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Abstract

Motivation: Identifying and prioritizing somatic mutations is an important and challenging area of

cancer research that can provide new insights into gene function as well as new targets for drug

development. Most methods for prioritizing mutations rely primarily on frequency-based criteria,

where a gene is identified as having a driver mutation if it is altered in significantly more samples

than expected according to a background model. Although useful, frequency-based methods are

limited in that all mutations are treated equally. It is well known, however, that some mutations

have no functional consequence, while others may have a major deleterious impact. The spatial

pattern of mutations within a gene provides further insight into their functional consequence.

Properly accounting for these factors improves both the power and accuracy of inference. Also im-

portant is an accurate background model.

Results: Here, we develop a Model-based Approach for identifying Driver Genes in Cancer (termed

MADGiC) that incorporates both frequency and functional impact criteria and accommodates a

number of factors to improve the background model. Simulation studies demonstrate advantages

of the approach, including a substantial increase in power over competing methods. Further advan-

tages are illustrated in an analysis of ovarian and lung cancer data from The Cancer Genome Atlas

(TCGA) project.

Availability and implementation: R code to implement this method is available at http://www.bio-

stat.wisc.edu/ kendzior/MADGiC/.

Contact: kendzior@biostat.wisc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is thought to result from the accumulation of causal somatic

mutations throughout the lifetime of an individual. These cancer-

driving mutations function by altering one of three broad classes of

genes: oncogenes, which activate neoplastic activity; tumor-suppres-

sor genes, which decrease a cell’s ability to inhibit abnormal cell

proliferation and stability genes, which affect a cell’s damage repair

mechanisms (Kinzler and Vogelstein, 1997; Vogelstein and Kinzler,

2004). A first causal mutation in one of these classes of genes (or a

rate-limiting combination thereof) leads to tumorigenesis, and sub-

sequent causal mutational events drive tumor progression by

providing a selective advantage to the cancer cells through positive

selection (Bozic et al., 2010; Vogelstein et al., 2013; Vogelstein and

Kinzler, 2004; Wood et al., 2007).

A major area of cancer research revolves around identifying

these causal mutations, as doing so may provide new insights into

gene function as well as potential targets for drug development.

Methods for distinguishing genes with causal mutations (‘driver

genes’) from those containing only background mutations (‘passen-

ger genes’) which are irrelevant to cancer growth are also vital in

making sense of the vast amounts of information being gathered

from tumor sequencing studies such as The Cancer Genome Atlas
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project (http://cancergenome.nih.gov/) and the Cancer Genome

Project (http://www.sanger.ac.uk/research/projects/cancergenome/).

A common approach to this problem is to identify genes that

harbor significantly more somatic mutations than expected by

chance. Methods using this approach, termed ‘frequency-based’

methods, rely on an estimate of a background mutation rate which

represents the rate of random passenger mutations. Early frequency-

based methods assumed a single background rate, constant across

the genome and common to all samples (Ding et al., 2008).

However, a number of features are known to affect mutation rate:

mutation type (transition versus transversion), nucleotide context

(which base is at the mutation site), dinucleotide context (which

bases are located at neighboring sites to the mutation), replication

timing of the region and expression level of the gene. Further details

are provided in Section 2.3.

In an effort to get a more accurate estimate of the background

mutation rate, subsequent frequency-based methods have been de-

veloped that adjust for one or more of these factors. Sjoblom et al.

(2006) account for nucleotide and dinucleotide context in searching

for drivers of breast and colorectal cancer. MuSiC (Dees et al.,

2012) accounts for mutation type and allows for sample-specific

mutation rates; and in addition to these factors, Lawrence et al.

(2013) (MutSigCV) also allow for the inclusion of gene-specific fac-

tors such as expression level and replication timing.

Although useful, a main limitation of methods based solely on

mutation frequency is the inherent assumption that driver genes

have relatively high mutation rates. This is often not the case.

Indeed, with a few notable exceptions such as TP53 and KRAS,

which show consistently high mutation rates in many cancers, most

driver genes harbor surprisingly few mutations (Vogelstein et al.,

2013; Wood et al., 2007). Consequently, additional criteria need to

be incorporated into the search beyond frequency if reliable driver

gene identifications are to be made.

Recent developments provide at least two new sources for such

information. The first are methods such as Sorting Intolerant From

Tolerant (SIFT) [first reported by Ng and Henikoff (2001), later

updated by Kumar et al. (2009)], Polyphen (Adzhubei et al., 2010)

and MutationAssessor (Reva et al., 2011) that incorporate informa-

tion from sequence context, position and protein characteristics to

assess a mutation’s functional impact. Recognizing the advantage of

prioritizing genes by functional impact information, Gonzalez-Perez

and Lopez-Bigas (2012) exploited bias in these scores as evidence of

driver activity in their method OncodriveFM.

To account for both frequency and function, Youn and Simon

(2011) (referred to hereinafter as YS) model mutation type, account

for sample-specific mutation rates and incorporate BLOSUM80

(BLOcks Substitution Matrix) alignment scores (Henikoff and

Henikoff, 1992) into their approach. BLOSUM80 alignment scores

reflect empirical probabilities associated with amino acid substitu-

tions; and YS use these scores as a measure of functional impact.

