a set 
of candidate genes defined according to the clinical phenotype. Finally, our results are in agreement with the 
existence of clonal haematopoiesis produced by drift, and that can be related to non-cancer disorders.

Data availability
The datasets generated during and analysed during the current study are available in the European Nucleotide 
Archive (ENA) repository under accession code PRJEB44742 (https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​PRJEB​
44742).
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