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Abstract: We proposed the Retinex-based fast algorithm (RBFA) to achieve low-light image enhance-
ment in this paper, which can restore information that is covered by low illuminance. The proposed
algorithm consists of the following parts. Firstly, we convert the low-light image from the RGB
(red, green, blue) color space to the HSV (hue, saturation, value) color space and use the linear
function to stretch the original gray level dynamic range of the V component. Then, we estimate
the illumination image via adaptive gamma correction and use the Retinex model to achieve the
brightness enhancement. After that, we further stretch the gray level dynamic range to avoid low
image contrast. Finally, we design another mapping function to achieve color saturation correction
and convert the enhanced image from the HSV color space to the RGB color space after which we can
obtain the clear image. The experimental results show that the enhanced images with the proposed
method have better qualitative and quantitative evaluations and lower computational complexity
than other state-of-the-art methods.

Keywords: Retinex; image enhancement; gamma correction; low-light image; HSV color space

1. Introduction

Images captured with a camera in weakly illuminated environments are often de-
graded. For example, these types of images with low contrast and low light, reduce
visibility. The object and detail information cannot be captured, which can reduce the
performance of image-based analysis systems, such as computer vision systems, image
processing systems and intelligent traffic analysis systems [1–3].

In order to address the above problems, a great number of low-light image enhance-
ment methods have been proposed. Generally, the existing methods can be divided into
three categories, namely the HE-based (histogram equalization) algorithm, Retinex-based
algorithm and non-linear transformation [4–6]. The HE-based algorithm is the simplest
method; the main idea of this method is to adjust illuminance by equalizing the histogram
of the input low-light image. To address the shortage of conventional HE algorithms, over
enhancement and loss of detail information, a great number of improved and HE-based
methods have been proposed, such as contrast-limited equalization (CLAHE), bi-histogram
equalization with a plateau limit (BHE), exposure-based sub-image histogram equalization
(ESIHE) and exposure-based multi-histogram equalization contrast enhancement for non-
uniform illumination images (EMHE) [7–12]. However, HE-based methods neglect the
noise hidden in the dark region of low-light images. The Retinex model is a color percep-
tion model of human vision, which consists of illumination and reflectance [13,14]. The aim
of Retinex-based algorithms is to estimate the right illumination image or reflectance image
from its degraded image by different filters to achieve low brightness enhancement [15,16].
Some classic algorithms are single-scale Retinex (SSR) and multi-scale Retinex (MSR). In
order to solve color distortion, multi-scale Retinex with color restoration (MSRCR) was
proposed, which introduced color restoration in multi-scale Retinex. After that, some im-
proved algorithms introduced different types of filters to replace the traditional Gaussian
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filter, such as the improved Gaussian filter, improved guided filter, bright-pass filter and so
on [17–19]. Even though image texture details can be restored well via the Retinex-based
method, the halo effect is introduced into enhanced images. Common non-linear functions
are gamma correction, sigmoid transfer function and logarithmic transfer function [20–22];
these types of methods are pixel-wise operations for natural low-light images. Compared
with other non-linear functions, the gamma transfer function is wildly used in the field of
image processing, but the limitation of gamma correction is that if the parameter γ is too
small, it will amplify the noise of the target image; by contrast, if the parameter γ is close
to 1, satisfactory enhanced results will not be obtained. Therefore, estimating a suitable γ
value is the key to obtaining satisfactory enhanced results.

In this paper, we utilize the gamma transfer function to estimate the illumination and
achieve brightness enhancement via the Retinex model. The enhanced image achieves
satisfactory light enhancement and global brightness equalization; thus, our method can
restore more information than other methods. The final experimental results show that
compared with other state-of-the-art methods, the enhanced images through our algorithm
have better qualitative and quantitative evaluations. Some examples of natural low-light
images and enhanced images with the proposed RBFA method are shown in Figure 1. All
low-light images in Figure 1 were captured by the authors of this paper.
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Figure 1. Top row (a–c): natural low-light images, bottom row (d–f): enhanced images with our
proposed RBFA method.

The rest of this paper is organized as follows: Section 2 describes the corresponding
works of the proposed algorithm in this paper. In Section 3, the details of the proposed
method are introduced. Section 4 presents the comparative experiment results with other
state-of-the-art methods and describes the computational complexity comparison. The
work is concluded in Section 5.