The idea is that if an amino acid substitution is rarely seen, it is

likely detrimental. Although useful, power and specificity is gained

by using methods such as those mentioned above that directly assess

functional impact specific to the gene and mutation of interest (Ng

and Henikoff, 2001).

In addition to advances regarding our ability to assess functional

impact at the single nucleotide level, major advances have also been

made with respect to our understanding of the spatial pattern of mu-

tations within driver genes. Indeed, Vogelstein et al. (2013) recently

noted that the best way to identify driver genes is not through their

mutation frequency as has often been done in the past, but rather

through their spatial patterns of mutation. Vogelstein’s claim is

based on the recognition that oncogenes are often mutated recur-

rently at the same amino acid positions while tumor suppressor

genes tend to have an over-abundance of truncating mutations

(frameshift indels, non-sense mutations or mutations at the normal

stop codon). These characteristic patterns were not known just a

few years ago, since they only become apparent with very large sam-

ple sizes. For example, even when looking at a dataset with close to

500 samples such as the TCGA ovarian, spatial patterning of muta-

tions is not obvious (see Fig. 1, left panel).

Recognition of such spatial patterns has been facilitated

largely by a project to catalogue somatic mutations in cancer

(Forbes et al., 2011). The so-called COSMIC (Catalogue Of Somatic

Mutations In Cancer) project was initiated by the NIH in 2004 and

is ongoing, with new datasets being added several times per year.

The database currently contains mutation information for close to

one million samples in over 40 tissue types, including data from sev-

eral thousand whole exomes. Recent results from an integrative ana-

lysis across multiple cancers in COSMIC identified ‘highly

characteristic and non-random’ patterns of mutation that were not

apparent when studying cancers by type in isolation (Vogelstein et

al., 2013). In particular, results demonstrated that many known

oncogenes consistently harbor mutations at relatively few specific

amino acid positions, suggesting that oncogenic activity does not re-

sult from random mutation(s) in an oncogene, but rather requires a

mutation in one of a few locations. OncodriveCLUST (Tamborero

et al., 2013) was designed to exploit such evidence of positional

clustering to identify oncogenes (but like OncodriveFM does not

utilize other sources of information such as frequency of mutation

and functional impact). Non-random mutational patterns are also

observed in known tumor suppressor genes, which tend to exhibit

an over-abundance of protein-truncating alterations. The right panel

of Figure 1 provides a few examples. As we demonstrate, accounting

for these non-random spatial patterns and abundance of truncating

mutations improves both the sensitivity and specificity with which

driver genes may be identified.

In addition to these recently characterized patterns of mutation,

it is well known that alteration of DNA repair genes such as BRCA1

or BRCA2 leads to an increased accumulation of mutations

(Birkbak et al., 2013). For those samples with mutations in known

DNA repair genes, any global increase in mutation rate will be

accommodated by our model’s sample-specific background rate esti-

mation (see Section 2.3.2).

In summary, the most important sources of information to consider

when identifying driver genes include: mutation frequency, mutation

type, gene-specific features such as replication timing and expression

level that are known to affect background rates of mutation, mutation-

specific scores that assess functional impact and the spatial patterning

of mutations that only becomes apparent when thousands of samples

are considered. Previously developed methods incorporate many of

these features (see Table 1 for an overview), but not all at once. In this

paper, we provide a unified empirical Bayesian Model-based Approach

for identifying Driver Genes in Cancer (MADGiC) that utilizes each of

these features. The Bayesian framework provides a natural way to le-

verage the mutational patterns observed in COSMIC as prior informa-

tion and provides gene-specific posterior probabilities of driver gene

activity. The posterior probabilities are informed by mutation fre-

quency relative to a background model that incorporates mutation

type and the gene-specific features mentioned above as well as position

specific functional impact scores. Results from a simulation study in

Section 3.1 suggest improved performance over currently available

methods. Further advantages are demonstrated in an analysis of data

from the Cancer Genome Atlas (TCGA) project (Section 3.2).
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2 Methods

2.1 TCGA somatic mutation data
The TCGA somatic mutation datasets consist of exome somatic

mutation calls between tumor tissue samples and normal samples

(from either matched tissue or blood) of cancer patients and are

freely available for download from the TCGA data download portal

(available at https://tcga-data.nci.nih.gov/tcga/). Each somatic

mutation is annotated for the sample(s) in which it occurs, its

chromosome and position, the gene in which it is located, the allele

found in the reference genome, the specific nucleotide change(s)

and the type of mutation (silent, missense, non-sense, frameshift

indel, in frame indel). The analysis presented here includes all

available ovarian and squamous cell lung cancer samples as of

October 1, 2013.

2.1.1 Ovarian cancer

In the collection of 463 ovarian cancer samples, there are 5849 silent

mutations (mutations that do not alter the amino acid sequence)

located in 4369 genes and 21 800 non-silent mutations (mutations

that cause a change in the amino acid sequence) located in 10 164

genes. The median (range) total number of mutations per sample is

60 (1–209). For silent mutations, the median (range) is 11 (0–51)

and 41 (0–175) for non-silent mutations. There is very little pos-

itional overlap of mutations across samples and only 62 genes have

a nonsilent mutation in more than 10 samples.

