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ABSTRACT

While the methods available for single-cell ATAC-seq
analysis are well optimized for clustering cell types,
the question of how to integrate multiple scATAC-
seq data sets and/or sequencing modalities is still
open. We present an analysis framework that en-
ables such integration across scATAC-seq data sets
by applying the CoGAPS Matrix Factorization algo-
rithm and the projectR transfer learning program to
identify common regulatory patterns across scATAC-
seq data sets. We additionally integrate our analysis
with scRNA-seq data to identify orthogonal evidence
for transcriptional regulators predicted by scATAC-
seq analysis. Using publicly available scATAC-seq
data, we find patterns that accurately characterize
cell types both within and across data sets. Further-
more, we demonstrate that these patterns are both
consistent with current biological understanding and
reflective of novel regulatory biology.

INTRODUCTION

The Assay for Transposase Accessible Chromatin (ATAC-
seq) subjects DNA to a hyperactive transposase in order
to tag euchromatic regions of the genome for sequencing.
ATAC-seq thus provides a quantitative estimate of genome-
wide chromatin accessibility, and can be used to infer which
genomic regions are most likely to interact directly with pro-
teins and other biologically relevant molecules (1,2). Specifi-
cally, accessibility at enhancers and promoters has consider-
able influence on the binding of transcription factors (TFs)
and other transcriptional machinery (3). Quantification of
accessibility at these regions enables the characterization of
the regulatory biology that defines cell types and samples of
interest (1,2).

ATAC-seq data is often summarized by binning reads
into data-defined genomic regions of frequent accessibility
(generally termed peaks) or by aggregating the reads that

contain annotated DNA motifs (e.g. transcription factor
binding sites), which are collectively the targets of defined
trans-acting factors (e.g. transcription factors) (4). Aggre-
gating reads in these ways allows for a comparison of ac-
cessibility variation between samples and inference of the
chromatin landscape of cell populations. However, the func-
tional annotations available for these features are often in-
complete (as explored in detail by (5)), which can present
significant challenges in the interpretation of ATAC-seq
data and limit the integration of accessibility information
across data sets. Furthermore, the high dimensionality and
extreme sparsity of single cell ATAC-seq data (scATAC-
seq) significantly compounds these analytic challenges, and
further limits interpretation (6).

Therefore, computational methods are necessary to de-
termine the patterns of accessibility that differentiate the
regulatory biology associated with disparate cell popula-
tions in scATAC-seq data. Current tools for scATAC-seq
analysis robustly cluster and annotate cell types. For ex-
ample, ChromVAR, BROCKMAN, Cusanovitch2018 and
scABC (7–10) all output both clustering and inferred tran-
scription factor binding within clusters, using clustering ac-
curacy as their primary metric to evaluate efficacy. Snap-
ATAC and cisTopic additionally provide the ability to query
upregulated pathways from scATAC-seq data, but are still
most strongly oriented towards the goal of effectively differ-
entiating cell populations (6,11). These methods provide ef-
fective tools for the analysis of individual scATAC-seq data,
but require further extension to integrate the information
learned from multiple scATAC-seq experiments or multiple
sequencing modalities and thus use the multiple lines of ev-
idence available to inform conclusions.

We develop a framework to enable cross-study and
cross-platform analysis of multiple scATAC-seq data sets
through the application of the Bayesian Non-Negative Ma-
trix Factorization algorithm, CoGAPS, (12,13) in conjunc-
tion with the transfer learning program projectR (14,15).
We demonstrate that CoGAPS simultaneously identifies ro-
bust cell types, upregulated pathways, and TF activity from

*To whom correspondence should be addressed. Tel: +1 410 955 4268; Email: ejfertig@jhmi.edu

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-3204-342X


e68 Nucleic Acids Research, 2020, Vol. 48, No. 12 PAGE 2 OF 16

scATAC-seq data. Notably, the projectR transfer learning
method allows for recognition of the learned signatures of
regulatory biology that we identify with CoGAPS in other
datasets. Finally, we use matched RNA-seq data to pro-
vide orthogonal evidence for candidate regulatory mecha-
nisms identified by our scATAC-seq analysis method. This
workflow facilitates the development of consensus accessi-
bility signatures for cellular populations using multiple data
sets and data modalities. Furthermore, we demonstrate that
combined CoGAPS analysis of scATAC-seq and scRNA-
seq identifies novel biology, such as the association of the
transcription factor Hnf4a with mammalian cardiac devel-
opment.

