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Hybridization among littoral cichlid species in Lake Tanganyika was inferred in several molecular phylogenetic studies. The
phenomenon is generally attributed to the lake level-induced shoreline and habitat changes. These allow for allopatric divergence
of geographically fragmented populations alternating with locally restricted secondary contact and introgression between
incompletely isolated taxa. In contrast, the deepwater habitat is characterized by weak geographic structure and a high potential
for gene flow, which may explain the lower species richness of deepwater than littoral lineages. For the same reason, divergent
deepwater lineages should have evolved strong intrinsic reproductive isolation already in the incipient stages of diversification,
and, consequently, hybridization among established lineages should have been less frequent than in littoral lineages. We test this
hypothesis in the endemic Lake Tanganyika deepwater cichlid tribe Bathybatini by comparing phylogenetic trees of Hemibates and
Bathybates species obtained with nuclear multilocus AFLP data with a phylogeny based on mitochondrial sequences. Consistent
with our hypothesis, largely congruent tree topologies and negative tests for introgression provided no evidence for introgressive
hybridization between the deepwater taxa. Together, the nuclear and mitochondrial data established a well-supported phylogeny

and suggested ecological segregation during speciation.

1. Introduction

Cichlid fishes have undergone spectacular radiations in
different parts of the world. In particular, the species flocks
of the East African Great Lakes are well-known examples for
rapid evolution and speciation [1-5]. Each of the three Great
Lakes—Tanganyika, Malawi, and Victoria—is inhabited by
hundreds of mostly endemic cichlid species [6, 7]. Notably,
most of the diversity is found in the littoral habitat, whereas
reduced species richness in the deep benthal and pelagial
seems to be a common phenomenon in all East African Great
Lakes [7-10]. At least three factors may have contributed
to this pattern: (i) reduced niche diversity in the pelagic
and in deepwater benthic zones, (ii) a narrow ambient
light spectrum consisting only of short-wavelength blue
light and hence less promotive of diversification mechanisms
contingent on color perception than the shallow clear-water
habitats [11-14], and (iii) the absence of strong barriers to
gene flow. Indeed, deepwater cichlid species often have

lake-wide distributions with very low, if any, population
genetic structure over large geographic distances [10, 15,
16] (see also the Lake Tanganyika clupeid Limmnothrissa
miodon [17] and the centropomid Lates stappersii [18]).
On the other hand, high levels of genetic differentiation,
sometimes accompanied by phenotypic divergence on small
geographic scales, are characteristic for the species-rich guild
of stenotopic rock-dwelling cichlid species [19-31]. How-
ever, allopatric diversification in the fragmented littoral zone
was not necessarily accompanied by the evolution of pre-
or postzygotic isolation, so that secondary contact imposed
by lake level fluctuations has often led to hybridization or
introgression between previously allopatric taxa [32-35].
Even today, substrate breeders of the tribe Lamprologini
can be found in mixed-species pairs [36], and interspecific
fertilizations occur in communally nesting, shell-breeding
lamprologines [37]. Indeed, phylogenetic analyses of pre-
dominantly littoral cichlid lineages revealed that interspecific
hybridization has played, and still plays, an important role
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in the evolution of these fish [32, 34, 36—41]. Thus, in
the majority of recent molecular studies on species rela-
tionships within littoral tribes, especially when comparing
mitochondrial and nuclear phylogenies, the explanation for
the tree topologies involved the claim of introgression and
hybridization between established lineages in addition to
incomplete lineage sorting (reviewed in [42]).

We hypothesize that this is not the case in tribes com-
posed of deepwater species. Lacking the geographic struc-
ture introduced by littoral habitat heterogeneity, deepwater
species may still be spatially separated by distance, by
segregation of breeding grounds, by variable hydrological
conditions [16, 43, 44], or by large-scale fragmentation of
the lake basin during major droughts [45, 46]. Generally,
however, the potential barriers to gene flow for deepwater
species are less insurmountable than those met by steno-
topic littoral cichlids. Specifically in Lake Tanganyika, the
evolution of stenotopy regarding depth, bottom type, or
light intensity may have been prohibited by the seasonal
upwelling of anoxic waters [47]. We postulate that given
the high potential for gene flow, diversification of lineages
will either be curtailed (as suggested by the relative species
paucity) or be attended by strong reproductive isolation
right from the start. This would imply that introgression
following cladogenesis occurred at much lower rates, if at
all, in the deepwater species than in littoral cichlids. We test
this hypothesis in the deepwater cichlid tribe Bathybatini
by comparing phylogenetic trees based on mitochondrial
sequence data with trees obtained with nuclear multilocus
AFLP data, an approach which has previously revealed
hybridization in littoral cichlids and other contexts [34, 36,
37, 39, 40, 48-54]. Moreover, in several studies, phylogenetic
inference on species relationships has benefited from the
use of multilocus genetic data, and we expect that the
AFLP data collected in the present study will also contribute
to the resolution of intergeneric relationships within the
Bathybatini, which are still debated due to conflicting or
ambiguous molecular and morphological evidence [46, 55—
59].