2.1.2 Squamous cell lung carcinoma

In the collection of 178 squamous cell lung cancer samples, there are 15

883 silent mutations located in 8191 genes and 49 418 non-silent muta-

tions located in 13 238 genes. The median (range) total number of mu-

tations per sample is 299.5 (4–3922). For silent mutations, the median

(range) is 71.5 (0–1374) and 229 (3–2548) for non-silent mutations.

There is very little positional overlap of mutations across samples, but

649 genes have a non-silent mutation in more than 10 samples.

The vast majority of squamous cell lung cancer cases are attrib-

uted to cigarette smoking (Kenfield et al., 2008). Since cigarette

smoking is a known mutagen that results in an increased mutation

rate as well as characteristic mutation signatures (Pleasance et al.,

2009), it is plausible that the driver genes may differ between smok-

ers and non-smokers because they are subject to different mutational

processes. This is problematic since most methods assume there

exists a common set of driver genes. To minimize the possibility of

including non-smoking-related cancer cases in the analysis, samples

with a mutation rate below the 5th percentile that were also re-

corded as current or lifelong non-smokers at the time of data collec-

tion were excluded. This resulted in the removal of 10 samples.

2.1.3 Simulated data

To facilitate comparisons with existing methods, two types of simu-

lations were considered. For SIM I simulations, 100 sets of random

passenger mutations were obtained by shuffling the observed

Fig. 1. Counts of samples with mutation by position and type for TCGA ovarian and COSMIC (Catalogue Of Somatic Mutations In Cancer) datasets. The left panel

displays the ten genes with the lowest entropy in COSMIC (putative oncogenes) that have at least one mutation in TCGA ovarian. The right panel displays the ten

genes with the highest proportion of truncating mutations (putative tumor-suppressor genes) that have at least one mutation in TCGA ovarian. Blue represents mis-

sense mutations and red represents a location with at least one truncating mutation. Each vertical bar spans five amino acids and darker colors correspond to more

mutations. For genes with more than 500 mutations, a random sample of 500 was plotted, and positions with more than 25 mutations are given the same color

intensity as those with 25 mutations

Table 1. Summary of features of methods to identify driver genes

Methods Mutation Type Frequency Gene-specific Background Functional Impact Spatial Patterning

MADGiC � � � � �

MuSiC � �

YS � � �

MutSigCV � � �

OncodriveFM � �

OncodriveCLUST � �
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mutations from the TCGA ovarian dataset while preserving nucleo-

tide context and mutation type, but ignoring gene-specific factors

that affect mutation rate such as replication timing and expression

level (see Fig. 2 and Section 2.3 for details of these gene-specific fac-

tors). Each mutation in a given sample was randomly assigned a

new position, drawn from all possible positions with the same refer-

ence nucleotide and mutation type. Next, 100 sets of 30 driver genes

were randomly selected from the Cancer Gene Census [a set of

nearly 500 genes that have been implicated in some form of cancer,

manually curated by Futreal et al. (2004)] and non-silent mutations

were randomly added at three levels: either 3, 5 or 10 mutations

(total across all samples; 10 genes at each level). The choice of 30

driver genes was made to be on the order of the median number of

genes identified as drivers in the case studies. This resulted in a total

of 100 unique simulated datasets. One hundred sets of random pas-

senger mutations were obtained for SIM II in a similar way, but

accommodating the dependence of mutation rate on replication tim-

ing and expression level. Specifically, in this case each mutation in a

given sample was randomly assigned a new position, drawn from all

possible positions with the same reference nucleotide and mutation

type in the same replication timing and gene expression categories.

As in SIM I, 100 sets of 30 driver genes were randomly selected

from the Cancer Gene Census and non-silent mutations were ran-

domly added at three levels.

This same process was repeated to generate 100 SIM I and 100

SIM II datasets using the TCGA lung data since it was suspected that

some sample characteristics may influence the ability to detect driver

genes. In particular, the lung dataset differs from the ovarian in that it

has less than half the number of samples but more than twice the

number of somatic mutations. In addition, the sample-specific muta-

tion rates are much more heterogeneous in the lung dataset compared

to the ovarian. This can be seen in the ranges of detected mutations

per sample reported above. Note that the absolute number of muta-

tions in the true driver genes is the same for both simulation sets, and

consequently the relative mutation rate for driver genes in the simu-

lated ovarian data is higher than that in the simulated lung data.

2.2 Driver gene model framework
Our primary aim is to prioritize genes that have been somatically

mutated in cancer based on the likelihood that they are driver genes.

A driver gene is defined as a gene harboring a mutation that pro-

vides a selective advantage to the cancer cell. The empirical Bayesian

hierarchical mixture model framework we develop considers three

sources of evidence for driver activity: (i) increased frequency of
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Fig. 2. Mutation rate is shown to depend significantly on replication timing region and expression level. Specifically, mutation rate is shown for three replication

timing regions (top) and for three levels of expression (bottom) for four types of mutations in TCGA ovarian data. Within each mutation type, Chi-Square tests of

mutation counts stratified by replication timing or expression level categories were found to be significant (P<0.05)
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mutation compared to a gene-specific background mutation model,

(ii) evidence of functional impact and (iii) a non-random spatial pat-

tern of mutations. We detail the generative model framework in

Section 2.2.1 and the calculation of the posterior probabilities in

Section 2.2.2. Parameter estimation is discussed in Section 2.2.3 and

the use of spatial pattern data to inform the prior probability of

oncogenic activity is described in Section 2.2.4.