MATERIALS AND METHODS

ATAC-CoGAPS pipeline

The ATAC-CoGAPS software is freely available as
an R package from https://github.com/FertigLab/
ATACCoGAPS with current release archived on Zen-
odo at https://zenodo.org/record/3701789. This software
package includes functions for preprocessing of scATAC-
seq data to run the CoGAPS algorithm (version ≥
3.5.13), as well as functions for subsequent analysis
of the results. Each of the steps taken to perform the
standard ATAC-CoGAPS workflow are available from
https://rossinerbe.github.io/ATACCoGAPS Tutorial
with the current release archived on Zenodo at
https://zenodo.org/badge/latestdoi/216057447. All anal-
ysis code and filtered input data used to produce the
results described in this work are available from https:
//github.com/rossinerbe/ATACCoGAPS-Analysis-Code
with the current release archived on Zenodo at
https://zenodo.org/badge/latestdoi/215837627.

Input reads from a scATAC-seq experiment are summa-
rized into some feature space (peaks, DNA motifs, etc.) and
into an input count matrix, features by cells. Specific prepro-
cessing steps are outlined in the analysis code linked above.
Next, the count matrix is input to the R/Bioconductor
package CoGAPS (version 3.5.8 for all analyses conducted
in this work). CoGAPS employs a sparse, Bayesian non-
negative matrix factorization algorithm to decompose the
scATAC-seq count matrix C, features by cells, into an Am-
plitude matrix A, features by learned patterns, and a Pattern
matrix P, learned patterns by cells as described in (12) and
(13) (and visualized in Figure 1A). This factorization is per-
formed according to the model:

p (A, P|C, �) ∝ p (C|A, P, �) p (A) p (P)

where p(C—A,P,�) is a univariate normal distribution for
each element of C with mean given by the matrix product
AP and � represents the standard deviation of each element
in C. CoGAPS uses an atomic prior (16) for both p(A) and
p(P) to model the sparsity and non-negativity of the input
count matrix. Briefly, the atomic prior element of the A and
P matrices is either set to zero or made to follow a gamma
distribution based on sampling from a Poisson prior. The
Poisson prior is used as the shape parameter of the gamma
distribution and a fixed hyperparameter for all matrix el-
ements is used as the scale parameter of the gamma dis-

tribution. The use of these distributions allows for Gibbs
sampling. For a more detailed description of CoGAPS and
derivation of the sampling algorithm, see (12,13,17). The
primary parameters for the application of CoGAPS are the
feature level summarizations used to obtain the count ma-
trix C and number of learned patterns, described in fur-
ther detail below. To account for sparsity, we filter the input
count matrix C to remove any feature or cell that is more
than 99% zero.

The next steps of the ATAC-CoGAPS analysis frame-
work then focuses on the output A and P matri-
ces. Unless otherwise noted, all steps are functional-
ized within the ATACCoGAPS package and all out-
side packages used are wrapped within ATACCoGAPS
functions (see the workflow at https://rossinerbe.github.io/
ATACCoGAPS Tutorial for detailed implementation with
code). We first evaluate the results object from CoGAPS by
plotting the Pattern matrix P (learned patterns by cells) to
determine which patterns differentiate which cell popula-
tions. Annotations of patterns to cell populations are made
using the PatternMarker statistic (described by (13)) to de-
termine the pattern each cell is most defined by, thereby
clustering cells to each pattern. Whereas many functional
annotations of factorizations rely on the absolute weights
per cell in the P matrix, the PatternMarker statistic com-
putes the extent to which that weight is uniquely high in
one specific pattern thereby enabling this annotation. Alter-
natively, if a priori determined cell populations are known
(e.g. by fluorescence activated cell sorting) we can determine
which of these populations have significant signal in a pat-
tern by calling the pairwise.wilcox.test R function for each
pattern (not functionalized in ATAC-CoGAPS) instead of
the reliance on the data-driven markers from this Pattern-
Marker statistic. The Adjusted Rand Index is used to quan-
tify the overall clustering of CoGAPS on the Schep et al.
data set (7) using the pattern to cell line annotations listed
in Supplemental Table S2. Once these correspondences of
pattern to cell type are annotated, we can then turn to the
Amplitude matrix A (features by learned patterns). We ap-
ply the PatternMarker statistic to find the accessible features
that most strongly contribute to each pattern, and thus most
define the cell population they distinguish. The number of
features used in these analyses is determined by threshold-
ing of the PatternMarker statistic such that the feature is as-
signed to the pattern for which its association is scored most
highly (13). The PatternMarker peaks are further ranked for
each pattern, and options are included to only use the most
highly ranked peaks for analysis. All peaks are used by de-
fault and in all analyses presented in this work.