1.1. The Study Species. The tribe Bathybatini (sensu Taka-
hashi [59]) comprises 17 species in three genera: (1) the
genus Bathybates comprises six large (30—40 cm), piscivorous
species preying mainly on pelagic freshwater clupeids (B.
fasciatus and B. leo), benthic cichlids (B. graueri, B. vittatus,
and B. ferox), or undefined prey (the rare, elusive B. horni), in
addition to the small (20 cm) B. minor, which is a specialized
clupeid hunter. In accordance with their trophic niches,
Coulter [43] distinguished three morphotypes among the
Bathybates species, the fast-swimming fusiform predators B.
fasciatus, B. leo, and B. horni, the generalized shape of the
benthic feeders B. graueri, B. vittatus, and B. ferox, and the
small clupeid-mimicking B. minor, which mingles with its
prey and accompanies the diurnal clupeid migrations. Based
on trawl net and gill net catches, B. minor were classified
as pelagic, B. fasciatus and B. leo as chiefly bathypelagic
and the remaining four species (B. graueri, B. vittatus, B.
ferox, and B. horni) as chiefly benthic [43]. Except for B.
minor, which was never found below 70 m, Bathybates species
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descend to depths of 150-200 m. (2) The member of the
monotypic genus Hemibates, H. stenosoma, is an abundant
benthic species on the muddy bottom of southern Lake
Tanganyika feeding on fish and shrimps mainly at depths
between 100 and 200 m [43]. (3) The small-bodied (<15 cm)
species of the genus Trematocara (formerly assigned to the
genera Trematocara and Telotrematocara, [55]) comprise
nine benthic and bathypelagic species feeding on a variety on
invertebrate prey, fish larvae, and phytoplankton. They are
found at maximum depths of 75 to 200 m [43]. Following
the upward movement of zooplankton, many Trematocara
species undertake nightly migrations along slopes into the
littoral.

All members of the Bathybatini are maternal mouth-
brooders. Some species release their fry in shallow areas, but
overall, data on bathybatine breeding behaviour is anecdotal
or lacking [43, 60]. The species are sexually dimorphic,
with males of Bathybates and Hemibates exhibiting species-
specific patterns of dark stripes, bars and dots on a silver
background and egg-spots on the anal fins, and males of the
silvery Trematocara with dark dorsal fin markings. Females
of all species show a uniformly silver/brown coloration. All
Bathybatini have large eyes, which promote not only the
detection of prey and predators but possibly also mate-
recognition in the dark depths. In line with the latter,
the monochromatic patterning of males may be viewed as
adaptation to the short-wavelength dominated visual envi-
ronment [61], in contrast to the colourful patterns of the
mouthbrooding cichlids in the shallow, light-flooded littoral.

A recent phylogenetic study based on three mitochon-
drial genes supported the monophyly of Bathybates as well
as of the species therein and indicated a polytomy of three
equidistant lineages representing Bathybates, Hemibates, and
Trematocara [46]. Within Bathybates, B. minor appeared
ancestral to a radiation of the six large species, which showed
a basal split of B. graueri and low statistical support for
the branching order of the remaining species (Figure 1).
The short internal branches among the large Bathybates
species supported a rapid radiation at approximately 2.3-2.7
MYA, coinciding with the rapid diversification of other Lake
Tanganyika cichlids [28, 45, 62]. Competition and resource
partitioning as well as potential geographic isolation during
an extreme low-stand of the lake were proposed as promoters
of Bathybates speciation [46].