2.2.1 Generative model

Consider a single gene indexed by g, from a total of G genes having at

least one non-silent somatic mutation. Note that non-silent mutations

include missense mutations, frameshift indels and in frame indels.

Further consider an independent sample of size J, indexed by j, each

with at least one non-silent somatic mutation in one or more of the G

genes. Let X
!

g ¼ X1g; . . . ;XJg be the vector of observed non-silent mu-

tation states of gene g for all samples (where Xjg 2 f0;1g and 1 ¼ one

or more non-silent mutations anywhere in the gene; 0 ¼ no mutations

in the gene). Next, let S
!

g ¼ S1g; . . . ; SJg be the vector of functional im-

pact scores for mutations in gene g for all samples. Finally let

Zg 2 f0;1g be the indicator that gene g exhibits driver activity.

We are interested in the posterior probability that gene g is a

driver gene given the mutation status and impact score for that gene

across J independent samples:

PðZg ¼ 1jS
!

g ¼ s
!
;X
!

g ¼ x
!Þ ¼ 1

¼
PðZg ¼ 1Þ

YJ

j¼1

PðSjg ¼ sj;Xjg ¼ xjjZg ¼ 1Þ

X

k2f0;1g
PðZg ¼ kÞ

YJ

j¼1

PðSjg ¼ sj;Xjg ¼ xjjZg ¼ kÞ

(1)

We assume that the presence of mutations in gene g and sample j de-

pends on driver status. Specifically, XjgjZg ¼ z � Bernðð1� zÞbjg

þ zdgÞ where bjg 2 ð0;1Þ is the background (passenger) mutation

probability for sample j, gene g and dg 2 ð0; 1Þ is the driver mutation

probability for gene g. To enforce that the driver mutation probabil-

ity is at least as high as the average passenger mutation probability

(i.e. that dg > b:g), we let dg � Betaða; bÞ truncated below at b :g.

Likewise, we assume that the distribution of functional impact

scores across all genes and all samples depends on driver status.

Specifically, SjgjXjg ¼ 1;Zg ¼ z � ð1� zÞf p þ zf d, where fp is the

distribution of functional impact scores for passenger genes and fd is

the distribution of functional impact scores for driver genes. Note

that we are assuming a common functional impact score profile for

all driver mutations, and another for all passenger mutations, inde-

pendent of mutation frequency.

2.2.2 Likelihood and posterior calculations

For J independent samples with observed mutation states x
!

and

scores s
!

, the data likelihood for gene g given driver status Zg, driver

mutation probability dg and estimates b̂jg; f̂
p
; f̂

d
is

PðS
!

g ¼ s
!
;X
!

g ¼ x
!jZg ¼ z; dg ¼ dÞ

¼
YJ

j¼1

PðSjg ¼ sjjXjg ¼ xj;Zg ¼ zÞPðXjg ¼ xjjZg ¼ z; dg ¼ dÞ

¼ d
z
PJ

j¼1 xj ð1� dÞzðJ�
PJ

j¼1 xjÞ

�
YJ

j¼1

f̂
d
ðsjÞxjzðb̂jgf̂

p
ðsjÞÞxjð1�zÞð1� b̂jgÞð1�zÞð1�xjÞ

Note that this probability depends on dg, which is unknown.

Thus, we calculate the prior predictive distributions

PðS
!

g ¼ s
!
;X
!

g ¼ x
!jZg ¼ 1Þ and PðS

!
g ¼ s

!
;X
!

g ¼ x
!jZg ¼ 0Þ by aver-

aging over the prior distribution of dg. Then,

PðS
!

g ¼ s
!
;X
!

g ¼ x
!jZg ¼ 1Þ

¼
Bða�;b�Þ½1� Fða� ;b�Þðb :gÞ�

Bða;bÞ½1� Fða;bÞðb :gÞ�

YJ

j¼1

f̂
d
ðsjÞxj

PðS
!

g ¼ s
!
;X
!

g ¼ x
!jZg ¼ 0Þ ¼

YJ

j¼1

ðf̂
p
ðsjÞb̂jgÞxj ð1� b̂jgÞ1�xj

where Fða;bÞ is the cumulative distribution function of the beta distri-

bution with shape parameters ða;bÞ; B is the Beta function;

a� ¼
PJ

j¼1 xj þ a; and b� ¼ J �
PJ

j¼1 xj þ b. Then the final form of

the posterior probability is easily obtained from Equation (1).

2.2.3 Parameter estimation

We use the background mutation model that will be described in

Section 2.3 to get an empirical Bayes estimate of bjg. Recall that the

global hyperparameters a and b govern the prior probability that a

driver gene is mutated and consequently they are estimated using the

method of moments from tissue-specific mutation data of known

cancer genes [from the Cancer Gene Census (Futreal et al., 2004)] in

COSMIC. To avoid overfitting the model, any samples included in a

dataset of interest should be removed prior to estimation of the

hyperparameters. Here, e.g. TCGA ovarian and lung samples were

removed; see Supplementary Section S2.2.4 for details.

To assess functional impact, we use SIFT scores from Liu et al.