Analysis of the amplitude matrix A also depends critically
on functional annotation. If peaks are used as summariza-
tion, we first match peaks to genes or gene promoters within
those regions using the GenomicRanges R package version
1.36.1 (18). We then find enrichment of those genes within
known pathways from MSigDB (in this work we demon-
strate this capability using Hallmark Pathways v7.0) (19,20)
using the GeneOverlap R package version 1.20.0 (21). P-
values from the enrichment test are FDR corrected using
the Benjamini–Hochberg procedure.

Additionally, peaks are matched to DNA motifs with po-
tential TF binding sites using the motifmatchR Package

https://github.com/FertigLab/ATACCoGAPS
https://zenodo.org/record/3701789
https://rossinerbe.github.io/ATACCoGAPS_Tutorial
https://zenodo.org/badge/latestdoi/216057447
https://github.com/rossinerbe/ATACCoGAPS-Analysis-Code
https://zenodo.org/badge/latestdoi/215837627
https://rossinerbe.github.io/ATACCoGAPS_Tutorial


PAGE 3 OF 16 Nucleic Acids Research, 2020, Vol. 48, No. 12 e68

Figure 1. (A) Diagram of Non-negative Matrix Factorization as applied to scATAC-seq data by ATAC-CoGAPS. The Counts matrix (features by cells) is
factorized into the Amplitude matrix (features by learned patterns) and the Pattern matrix (learned patterns by cells). The patterns in the Pattern matrix
differentiate cell populations, while the same patterns in the Amplitude matrix reveal the differentially accessible features of those cell types. These cell
type specific patterns of accessibility can then be used to learn regulatory features that differ across cell populations. (B) Diagram of the analysis approach
applied for cell type associated features found by CoGAPS. Features used to produce the input count matrix can be either accessible peaks or DNA motifs.
Pattern defining peaks identified by CoGAPS are either matched to genes for gene overlap analysis or matched to DNA motifs to infer TF binding potential.
Pattern defining motifs are matched to enriched to TFs, likewise to infer accessible binding sites and thus TF activity in identified cell populations.

version 1.6.0 (7). TFs with common possible binding sites
in multiple PatternMarker accessible regions are returned,
along with functional annotations, so the biological plausi-
bility of a TF’s activity in a particular cell population based
on known function can be considered alongside the enrich-
ment results. Next, the accessibility of the peaks overlapping
with the TF gene itself is evaluated relative to the general ac-
cessibility of peaks for that cell population to provide evi-
dence as to whether the TF itself is expressed. For each peak
that overlaps with the TF gene, the number of cells with
accessible reads are counted within the cell population of
interest. This number is averaged for all peaks overlapping
the TF gene and then this average is divided by the average
quantity of accessible cells for all peaks in the cell popula-
tion. The resultant fold accessibility value is not intended as
a precise quantification, but rather an approximate guide to

assess whether a TF gene is generally accessible in a partic-
ular cell population.

If the data is summarized to motifs before running
CoGAPS using ATACCoGAPS preprocessing functions
(which employ motifmatchR for motif matching), the
downstream analysis is performed similar to the above.
Common TF bindings are returned and assessed for relative
accessibility to determine whether the TFs are likely to be
themselves expressed in the cell population. Relative acces-
sibility of the TF genes is calculated as described previously.

Learned patterns can be projected into other data sets
to determine if the signatures identifying cell populations
within one data set apply more generally. We use the pro-
jectR package version 1.0.0 (14,15) to perform this analysis.
If we use a peak feature space for transfer learning, peaks in
the target data set must be matched to peaks in the source
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data set to project the patterns learned in the source data set.
We use the set of all peaks that have any overlap between the
two sets as the features we project from and into. If we in-
stead apply DNA motifs as the feature space, all motifs that
occur in both data sets are used for projection.