2. Material and Methods

2.1. Sample Collection and DNA Extraction. This study is
based on a total of 38 specimens, representing all seven
Bathybates species, Hemibates stenosoma as well as Tremato-
cara unimaculata and T. macrostoma (Table 1). All specimens
were obtained between 1999 and 2011 from local fishermen
at Lake Tanganyika and identified to species by S. Koblmiiller.
Unfortunately, it was not possible to obtain a comprehensive
taxon sampling for the genus Trematocara as, because of their
small size and hence low market value, these fish (except for
the largest species T. unimaculatum) are not caught by local
fishermen.
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FIGURE 1: Schematic depiction of the the phylogenetic relationships
within the Bathybatini as inferred from mtDNA data [46].

Fin clips or white muscle tissue were preserved in ethanol
and DNA was isolated using a proteinase K digestion/high
salt precipitation method [63]. DNA concentrations were
measured using a NanoPhotometer (IMPLEN).

2.2. AFLP Data Collection. Amplified fragment length
polymorphism (AFLP) genotyping followed the protocol
described in [34]. The ten primer combinations used for
selective amplification were EcoRI-ACA/Msel-CAA, EcoRI-
ACA/Msel-CAG, EcoRI-ACA/Msel-CAC, EcoRI-ACA/Msel-
CAT, EcoRI-ACT/Msel-CAT, EcoRI-ACT/Msel-CAA, EcoRI-
ACT/Msel-CAG, EcoRI-ACT/Msel-CAC, EcoRI-ACC/Msel-
CAA, and EcoRI-ACC/Msel-CAC. Selective amplification
products were visualized using an ABI 3130x] automated
sequencer (Applied Biosystems) along with an internal
size standard (Genescan-500 ROX; Applied Biosystems).
Polymorphic positions were initially identified using Gen-
eMapper 3.7 software (Applied Biosystems) in a range of
50-500 bp. In order to adjust misaligned bins and avoid size
homoplasy, bin positions were set manually. Bins containing
ambiguous low intensity peaks in a large proportion of
the samples and entire profiles with short read-lengths or
very low peak heights were deleted. These preprocessed, un-
normalized peak-height data were analyzed with AFLPScore
1.4a [64], which optimizes thresholds for locus retention and
phenotype calling based on estimated error rates. Phenotype
calling thresholds were set as absolute or relative depending
on the number of retained loci and the achieved error
rates obtained with each option. 20 replicate samples were
included to calculate the mismatch error rate for all unique
loci.

2.3. Phylogenetic Inference. A neighbour joining (NJ) tree
based on Nei and Li’s distances [65] was constructed in PAUP

3

TABLE 1: List of samples with sample ID and sampling locality.
Sample ID Species Sampling locality
12879 Bathybates fasciatus Mpulungu market
12885 Bathybates fasciatus Mpulungu market
12889 Bathybates fasciatus Kalambo Lodge
12890 Bathybates fasciatus Kalambo Lodge
12917 Bathybates fasciatus Tanganyika Lodge
12913 Bathybates ferox Lufubu estuary
12877 Bathybates graueri Mpulungu market
12878 Bathybates graueri Mpulungu market
12883 Bathybates graueri Mpulungu market
12893 Bathybates graueri Mpulungu market
12897 Bathybates graueri Mpulungu market
12901 Bathybates graueri Mpulungu market
12902 Bathybates graueri Mpulungu market
12911 Bathybates graueri Mpulungu market
12912 Bathybates graueri Mpulungu market
12919 Bathybates graueri North of Sumbu
13101 Bathybates horni Mpulungu market
12907 Bathybates leo Mpulungu market
12921 Bathybates leo Mpulungu market
12923 Bathybates leo Mpulungu market
12925 Bathybates leo Mpulungu market
13100 Bathybates leo Mpulungu market
12909 Bathybates minor Lufubu estuary
12910 Bathybates minor Kalambo
12933 Bathybates minor Sumbu
12882 Bathybates vittatus Mpulungu market
12924 Bathybates vittatus Mpulungu market
12926 Bathybates vittatus Mpulungu market
12929 Hemibates stenosoma Mpulungu market
12930 Hemibates stenosoma Mpulungu market
12931 Hemibates stenosoma Mpulungu market
12932 Hemibates stenosoma Mpulungu market
12880 Trematocara unimaculata Mpulungu market
12881 Trematocara unimaculata Mpulungu market
12935 Trematocara macrostoma Mpulungu market
12936 Trematocara macrostoma Mpulungu market

Coordinates of sampling sites (if known): Kalambo, S 8°37" E 31°12;
Kalambo Lodge, S 8°37" E 31°37’; Lufubu estuary, S 8°32" E 30°44’; Sumbu,
$8°31’ E30°29’; Tanganyika Lodge, S 8°47" E 31°05'.