(2011), which range from zero to one, transformed such that scores

closer to one represent high impact (Kumar et al., 2009). If there is

more than one non-silent mutation in gene g for sample j, we let Sjg

take the value of the maximum functional impact score for all muta-

tions in the gene. If there are no non-silent mutations in gene g for

sample j, we let Sjg ¼ �1. To estimate f dð�Þ, the distribution of func-

tional impact scores for driver genes, we first obtain SIFT scores for

a random sample of non-silent mutations, generated by shuffling the

observed mutations subject to the constraints of the background mu-

tation model. We then estimate f dð�Þ using non-parametric spline re-

gression on the ratio of the simulated null to the observed full

distribution f ð�Þ of scores across bins of the score range, a technique

used by Efron et al. (2001) to estimate the non-null distribution of

z-scores in the analysis of gene expression microarray experiments.

Specifically, 50 equally spaced bins and a natural spline with 5 de-

grees of freedom were used. Though our functional impact score of

choice here is SIFT, this non-parametric approach accommodates

other available functional impact scoring schemes.

2.2.4 Quantifying gene-specific mutation patterns

Motivated by the fact that genes showing a random pattern of muta-

tions across cancers in COSMIC are less likely to be drivers than

those showing concentrated mutations (more likely to be oncogenes)

or those showing an overabundance of protein-truncating mutations

(more likely to be tumor suppressors) (Vogelstein et al., 2013), for

every gene g we calculate a prior probability of driver activity

(PðZg ¼ 1Þ) using all mutations observed for that gene in COSMIC

(excluding TCGA ovarian and lung cancer cases and only including

data from whole-gene screens). Specifically, to quantify evidence of

concentrated mutations, for each gene we calculate its positional en-

tropy compared to a random distribution of mutations across all

amino acids. Genes with low entropy are ones with highly concen-

trated mutations. Similarly, we test each gene to see if it has a signifi-

cantly higher proportion of truncating mutations than the proportion
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of truncating mutations observed over all genes. Genes with sig-

nificantly low entropy or a significantly high proportion of truncating

mutations (P<0.05) are assigned a higher prior probability of onco-

genic activity (PðZg ¼ 1Þ ¼ 0:5); otherwise PðZg ¼ 1Þ ¼ 0:01.

Examples are shown in Figure 1; see Supplementary Section S2.2.5

for further details. The specific values of 0.5 and 0.01 are arbitrary,

but empirical sensitivity analyses (see Supplementary Section S3) dem-

onstrated little variability in results for values between 0.25 and 0.75

and between 0.005 and 0.05, respectively.

2.3 Background mutation model
We build on the YS background model and extend it to incorporate

external information that has been shown to affect mutation rates,

namely replication timing and expression level. Substantial variation

in somatic mutation rates, up to 33% in normal and 60% in cancer

cells, has been attributed to variation in the replication timing of

DNA (Koren et al., 2012; Woo and Li, 2012). In short, regions that

replicate later have higher mutation rates due to the decreased

amount of time the replication machinery has to perform repairs

compared to earlier replicating regions (Pleasance et al., 2009).

Figure 2 (top) shows this effect in the TCGA ovarian dataset. As

shown, the pattern persists when looking only at a specific mutation

type (transitions versus transversions) and nucleotide context (CpG

versus non-CpG dinucleotide). Similar patterns are observed in the

lung dataset (see Supplementary Fig. S1). Thus, it is not likely that

the pattern can be explained by differences in rates of specific types

of mutations across the regions. If this factor was to be ignored,

then the background rate for late-replication regions would likely be

underestimated, whereas the background rate for early-replicating

regions would be overestimated.

Variation in mutation rate has also been observed with gene ex-

pression level. Specifically, Chapman et al. (2011) discovered that

there are fewer mutations observed in genes that are expressed at a

higher level on average in cancer cells. It is thought that transcrip-

tion-coupled repair mechanisms are responsible for this effect. As in

the case of replication timing, the differences in mutation rate by ex-

pression level remain largely consistent within mutation type and

nucleotide context. This can be seen in Figure 2 (bottom), where the

mutation rate is plotted for three gene expression level categories.

As with replication timing, if this factor is ignored, the background

rate for lowly expressed genes will be underestimated.

These two gene-specific factors explain additional variation in

mutation rate beyond that contributed by the position-specific fac-

tors of mutation type and nucleotide context. However, some genes

still have an inexplicably high mutation rate even after accounting

for all the previously mentioned factors. Notably, the class of genes

known as olfactory receptors has a near 2-fold increase in mutation

rate compared to genes with similar replication timing and expres-

sion levels in the two TCGA datasets examined (see Supplementary

Fig. S2). Here we classify genes as olfactory receptors using gene

symbols to obtain a set of size 323 genes (see Supplementary Section

S2.1 for details). While it is unclear why these genes have elevated

rates of somatic mutation, they are known to exhibit substantial

genetic diversity in terms of both single nucleotide polymorphisms

and copy number variation (Hasin et al., 2008). Consequently, the

background model adjusts for the expected increase in the number

of background mutations for this class of genes.

2.3.1 Adjusting for gene-specific factors

In order to incorporate the gene-specific factors of replication timing

and expression level into the background mutation model, external

estimates of replication timing were first obtained from Chen et al.