We apply CoGAPS to scRNA-seq data in order to val-
idate candidate TFs identified by scATAC-seq analysis.
First, patterns that distinguish the same cell populations
are identified. Then, the PatternMarker statistic is used to
rank the scRNA-seq genes most associated to each pattern.
The TFs identified as described above in scATAC-seq are
matched to annotations from the TRRUST database ver-
sion 2 (22) which list the genes the TFs are known to reg-
ulate. These gene sets are compared to the scRNA-seq Co-
GAPS based gene rankings by gene set enrichment anal-
ysis implemented with the fgsea R package version 1.10.1
(23). TFs with statistically significant enrichment (FDR
corrected using the Benjamini-Hochberg Procedure) of the
genes they are known to regulate are considered to be sup-
ported by multimodal analysis.

CoGAPS Hyperparameters

All CoGAPS analyses presented in this manuscript are per-
formed with CoGAPS version 3.70.0. Factorizations are
performed in parallel across random subsets of features us-
ing the genome-wide option (13) (which should be used un-
less there are more cells than the features, in which case
the single-cell option should be used instead) and 10,000
iterations. The only remaining free input parameter for Co-
GAPS is then the number of patterns, n, to learn from the
data. The input matrix is features by cells, the Amplitude
matrix is features by n, and the Pattern matrix is n by cells.
We note that selecting the number of patterns for unsu-
pervised learning methods is an open question in machine
learning. Previously, the goodness of fit of the model from
the factorization relative to the data across a range of val-
ues of n has been shown to provide a performance metric for
selection of n (24,25). A priori knowledge of the set of con-
ditions or populations each cell derives from can provide
an initial heuristic for the selection of n. Several CoGAPS
runs can be performed in parallel to test different numbers
of patterns. After these CoGAPS runs, a Chi-squared statis-
tic can be computed on the output of the A and P matrices
relative to C to determine the goodness of fit of the results
and provide numerical guidance on the question of how well
different numbers of patterns fit the data.

Comparison to other analysis methods

We perform additional comparisons of ATACCoGAPS to
gradient-based NMF with the scikit-learn Python package
was used to run Non-negative Double Singular Value De-
composition Matrix Factorization from (5), cisTopic ver-
sion 0.2.2 (6), and Seurat version 3.1.4 (26). TF enrich-
ment analysis and functional annotations were performed
as recommended for each method, specifically using https:
//satijalab.org/signac/articles/motif vignette.html for Seurat
and https://github.com/aertslab/cisTopic for cisTopic. To
produce a direct comparison of the pathways each algo-
rithm associates with each cell type, here we employ the

same package to identify GO terms from peak regions in
CoGAPS and cisTopic (rGREAT version 1.16.1 (27)), and
use the structure of cisTopic’s result plotting function to
visualize the results for both algorithms. We additionally
test the results of rGREAT against the genomic region
annotation-based method we use in this work. To find en-
richment for MSigDb Hallmark Pathways with GREAT,
we run the algorithm to find the genes it significantly as-
sociates with the PatternMarker peaks for each pattern and
use those sets of genes for Gene Overlap analysis with the
Hallmark Pathways.

All code for the methods comparisons performed in
this work is available at https://github.com/rossinerbe/
ATACCoGAPS-Analysis-Code.