Note that fish obtained at the fishmarket in Mpulungu might have been
caught anywhere in southern Lake Tanganyika.

4.0b5 [66]. Bootstrap values from 1000 pseudoreplicates
were used as standard measure of confidence in the inferred
tree topology.

Although accurate models for Bayesian tree construction
using AFLP datasets do exist [67]), the high demands for
processing power make them unfeasible to use [67, 68].
Thus, Bayesian phylogenetic inference (BI) was conducted
in MrBayes 3.1.2 [69], employing the restriction site model



with the “noabsencesites” coding bias correction [68, 70].
The Dirichlet prior for the state frequencies was set to (2.44,
1.00) matching the actual 0/1 frequencies in the dataset. Pos-
terior probabilities were obtained from Metropolis-coupled
Markov chain Monte Carlo simulations (2 independent runs;
10 chains with 8,000,000 generations each; chain tempera-
ture: 0.2; sample frequency: 1,000; burn-in: 4,000,000 gen-
erations). Chain stationarity and run parameter convergence
were checked in Tracer 1.5 [71].

To test for homoplasy excess introduced by hybridization,
we conducted a tree-based method as outlined by Seehausen
[74] by removing single species from the dataset and
observing the change in bootstrap values in the NJ tree (see
also [34, 40]). In theory, the inclusion of a hybrid taxon in a
multilocus phylogeny introduces homoplasy with clades that
contain its parental taxa. Hybrid taxa should be intermediate
to the parental taxa since they carry a mosaic of parental
characteristics. Thus, decreasing the amount of homoplasy
in the dataset by removing the hybrid taxon should increase
the bootstrap support for the clades that include the parental
taxa or their descendants, whereas removing nonhybrid taxa
should have no effect on the statistical support of other nodes
(Figure 2).

2.4. Evaluating Alternative Tree Topologies. Testing for con-
sistency between mtDNA- and AFLP-based tree topolo-
gies employed two different strategies. In a first test we
evaluated whether our AFLP-NJ-topology can be explained
by the mtDNA data of Koblmdiiller et al. [46]. Using the
mitochondrial sequences, we inferred the log likelihood
of the AFLP-NJ-topology data by constraining maximum
likelihood (ML) tree search to a topology identical to the
species tree suggested by the NJ analyses of our AFLP
data, applying the substitution model used in this previous
study (HKY+I+G). To test for significant differences between
the unconstrained [46] and constrained mtDNA topology
we performed an ML-based Shimodaira-Hasegawa (SH)
test [75] (full optimization, 1,000 bootstrap replicates) in
PAUP. In a second test we evaluated by means of a Bayes
factors approach [76] whether the mtDNA tree [46] can
be explained by our AFLP data, and whether the AFLP-
NJ and BI trees differ significantly from each other. We
performed BI searches constraining the topology to that of
the mtDNA-topology [46] and the interspecific relationships
implied by the AFLP-NJ-tree in MrBayes 3.1.2 employing
the same settings as above. Bayes factor comparison—using
the harmonic means of the likelihood throughout different
runs [77, 78]—among the three alternative phylogenatic
hypotheses was performed in Tracer 1.5. Values of 2 X In BF
(two times the difference between the harmonic means of the
two models) >10 are considered strong evidence for support
of one model over another [76].