(2010), who sequenced the DNA from HeLa cell lines at various

stages of the synthesis phase of the cell cycle and provided timing es-

timates over 100 kb windows across the entire genome. As a robust

proxy for replication timing, we divided the genome into three equal

parts: (i) Early, (ii) Middle and (iii) Late replicating regions by split-

ting on the tertiles of the observed distribution. This is desirable

since replication timing is not perfectly correlated across cell types,

and we do not have ovarian cell line data. However, we note that

the implementation of MADGiC is flexible enough to accommodate

other sources of replication timing data.

Next, average expression levels of each gene were obtained from

the 91 cell lines in the Cancer Cell Line Encyclopedia (CCLE) data-

base with RNA-seq data (Barretina et al., 2012), and genes were div-

ided into tertiles of expression. Averages across many tissue types in

the CCLE were used rather than matched expression measurements

from TCGA since the pattern of decreased mutations with increased

expression was more stable within mutation type, and because this

same set of expression data could be used in studies of a different

cancer or in studies where expression data was not available.

However, as with replication timing data, if other sources of expres-

sion data are available, they may be specified in the MADGiC

package.

Let kn, n 2 f1;2; 3g be the relative rates of mutation for a pos-

ition in replication timing category n, and let eh, h 2 f1; 2;3g be the

relative rates of mutation for a position in expression level category

h. In addition, let d be the relative rate of mutation for olfactory

genes compared to all others. These parameters are incorporated

into the background model of YS as additional multiplicative fac-

tors. They are in addition to the mutation-type and nucleotide con-

text-specific rate parameters pm, m ¼ 1; . . . ;8 defined in the YS

model.

2.3.2 Parameter estimation

Recall that the relative rate parameter estimates p̂m; k̂n; �̂h and d̂ de-

termine background mutation rate probabilities and thus, ideally,

they should be obtained by fitting the model only to genes contain-

ing silent mutations. Using all genes would mean that driver genes

are included, which would violate our assumption that driver genes

do not follow the background mutation model. However, because

indels are non-silent, we also include genes that have at most one

non-silent mutation. This introduces potential selection bias in the

sample-specific mutation rates qj so we follow YS and introduce an-

other parameter r to account for the bias.

As in YS, we use the method of moments to estimate the relative

rate parameters for mutation type pm and selection bias r, as well as

the additional parameters kn, eh and d. We obtain empirical Bayes

estimates of the sample-specific overall mutation rates qj (by assign-

ing the prior distribution of qj to be Uniform(a, b) and estimating

the posterior mean). The hyperparameters ðâ; b̂Þ are found via

maximum likelihood estimation given relative rate parameters

(r̂;
^
p
!
;

^
k
!
;

^
�
!

and d̂). In this way, the posterior distribution of qj

depends on the observed mutations in sample j, as well as the data-

wide parameter estimates of the relative rates of the different types

of mutations. Finally, the background probability bjg that a gene g is

mutated in sample j under the background model (i.e. given g is a

passenger) is approximated by summing the probability of a back-

ground mutation across all base pairs in the gene. Note that this pro-

cedure is different from YS, who calculate bjg as the expectation

with respect to the posterior distribution of qj; the resulting esti-

mates of bjg using YS are also empirical Bayes estimates and are very
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similar to the estimates obtained by our procedure, except that the

former requires J �G numerical integrations and the latter only J

which provides considerable improvement in computation time.

2.4 Implementation and evaluation
In order to evaluate the utility of incorporating functional impact

scores in the model, as well as assess what could be gained with a

score that was better able to distinguish between passenger and

driver mutations, MADGiC was evaluated under three different

functional impact profiles: (i) ignoring functional impact, (ii) realis-

tic impact—SIFT score profiles (see Supplementary Section S4 for

details) and (iii) high impact—passenger scores drawn from

Beta(1,1.5) and driver scores set equal to one. The last represents

some idealistic functional impact (FI) scoring system in which the

distributions of driver and passenger scores are well-separated (i.e.

passenger mutations tend to have low functional impact and driver

mutations always have high functional impact) and is designed to as-

sess the upper bound for the amount of improvement than can be

achieved by incorporating FI. The background model was fit as

described in Section 2.3 and the posterior probabilities of each gene

being a driver were computed as described in Section 2.2. Genes

with posterior probability greater than 0.95 were classified as

drivers.

For comparison, the frequency-based methods YS (original ver-

sion) and MutSigCV (version 1.3) were also evaluated (YS evaluated

for only 50 simulations due to computation time). Genes were classi-

fied as drivers by YS or MutSigCV if the Benjamini-Hochberg ad-

justed P value was less than 0.05. MuSiC was not evaluated since it

requires a post-processing step to filter the output, for which general

guidelines are not provided by Dees et al. (2012); and OncodriveFM

and OncodriveCLUST (using Intogen suite version 2.4.1) were only

evaluated for the case study data since it is not possible to specify

simulated SIFT scores for these approaches. For the Oncodrive

methods, we considered genes with q-values less than 0.05.

While we can comment on the characteristic differences among

the driver genes identified in the case studies, it should be noted that

we do not have a list of ‘true positive’ driver genes for the ovarian or

lung cancer data. As a proxy, we use the list of 125 genes identified

as drivers by Vogelstein et al. (2013). Note that although some

hyperparameters in MADGIC were estimated using COSMIC data

(see Section 2.2.3), the TCGA ovarian and lung datasets were

removed prior to estimation, and no information regarding the list

of drivers in Vogelstein et al. (2013) was used. Further, a sensitivity

analysis was conducted to examine the effect of the weight placed

on COSMIC in assigning prior probabilities that a gene is a driver

(see Supplementary Section S3).