Public data

This study presents analyses on publicly available scATAC-
seq data from (7) (GSE99172), (28) (GSE96769) and
(29) (https://github.com/loosolab/cardiac-progenitors on
8 July 2019). In all cases, data were obtained at peak
summary (see papers for alignment and peak calling de-
tails). Both the Schep et al. 2017 and the Buenrostro et al.
2018 scATAC-seq datasets were downloaded with peaks
of equal width. The peaks called for the Jia et al. 2018
data set were not of equal width, so counts were nor-
malized by dividing the values of each peak by its nu-
cleotide width. Motif counts were obtained using ATAC-
CoGAPS software to convert peak counts to motif counts.
The scRNA-seq data set from Jia et al. 2018 contains
matched single cells to the scATAC-seq dataset. These
data were also obtained from https://github.com/loosolab/
cardiac-progenitors on 8 July 2019 as normalized counts.
Prior to running CoGAPS, all peaks and cells that were
more than 99% sparse were filtered out of the data (32 789
peaks and 528 cells for the Schep et al. data set and none for
the Jia et al. data set (as it was pre-filtered by Jia et al.)). In-
put dimensions for the Schep et al. data set are 90 300 peaks
by 1392 cells. The Buenrostro et al. data set was input to
ProjectR with filtered dimensions of 62 387 peaks by 1331
cells. The Jia et al. was input at 67 368 peaks by 695 cells
for the scATAC-seq data and 12 048 genes by 236 cells for
the scRNA-seq data. The filtered data sets used as input to
CoGAPS are all available at https://github.com/rossinerbe/
ATACCoGAPS-Analysis-Code/tree/master/data.

CoGAPS was run for 7, 13 and 18 patterns in this work
on the Schep et al. (2017) data set. CoGAPS was run for
seven patterns on the scATAC-seq data set and six patterns
on the scRNA-seq data from Jia et al. (2018).

Computational runtime

CoGAPS runs were performed on Amazon AWS Batch
servers. The Schep et al. (2017) data set was run across
nine cores and ran in 2–8 h for different numbers of pat-
terns selected. The Jia et al. (2018) scATAC-seq data set
took approximately 1 hour to run across 8 cores and the
matched scRNA-seq data set took approximately the same
time across four cores.

Running ProjectR between the Schep et al. (2017) data
set and the Buenrostro et al. (2018) data took less than 15 s
on a laptop with an Intel 7th gen i5 processor.

https://satijalab.org/signac/articles/motif_vignette.html
https://github.com/aertslab/cisTopic
https://github.com/rossinerbe/ATACCoGAPS-Analysis-Code
https://github.com/loosolab/cardiac-progenitors
https://github.com/loosolab/cardiac-progenitors
https://github.com/rossinerbe/ATACCoGAPS-Analysis-Code/tree/master/data
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RESULTS

The scATAC-CoGAPS algorithm

CoGAPS is a Bayesian matrix factorization algorithm
which decomposes a matrix of sequencing data into two
output matrices, representing learned latent patterns across
all the samples and genomic features of the input data
(12,13). The first of these is called the Amplitude matrix,
and it contains a numerical representation of the degree
to which each feature contributes to each latent pattern
learned by the algorithm. The second is termed the Pattern
matrix, which represents the degree to which each learned
latent pattern is present in each single cell (Figure 1A) (30).
Latent patterns are intended to capture common accessibil-
ity across both genomic features and cells, and thus iden-
tify the regulatory biology common among cells in the data
(hereafter they will be referred to simply as patterns). The
scATAC-CoGAPS algorithm takes as input a count matrix
with reads aggregated across any relevant summary feature
(e.g. peak regions or DNA motifs that identify TF binding
sites).

The values of the Pattern matrix can be used to dis-
tinguish cell types or cell populations specific to each
chromatin-accessibility derived pattern. This correspon-
dence allows us to annotate patterns as associated with a
particular group of cells. In contrast to standard clustering
methods, the patterns learned from CoGAPS can simulta-
neously identify patterns that delineate individual cell types
as well those shared across cell types.

The pattern identified by each row of the Pattern matrix
corresponds to a set of gene weights in each column of the
Amplitude matrix. These weights provide information on
which specific features (peaks, motifs etc.) contribute the
most to each pattern. In this way, features can be linked to
the cell types or cellular states defined by associated pat-
terns, which enables the identification of the active regu-
latory programs within each group of cells. Further, these
learned patterns can be input to our projectR transfer learn-
ing method (14,15) to query their occurrence in related cells
in other scATAC-seq datasets.