2. Related Work

We introduce the Retinex model, gamma correction and HSV color space in this
section, which construct the basis of our method.

2.1. Retinex Model

The classical Retinex model assumes that the observed image consists of reflectance
and illumination. The Retinex model can be expressed as follows [23].

H = R • L (1)

where H is the observed image, R and L represent the reflectance and the illumination
of the image, respectively. The operator ‘•’ denotes the multiplication. In this paper, we
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utilize the logarithmic transformation to reduce computational complexity. We can obtain
the following expression.

log(H) = log(R•L) (2)

Finally, we can obtain Equation (3) to estimate the reflectance in the HSV color space.

log(R) = log(V)− log(L) (3)

2.2. Gamma Correction

The gamma transfer function is wildly used in the field of image processing, and the
corresponding gamma transfer function can be expressed as follows [24,25].

g(x, y) = u(x, y)γ (4)

where g(x, y) denotes the gray level of the enhanced image at pixel location (x, y), u(x, y)
is the gray level of the input low-light image at pixel location (x, y), and γ represents the
parameter of the gamma transfer function. The shape of the gamma transfer function can
be affected by parameter γ; the influence of different values of γ is shown in Figure 2.
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According to the Figure 2, we can see that the enhanced gray level increases monoton-
ically with decreased parameter γ; if we want to achieve a higher value of the gray level,
we have to let the size of parameter γ fall within the range from 0 to 1. Contrastingly, the
enhanced gray level decreases monotonically with increased parameter γ.

2.3. HSV Color Space

The HSV color space consists of a hue component (H), saturation component (S) and
value component (V) [26,27]. The value component represents the brightness intensity of
the image. The advantage of the HSV color space is that any component can be adjusted
without affecting each other [28]; more specifically, the input image is transferred from the
RGB (red, green, blue) color space to the HSV color space, which can eliminate the strong
color correlation of the image in the RGB color space. Therefore, this work is based on the
HSV color space [29]. Commonly, image enhancement in RGB color space need to process
R, G and B, three components, but we only need to process the V component in this work.
Therefore, this will greatly reduce the image processing time.

3. Our Approach

The details of proposed algorithm are described in this section. Based on the descrip-
tions in Section 2.2, in this work we only focus on the V component to adjust the brightness
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of the low-light image; the flowchart of the proposed method is shown in Figure 3. We
choose an image named “Arno” to illustrate the enhancement process of the proposed
method, the processing of image enhancement and corresponding histograms are shown
in Figure 4.
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In our method, we use gamma correction to estimate the illumination and the Retinex
model to achieve brightness enhancement. Compared with using filters to estimate the
illumination, using gamma correction to estimate the illumination can effectively reduce
the computational time. The key to gamma correction is to compute the value of the gamma
parameter; the details of the gamma parameter determined are described as follows.
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3.1. Brightness Enhancement

The gray levels of a low-light image are mainly concentrated in the low gray level
area, and the dynamic range of low gray levels is very narrow. Combing Figure 2, we
can see that the higher the gray level dynamic range of the input image, the higher the
gray level dynamic range of the output image. Therefore, we use linear enhancement to
stretch the gray level dynamic range before gamma correction, and we make the value of
the stretched gray level fall within the range of (0, 1) to prevent over-enhancement. The
used linear function in this paper can be expressed as follows.

Vmax = max(V(x, y)) (5)

V1(x, y) =
1

Vmax
∗V(x, y) (6)

where Vmax denotes the maximum pixel value of V component, max(.) denotes take
the maximum value of V(x, y), V(x, y) is the pixel value of the original V component at
location (x, y), V1(x, y) is the enhanced pixel value at location (x, y) and ‘∗’ represents
the multiplication.

The maximum value of the low-light image is usually lower than 1; we can infer that
1

Vmax > 1, so this linear function can stretch the dynamic range of the low-light image, and
we also can obtain that V1(x, y) ≤ 1.

After the gray level dynamic range is stretched, we adopt gamma correction to es-
timate illumination. For a low-light image, the lower the brightness intensity, the lower
the gray level. Therefore, we take this feature into consideration. First, based on the
global histogram, we compute the mean gray level value, which can reflect the overall
brightness level to a certain extent. The corresponding computational formula is expressed
as Equation (7), and we can obtain the mean gray level value via this equation.

m =
∑L

i=0 P(i) ∗ i

∑L
i=0 P(i)

(7)

where m is the mean value of gray levels, L denotes the maximum value of gray levels of
an image and P(i) is the histogram of gray level i.