3. Results

The final AFLP dataset consisted of 659 unique loci with
a mismatch error rate of roughly 3%, which falls within
the acceptable limit for mismatch error rates as defined by
[64]. Both the NJ and BI analysis yielded largely congruent
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and well-supported topologies with only minor differences
between them (Figures 3(a) and 3(b)). Whereas all species
were monophyletic in the NJ tree, Bathybates graueri was
not resolved as a monophylum in the BI tree, but as
paraphylum including the well-supported clade of the other
large Bathybates species (Figure 3(b)). Despite this minor
topological difference, Bayes factor comparison strongly
supports the BI tree over the NJ tree (2 X InBF = 26.828;
Figure 3(c)). We note, however, that the two-state model
implemented in MrBayes does not fully cover the complex
genetic process of AFLP evolution and thus provides accurate
phylogenetic inference less likely than distance methods
[67, 79, 80]. Hence, the observed differences between AFLP
and NJ tree topologies might be attributed to this problem.
Both the NJ and BI analyses support the monophyly of
all three genera with the genus Trematocara representing
the most ancestral branch (Figures 3(a) and 3(b)). Within
the genus Bathybates, the small and morphologically most
distinct member of the genus, B. minor, was sister taxon
to the remaining large Bathybates species. Branch lengths
among the large Bathybates species are rather short and some
received rather low statistical support, indicating a period
of rapid cladogenesis. Nevertheless, both NJ and BI analyses
revealed a largely consistent phylogenetic pattern within
the large Bathybates species. Both SH-test and Bayes factor
comparison revealed significant differences between mtDNA
and AFLP phylogenies (SH-test: InL of —9505.385 versus
—9585.142 for mtDNA versus AFLP-NJ-topology-constraint,
P < 0.001; Bayes factors: 2 X In BF of 88.576 between mtDNA
and AFLP-BI-topology and 61.748 between mtDNA and
AFLP-NJ-topology, Figure 3(c)). The homoplasy excess test
provided no evidence for introgressive hybridization (data
not shown).

4. Discussion

In the original classification of Lake Tanganyika cichlid tribes
by Poll [55], Bathybates and Hemibates were included in a
tribe Bathybatini as sister group to the Trematocarini (equiv-
alent to the genus Trematocara), a hypothesis supported
both by lepidological [58] as well as allozyme data [57].
In contrast, based on morphological characteristics, Stiassny
[56] and Takahashi [59] proposed a sister group relationship
of Bathybates and Trematocara. Currently, all three genera,
Bathybates, Hemibates, and Trematocara, are united in the
tribe Bathybatini [59]. A previous mtDNA phylogenetic
study remained equivocal with regard to the two competing
morphological classifications and suggested that Bathybates,
Hemibates, and Trematocara diverged rapidly from their
common ancestor [46]. In the present AFLP phylogeny,
the length differences between the most ancestral branches
favour Poll’s original classification with Trematocara as sister
group to Hemibates + Bathybates (55, 57, 58]. Consistent
with the mitochondrial phylogeny [46], the AFLP data
confirm the split between Bathybates minor and the larger
members of the genus Bathybates with B. graueri as their
most basal representative and identifies a period of rapid
cladogenesis at the onset of the diversification of the large
Bathybates species. However, mtDNA and AFLP phylogenies
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Test for excess homoplasy introduced by hybrid taxa:

successively remove each taxon and calculate bootstrap support

Incongruent mtDNA and nuclear multilocus trees

Removal of a hybrid taxon should increase bootstrap support for clades

Nuclear multilocus tree
with bootstraps

mtDNA tree

1,

——H

containing hybrid parents; exclusion of nonhybrid taxa should have little,

if any, effect on the bootstrap values.
—J

D excluded

F1GURE 2: Incongruency between mtDNA and nuclear multilocus trees (e.g., AFLPs) and a test for hybridization in a multilocus phylogeny.
(a) Incongruency between mtDNA and nuclear multilocus trees with regard to the placement of taxon D can result from ancient incomplete
lineage sorting [72, 73] or the hybrid origin of taxon D. (b) As hybrid taxa combine nuclear alleles from both parental taxa, they introduce
homoplasy into a multilocus phylogenetic tree and hence reduce bootstrap support of the nodes containing their parents [74]. Removal
of the hybrid taxon from the phylogeny increases the bootstrap support of the parental clades (bold values in (b)). Conversely, removal of
nonhybrid taxa should not or only slightly affect the bootstrap support of other nodes. To distinguish between informative (red values in
(b)) and uninformative changes in bootstrap values, one taxon at a time is removed from the data and the resulting distribution of bootstrap
values for each node is recorded. If removal of a certain taxon produces an outlier in these distributions, the removed taxon is considered
a hybrid (or strongly introgressed taxon) and the clades for which support was raised are considered to contain the parental taxa (see, e.g.,
[34, 40, 48]). In the present example, taxon D is a hybrid between taxa C and J.