3 Results

3.1 Application to simulated data
To facilitate comparisons with existing methods, the simulation

study considers two types of simulations: SIM I simulations that

ignore the dependence of mutation rate on replication timing and

expression level and SIM II simulations that do not. Within each

simulation setup, we evaluate the ability of MADGiC and compet-

ing methods to identify true driver genes in a scenario that mimics

TCGA ovarian (with a relatively large sample size and average num-

ber of mutations) as well as one that mimics TCGA lung (relatively

small sample size and large number of mutations). In addition,

MADGiC was evaluated under three different functional impact set-

tings in order to assess to what degree the inclusion of an FI score

may result in increased power. As expected, performance depends

on each of these characteristics.

As shown in Table 2, false discovery rate (FDR) is well con-

trolled for all methods when mutation rate is assumed constant

across replication timing region and expression level. In the more

realistic SIM II setting, FDR increases for methods that do not

accommodate this dependence. For the simulated lung data, FDRs

are generally higher and power is generally lower for all methods.

This is likely due in part to the higher passenger mutation rate rela-

tive to the true driver mutation rate as well as greater heterogeneity

in sample-specific mutation rates.

When functional impact scores are able to separate driver muta-

tions from passengers (the ideal FI case), MADGiC is very well pow-

ered to detect true driver genes and has a well-controlled FDR. In

contrast, when no FI information is used, the power of MADGiC is

decreased but is still highest among approaches using the ovarian-

based simulations, with only moderate increases in FDR. In the

lung-based simulations, YS has higher power than MADGiC, but

the FDR is considerably inflated. Under the more intermediate FI

setting that is based on observed SIFT score profiles, MADGiC has

more power than when FI information is ignored, with comparable

FDR. Thus, MADGiC performs best when FI scores are set to be

near ideal, however, it still shows favorable performance when SIFT

scores are used (and also when no FI is used).

3.2 Application to TCGA somatic mutation data
3.2.1 Ovarian cancer

MADGiC identified 19 genes with a posterior probability of being

a driver greater than 0.95 (listed in Supplementary Section S5).

Table 3 (top) displays the number of genes found by each method,

along with the proportion of those found that were also on the list

of putative drivers from Vogelstein et al. (2013) (the ‘Putative

Driver Rate’). YS identified 70 significant genes after adjustment for

multiple comparisons, 14 of which were also found by our model.

MutSigCV identified five significant genes after adjustment for mul-

tiple comparisons, two of which were identified by our model and

YS. Six of the 21 genes identified by OncodriveFM and three of the

20 genes identified by OncodriveCLUST were also found by

MADGiC. We note that 57.9% of the drivers identified by our

model are contained in the list from Vogelstein et al. (2013), while

Table 2. Simulation results

MADGiC

MutSigCV YS No FI SIFT Ideal FI

SIM I Ovary Power 0.05 0.30 0.42 0.51 0.86

FDR 0.04 0.04 0.04 0.04 0.02

Lung Power 0.01 0.16 0.27 0.31 0.75

FDR 0.07 0.08 0.07 0.06 0.03

SIM II Ovary Power 0.06 0.33 0.45 0.55 0.86

FDR 0.02 0.32 0.08 0.09 0.04

Lung Power 0.02 0.36 0.30 0.34 0.77

FDR 0.58 0.97 0.32 0.30 0.05

Note: Power and FDR averaged over 100 SIM I datasets, where depend-

ence of mutation rate on replication timing and expression level is ignored

and 100 SIM II datasets, where this dependence is preserved. The first set of

simulations was designed to mimic TCGA ovarian data, which has a relatively

large sample size, an average number of mutations and relatively little vari-

ability among sample-specific mutation rates; the second set is based on

TCGA lung data, with smaller sample size, larger number of mutations and

greater heterogeneity in sample-specific mutation rates.
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the same figure is 12.9% for YS, 40.0% for MutSigCV, 38.1% for

OncodriveFM and 25.0% for OncodriveCLUST. Of the five genes

identified by MADGiC but not YS, four have five or fewer mutated

samples and two of those are putative drivers.

Figure 3 displays the proportion of genes found by each method

in each replication timing and expression level category. Here we

see that MADGiC is not biased toward finding genes in the high

background mutation categories (late replication timing or low ex-

pression) compared to the distribution of all genes. In contrast, YS

finds the highest proportion of genes in the high mutation rate

categories.