In this paper, we assume that the gray levels more than zero and less than m+ 1 are the
extreme low gray levels. In fact, this part of the gray level is the key to determine the mean
gray level of the low-light image. Based on the above descriptions, we design a formula
to convert the gray level of this part into a constant, and use this constant to compute the
gamma value. The corresponding transfer formula is expressed as Equation (8).

c = ∑m
i=1 P(i) ∗ i

128 ∗∑m
i=1 P(i)

(8)

where c is the value of conversion result and c is a positive number. Low-light images
may have similar mean values, which will lead to similar c values. In order to enlarge the
difference of c values among different images, we use the following expression to enlarge
c values.

c1 =
1

1 + e−c (9)

where c1 represents the enlarged c value. In addition, we also think that the focus of
brightness enhancement lies in the low gray level area rather than the high gray level area.
Therefore, we take the distribution of the low gray level as one of the important bases for
estimating the gamma value. In order to calculate the distribution of the low gray level,
the cumulative distribution function (CDF) is used to calculate the distribution of the gray
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level in this part. In this paper, we consider the gray level less than 128 to be the low gray
level area.

cd f (j) =
j

∑
0

pd f (i) (10)

pd f (i) =
p(i)

M ∗ N
(11) (11)

where p(i) is the number of pixels that have gray level i, M and N are the length and width
of the image, j is the threshold point of CDF and we set j equals to 128. Then we weigh the
CDF value with the c1 value to obtain the gamma parameter value.

γ = w ∗ c1 + (1− w) ∗ cd f (12)

where γ represents the gamma parameter, w is the weighted value and equals to 0.48.
Combining Equations (4), (6) and (12), we can get the final expression as follows.

VL(x, y) = V1(x, y)w∗c1+(1−w)∗cd f (13)

where VL(x, y) denotes the pixel location (x, y) of illumination image. Combing
Equations (3) and (13), we can get the reflectance, and it is shown as follows.

log(R) = log(V)− log(VL) (14)

We get the enhanced V component as follows:

VE = exp(log(V)− log(VL)) (15)

The enhanced V component and corresponding histogram are shown in Figure 4c.

3.2. Dynamic Range Expansion

After brightness enhancement, the pixel values are easily concentrated in the higher
gray level range, which leads to the grayscale dynamic range becoming narrow with low
contrast in the enhanced image. We can adjust the contrast of the image by enlarging the V
component gray level [30,31]. In order to avoid pixels values concentrated in the higher
gray level range, we use a piecewise function to further stretch the gray level dynamic
range to achieve dynamic range expansion. The corresponding expression can be expressed
as follows.

VE′(x, y) =

{
VE(x, y), VE(x, y) ≥ 0.5

2 ∗ (VE(x, y))2, VE(x, y) < 0.5
(16)

The dynamic range enlarged V component and corresponding histogram are shown in
Figure 4d.

3.3. Saturation Adjustment

In addition to brightness, the color saturation also directly affects the visual experience.
In the HSV color space, the mean value of the S component and V component of a clear
image should be approximately equal [32,33]. However, with the adjustment of brightness,
the mean value of the V component changes greatly, which affects the image color. Based
on the mean difference between the V component and the S component, Formula (20) is
designed to adjust the S component. The details of our method are described as follows.
Firstly, we use Equation (17) to compute the mean difference between the V component
and S component.

VES = VE′mean− Smean (17)
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where VES is the mean difference, VE′mean is the mean value of enhanced V component
and Smean is the mean value of S component. The expression used to compute VE′mean is
shown below.

VE′mean =
∑i

0 VE′(i) ∗ i
M ∗ N

(18)

where i denotes the gray level, and VE′(i) is the number of pixels that have gray level i.
M and N are the length and width of the image. Similiarly, we can get Equation (19) to
compute the Smean.