differ significantly with respect to the branching pattern
among the remaining large Bathybates species. Introgressive
hybridization (including the possibility of complete mtDNA
replacement [41]) and ancient incomplete lineage sorting are
two alternative sources of topological disagreement between
nuclear and mitochondrial trees [40, 41, 81-83], resulting
in similar phylogenetic patterns that are difficult to resolve
by strict hypothesis testing [84]. Circumstantial inference
can be based on the fact that lineage sorting is expected to
lag behind rapid cladogenetic events, such that the rapid
radiation of the large Bathybates species predisposes this
clade to mitonuclear phylogenetic incompatibilities without
implying postcladogenetic introgression [72, 73]. Likewise,
monophyly of species in both mitochondrial and nuclear
trees (excepting the paraphyly of B. graueri in Bayesian AFLP
tree) and negative tests for homoplasy excess in the AFLP
data do not indicate the presence of hybrid taxa in the genus
Bathybates. These findings support our hypothesis that deep-
water species are less prone to introgressive hybridization
and hybrid speciation than littoral species, but reservations
arise on the one hand from the possibility that events of

introgression were not detected in our samples and data and
given the power of our analyses, and on the other hand from
the small number of species in the phylogeny. Principally,
rates of interspecific introgression may not differ between
littoral and deepwater cichlids, but will nonetheless lead to
higher incidences of introgression in the species-rich groups
than in a less speciose clade. If this was the case, the lack
of a signal of introgression in Bathybates and Hemibates
would be fully explained by the low diversification rate of
the lineage and hence limited opportunity for interspecific
hybridization, without implying the evolution of complete
reproductive isolation early on during diversification.

The branching order of Hemibates and the basal Bathy-
bates species, which is reconstructed congruently by mtDNA
and AFLP markers, suggests repeated transitions between
benthic and bathypelagic feeding mode (ecological data
from [43]). The basal H. stenosoma represents a benthic
generalist feeding on shrimps and various species of fish.
The next split led to the specialized pelagic clupeid hunter
B. minor, which mimics its prey in size and coloration and
stages surprise attacks from within the sardine shoals. Then,
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unconstrained AFLP data (violet, grey), the AFLP-NJ-topology-constraint (blue, green), and the mtDNA-topology-constraint (orange, red)
Fish were drawn after photographs in [60] to demonstrate the interspecific differences in male nuptial patterns
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B. graueri took a step back to the benthic habitat, specialized
on cichlid prey and evolved a large body size. The chronology
of the following radiation of the large bathypelagic clupeid
hunters and benthic cichlid hunters remains unresolved, but
involved at least one transition from benthic to bathypelagic
habitat preferences. Depth preferences may vary between
these species [43], such that speciation may have involved
both niche and spatial segregation. The apparent ecological
differentiation among lineages may have reduced the fitness
of hybrids [85-87] and may have promoted the evolution
of a mate recognition system, perhaps based on the species-
specific melanic patterns of male Hemibates and Bathybates.
The efficacy of monochromatic black, silvery, and white body
and fin patterns in mediating assortative mating in the dark,
short-wavelength dominated environment has recently been
demonstrated for deepwater cichlid species of Lake Malawi.
These sympatric and morphologically similar species differ
primarily in male nuptial patterns and their reproductive
isolation is corroborated by genetic differentiation estimates
[61]. However, there is increasing evidence that color pattern
is not the only cue for mate recognition in cichlids fish and
it is possible and likely that auditory [88] and olfactory cues
[89] play a role in mediating assortative mating in deepwater
species, too.

5. Summary and Conclusions

In concert with previous mitochondrial data, the present
study provides an informative phylogeny of the species in
the deepwater genera Hemibates and Bathybates. As far as
the branching pattern can be resolved, it suggests ecological
segregation during speciation. The rapid radiation within
Bathybates mirrors a burst of speciation observed in sev-
eral other cichlid tribes of Lake Tanganyika and reveals
a congruent cladogenetic pattern across vastly different
habitats, which suggests some kind of synchronization by
environmental factors [27, 45, 46, 62]. Consistent with the
hypothesis that lineages evolving in the weakly structured
deepwater habitat would develop stronger reproductive iso-
lation than the allopatric lineages of the fragmented littoral,
our data provided no evidence for the presence of hybrid
taxa in the deepwater dwelling genus Bathybates. In further
support of the hypothesis, introgressive hybridization is also
not indicated by the mitochondrial and AFLP phylogenies
of the Lake Tanganyika cichlid genus Xenotilapia [90], which
includes several deepwater-dwelling species comprising the
prey of the benthic Bathybates and Hemibates. An increased
sample size to evaluate this pattern will be attained by the
analyses of additional open-water and deepwater species, for
example, the tribe Limnochromini and the genus Tremato-
cara.
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