3.2.2 Squamous cell lung carcinoma

Although the lung data set is structurally different than ovarian with

a smaller sample size and much higher average mutation rate, the

qualitative results from each method are similar. MADGiC identi-

fied 47 genes with a posterior probability of being a driver greater

than 0.95 (listed in Supplementary Section S5). Table 3 (bottom) dis-

plays the number of genes found by each method, along with the

proportion of those found that was also on the list of putative driv-

ers from Vogelstein et al. (2013). YS identified 585 significant genes

after adjustment for multiple comparisons, 45 of which were also

found by our model. MutSigCV identified seven significant genes

after adjustment for multiple comparisons, six of which were identi-

fied by MADGiC and YS. Eight of the 85 genes identified by

OncodriveFM and seven of the 55 genes identified by

OncodriveCLUST were also found by MADGiC. We note that

21.3% of the drivers identified by our model are contained in the

list from Vogelstein et al. (2013), while the same figure is 1.9% for

YS, 57.1% for MutSigCV, 15.3% for OncodriveFM and 14.5% for

OncodriveCLUST. As in the ovarian case study, YS is biased toward

identifying genes in the high background mutation rate categories

(see Supplementary Section S5 for details). Specifically, of the 448

genes significant only by YS that also have complete replication tim-

ing and expression information, 400 (89%) are in either the late rep-

licating region, the low expression category or both. In addition,

only one of these additional genes was also identified by Vogelstein

et al. (2013). Of the two genes identified by MADGiC but not YS,

one has five or fewer mutated samples and the other is a putative

driver.

Table 3. Case study results

Oncodrive

MADGiC YS MutSigCV FM CLUST

Ovary Total found 19 70 5 21 20

Put. driver

fraction

0.579 0.129 0.400 0.381 0.250

Lung Total found 47 585 7 85 55

Put. driver

fraction

0.213 0.019 0.571 0.153 0.145

Note: For each method applied to the two case studies (TCGA ovarian and

lung), we report the total number of driver genes identified, along with the

proportion of those found that are putative drivers [i.e. they are on the list

identified by Vogelstein et al. (2013)].
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Fig. 3. The proportion of driver genes identified by each method in each replication timing (top) and expression level (bottom) category for the TCGA ovarian

case study. Refer to Supplementary Section S5 for similar results from the lung case study
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Note that the results presented here for MutSigCV are slightly

different than those observed in Lawrence et al. (2013) since we

have removed 10 samples, used a q-value threshold of 0.05 instead

of 0.10 and used the most updated version of MutSigCV (see

Sections 2.1.2 and 2.4 for details).

4 Discussion

MADGiC is an integrative model that provides posterior probabil-

ities for improved inference for driver gene identification. The em-

pirical Bayesian framework provides a natural way to incorporate

several critical features together that were previously only con-

sidered in isolation. In addition to modeling key features of the

observed mutation data, MADGiC also leverages the non-random

mutational patterns observed across many cancer types in the

COSMIC database to inform the prior probability of driver

activity. Until recently, these spatial patterns were only evident

in well-studied cancer genes that were the focus of targeted

sequencing studies. Over the past few years, however, the

COSMIC database has accumulated data from thousands of

whole genomes and whole exomes, enabling a systematic search

over all genes. The use of a database that collects mutation position

data from multiple studies for each cancer type is vital, as the char-

acteristic spatial patterns observed across thousands of cancers are

not discernible when analyzing data from a single cancer in

isolation.

The performance of MADGiC shows promise both in simula-

tions and case studies. The simulation studies suggest that MADGiC

has favorable operating characteristics relative to existing methods,

and further highlights specifically the amount of advantage gained

by incorporating functional impact scores. As the quality of these

scores improves, so too should the power of MADGiC. In addition,

the simulation study demonstrates that the operating characteristics

of all approaches can vary widely with sample size, mutation fre-

quency and heterogeneity in sample-specific mutation rates. It also

demonstrates that MADGiC’s integration of data across multiple

sources facilitates the identification of putative driver genes showing

relatively few mutations, a result also observed in the case studies.

Specifically, as seen in Supplementary Tables S7 and S8, there are

several genes with only three to five samples mutated that are identi-

fied as drivers by MADGiC but not other approaches. The fact that

many of these are also on the putative driver list of Vogelstein et al.

(2013) suggests that they are not false positives.

A limitation of all methods investigated stems from our assump-

tion that the somatic mutation calls are complete and accurate.

While it has been observed that properties of tumor samples (e.g.

low allelic fraction) are responsible for introducing systematic

sequencing bias, methods for improving the sensitivity of mutation

callers have been developed (Yost et al., 2013). As these methods

continue to improve, so too will results from MADGiC. A further

limitation of frequency-based methods that was noted in Lawrence

et al. (2013) is the bias toward longer genes. Although MADGiC,

YS and MutSigCV each account for gene length, the driver genes are

still enriched for longer genes in all three methods in both case stud-

ies except for MutSigCV in the lung cancer study (see

Supplementary Section S5 for details). However, MutSigCV is more

conservative than the other two methods and the bias reappears as

the gene list size increases. The bias is likely a result of additional,

perhaps unknown factors that affect the rate of mutation of these

longer genes. The fact that none of the methods are able to com-

pletely overcome this bias demonstrates that this is an ongoing chal-

lenge for frequency-based methods.

So far, we have only considered modeling one gene at a time.

Thus, when computing the posterior probability that a given gene is

a driver, no information pertaining to any other genes is considered,

beyond that used to estimate the parameters in the background mu-

tation model. However, a non-silent mutation in any one of a group

of coordinately regulated genes (e.g. A, B and C) could cause the

same selective advantage to a cancer cell. In this situation, evidence

of driver activity of gene A would increase given non-silent muta-

tions in genes B and C in other samples. A number of methods are

available for identifying pathways containing driver genes (Ciriello

et al., 2012; Vaske et al., 2010; Vandin et al., 2012). Extensions of

MADGiC to accommodate pathway structure should further im-

prove our ability to identify drivers of cancer.
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