Smean =
∑i

0 S(i) ∗ i
M ∗ N

(19)

where i denotes the gray level, S(i) is the number of pixels that have gray level i. From the
above description, we adjust the S component value to reduce the mean difference value
between the VE’ component and S component to achieve the purpose of color saturation
adjustment. After VES is obtained, we use it to adjust the S component. According to
Section 2.2, if we want to enlarge the value of the S component, we have to ensure that
the gamma parameter lies in the range (0,1). On the contrary, we need to ensure that the
parameter value is greater than 1 to reduce the value of the S component. Therefore, we
use Equation (20) to achieve this step.

S1(x, y) = S(x, y)1+(−1)2−n∗(|VES|2+|VES|), n =

{
0 VES < 0
1 VES ≥ 0

(20)

where S1(x, y) denotes the pixel location (x, y) of the adjusted S component, and S(x, y)
is the pixel location (x, y) of the original S component. According to Equation (17), we
can see that if VES < 0, we know that VEmean < Smean, so we need to reduce the
value of the S component. Meanwhile, from Equation (20) we know that n = 0 and
1 + (−1)2−n ∗

(
|VES|2 + |VES|

)
> 1, then we get S1(x, y) < S(x, y). Similarly, we can

see that when VES > 0, we also can get S1(x, y) > S(x, y). The original S component
and corresponding histogram are shown in Figure 4e and the adjusted S component and
corresponding histogram are shown in Figure 4f.

4. Comparative Experiment and Discussion

This section describes the comparative experiment with the existing methods and
experimental results. The comparative methods used include the LECARM algorithm [34],
FFM algorithm [7], LIME algorithm [17], AFEM algorithm [1], JIEP algorithm [15] and
SDD algorithm [35]. All comparative experiments are performed in MATLAB R2020b on
a PC running Windows 10 with an Intel (R) Core (TM) i7-10875H CPU @ 2.30 GHz and
16 GB of RAM. Due to the length limitation of this paper, we use 10 images to illustrate
the comparative results; the reference images are shown in Figure 5. All test images
and reference images come from the public MEF dataset [36], which, in total, include 24
low-light images.
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4.1. Computational Time Comparison

We test the time consumed for different algorithms to process different size images,
and the test results are shown in Table 1.

Table 1. Time cost of different methods.

Image Size 100 × 100 700 × 700 1300 × 1300 1900 × 1900 2500 × 2500 3100 × 3100 3700 × 3700 4300 × 4300

LECARM 0.151 0.396 0.707 1.234 1.934 2.823 3.951 5.398
AFEM 0.048 0.204 0.566 1.136 2.014 3.075 4.674 5.959
LIME 0.030 0.124 0.394 0.825 1.437 2.203 3.209 4.363
FFM 0.182 5.043 17.071 36.819 65.744 95.577 142.183 197.190
SDD 0.222 8.882 34.930 79.808 139.754 209.301 345.587 526.162
JIEP 0.079 3.565 13.332 29.159 45.297 55.327 82.677 120.519

Proposed 0.013 0.071 0.249 0.519 0.909 1.419 2.076 2.804

In Table 1, the shortest times are highlighted in bold case values, and the second-
shortest times are highlighted with underlined values. Table 1 shows that the proposed
method takes the shortest time for processing each image due to the lowest computational
complexity, in comparison to both the FFM method and SDD method, which consume
the longer time. We also can learn that JIEP’s time consumption is higher than the AFEM
method and less than the FFM method. The time consumptions of AFEM, LECARM and
LIME are similar because of the same computational complexity. Generally, the proposed
RBFA algorithm consumes the least time on average, and the processing speed of the image
is the fastest.

We made the data in Table 1 into a line chart to analyze the computational comparison
of different methods as shown in Figure 6. Figure 6 shows that the computational complex-
ity of the proposed method RBFA is O(N), and it is the lowest among all the methods, in
comparison to SDD’s computational complexity, which is the highest. The computational
complexity of the SDD method is O(N2), which results in the SDD method costing more
time on image processing. The computational complexity of both the FFM method and
JIEP method are O(NlogN), but the time increment of the FFM method is higher than the
JIEP method. The computation complexity of AFEM, LECARM, LIME and the proposed
method MFGC are O(N); although the computational complexity is the same, the time
increment of the proposed algorithm is the smallest with the same amount of data, proving
that the proposed method has the lowest computational complexity.

4.2. Visual Comparison

Although the results of the LECARM method preserve the original hue and saturation
and have a higher brightness intensity of each image, this algorithm easily results in
non-uniform global light, further decreasing the visual experience, such as in the mid
area of Figures 7–10, which have higher illumination than other areas. The SDD method
results show that there are some regions that become blurred, such as in the middle area of
Figures 10 and 11. From the enhanced images, we can see that the performance of FFM is
unstable, because some results of the FFM method are inadequate brightness enhancement,
for instance, the whole area of Figures 12 and 13. From the results of the JIEP method, we
can see that this algorithm is focused on normal under exposure and does not perform
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well in extreme low illuminance regions, such as in the middle region of Figure 8 and the
bottom region of Figure 14. It is clear that the results of the LIME method show uneven
brightness and over-enhancement in some areas, such as the lower middle area of Figure 10,
middle area of Figures 14 and 15 and the wall in the Figure 16. The results of the AFEM
algorithm are not satisfactory because the brightness increment is too small to restore the
details covered with dark regions, such as the bottom area of Figures 14 and 16. As we
can see, the results of the proposed RBFA method achieved the global brightness balance
after enhancement via the proposed method; the color retained is more natural than the
other methods.
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(c) enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.

4.3. Objective Assessment

Because human eyes often lose some details when we observe a picture, we choose one
no-reference image quality assessment metric (perception-based image quality evaluator
(PIQE)), three full reference image quality measure metrics (mean-squared error (MSE),
structural similarity (SSIM), and peak signal-to-noise ratio (PSNR)) and lightness order
error (LOE) to measure the quality of the enhanced images. The results of the different qual-
ity measure methods are shown in Table 2; these values represent the average value. The
best scores are highlighted in bold case values, and the second-best scores are highlighted
with underline values.

We can see from Table 2 that the proposed method obtained the best score four times
and second-best score once. As shown in Table 2, the PIQE values of different methods fall
within the range from 38.601 to 51.457, which means that the quality of all enhanced images
is very similar and close, and the enhanced images via the proposed method obtained the
best score. The smaller the LOE value, the more natural the enhancement effect. We can see
that the LOE value of the proposed method is the best. This also means that the naturalness
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of the preservation of the proposed method is efficient. MSE is calculated by taking the
average of the square of the difference between the reference image and enhanced image;
the smaller the value is, the higher the similarity between the reference image and the
enhanced image. The result of the proposed method is only 4.59 lower than the best LIME
result. SSIM assesses the visual impact of three characteristics of an image: luminance,
contrast and structure. The bigger the SSIM value, the higher the image quality; we see
that the enhanced image via the proposed method preserved the highest similarity to the
reference image. We know that the PSNR value of the proposed method is also the highest,
which means that our method is useful for low-light image enhancement. Generally, the
image quality enhanced by the proposed method is better than other comparative methods.
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Figure 13. Comparing enhanced results of Door with different methods. (a) Input image, (b) enhanced with LECARM,
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(h) enhanced with proposed RBFA method.
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Figure 16. Comparing enhanced results of Venice with different methods. (a) Input image, (b) enhanced with LECARM, (c)
Enhanced with FFM, (d) enhanced with LIME, (e) enhanced with AFEM, (f) enhanced with JIEP, (g) enhanced with SDD,
(h) enhanced with proposed RBFA method.

Table 2. Results of image quality measure metrics with different methods.

Metrics LECARM AFEM FFM JIEP LIME SDD Proposed

PIQE 39.818 39.809 42.884 40.072 42.705 51.457 38.601
LOE 415.594 253.646 291.906 296.568 749.862 493.806 7.660
MSE 3777.2175 2021.305 2823.849 2241.768 1153.584 1617.479 1158.174
SSIM 0.531 0.747 0.709 0.732 0.739 0.751 0.753
PSNR 12.504 16.350 14.464 15.847 18.136 17.511 18.258

5. Conclusions

We proposed the Retinex-based fast enhancement method in this paper. This method
can address uneven brightness and greatly improve the brightness of low-light areas. The
proposed method is more efficient. In general, the proposed RBFA algorithm performance
is better than other state-of-the-art methods, combining the results of the comparative exper-
iment, computational complexity comparison and quality assessment. In other words, the
proposed RBFA method is a simple and efficient low-light image-enhancement algorithm.
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