Assessment of regulatory programs from the amplitude
matrix of scATAC-CoGAPS depends upon the features se-
lected for summarization of the scATAC-seq data. The ap-
proach outlined here focuses on the annotation of both
peaks and DNA motifs. When using open chromatin peaks
to define our feature set, we employ two main analysis steps
(Figure 1B). First, we match peaks to genes that fall within
the regions they cover or have promoters within these re-
gions. These sets of genes can then be compared to known
pathways via gene overlap analysis (21), returning signifi-
cantly overlapping pathways. Peaks can also be searched for
known DNA motifs and their possible TF bindings. The
frequency of these potential TF binding sites can inform an
understanding of which regulatory effectors are character-
istic of a specific cell population. While other analysis meth-
ods require one particular mode of feature summarization,
CoGAPS allows for the use of any feature that facilitates ag-
gregation of reads into a count matrix. If we instead use a
feature space initially defined by DNA motifs, we can again
match pattern-defining motifs directly to known TF bind-

ing sites to determine enrichment for particular TFs, often
extending the number of unique regulatory patterns we are
able to uncover from the data (compared to using a peak
based feature space alone). However, given that a feature
space of peaks provides more options to interrogate reg-
ulatory biology (i.e. pathways and TF binding versus TF
binding alone), we employ peak summarization as default
in our analysis throughout, and utilize a motif-defined fea-
ture space to supplement this analysis.

scATAC-CoGAPS differentiates known cell identities in
scATAC-seq data

To demonstrate the capacity of CoGAPS to distinguish
cell populations, we run the algorithm on publicly available
scATAC-seq data published by Schep et al. (7). These data
derive from 12 cell cultures, comprising ten different known
cell lines (listed in Supplemental Table S1). The cell lines in
the data are generally well-characterized, which allows for
validation of the cell-type specific regulatory programs pre-
dicted by scATAC-CoGAPS. Using peaks to define our fea-
ture space, we apply CoGAPS to search for seven patterns
of accessibility in the data (see Methods for dimensional-
ity selection). After the factorization, we associate each cell
with a single pattern using the PatternMarker statistic in-
cluded in the CoGAPS package (13). Pattern assignments
learned by CoGAPS on this data set align well with a priori
knowledge of cell line annotations (Figure 2, Supplemental
Table S2). Cells belonging to the same cell line are almost
always assigned to the same pattern (Adjusted Rand Index
of 0.90).

Pattern 1 and Pattern 2 perfectly categorize K562 Ery-
throleukemia and TF1 Erythroblast cells, respectively. GM
B-cell derived LCLs, BJ Fibroblasts and H1 Embryonic
Stem Cells each have three or fewer cells incorrectly as-
signed to patterns 3, 4 and 5. We note that Pattern 3 captures
all three cultures of GM lymphoblastoid cell lines (GM
LCLs), indicating that CoGAPS is differentiating these
cell lines via regulatory differences of biology rather than
through technical artifacts of cell culture. Pattern 6 is most
significantly associated with HL60 Leukemia cells, however,
due to the low signal in pattern 6, the patternMarker statis-
tic only assigns one HL60 cell to that pattern, and the rest
to pattern 7. Pattern 7 is assigned most of the remaining
cells in the data, and while it is most significantly associ-
ated with PB1022 Monocytes, it also has significant signal
across HL60 Leukemia cells, Lymphoid-Primed Multipo-
tent Progenitors, and the two AML patient cell lines. We
hypothesize that the regulatory similarity derived from the
shared hematopoietic origin of these cells is responsible for
this common signal.

While the CoGAPS solution described above is for seven
patterns, the selection of an optimal dimensionality for un-
supervised learning remains an open question, and there
probably is no single correct number of patterns to use
(31). Different numbers of patterns will provide somewhat
different information, with more patterns producing more
(and usually smaller) groups of cells. Therefore, we also
run CoGAPS to analyze the scATAC-seq data for addi-
tional dimensions. When increasing dimensionality beyond
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Figure 2. Heatmap of the pattern matrix with cells matched to learned patterns. The color gradient of the heatmap reflects the pattern matrix weights for
each cell for each pattern, which indicates the degree to which each pattern is found in each cell, as learned by CoGAPS. Cells are labeled by both Pattern
Marker pattern assignment as well as known cell line and culture of origin. Patterns 1–5 all very sharply distinguish a particular cell line. Pattern 6 only
captures one cell. Most of the remaining cells are assigned to pattern 7, leaving only five cells without a pattern assignment.

7, CoGAPS finds patterns that more strongly differentiate
Monocytes and Lymphoid-Primed Multipotent Progenitor
cells, but still does not return patterns distinguishing the
two Acute Myeloid Leukemia patient cell lines apart from
Lymphoid Primed Multipotent Progenitors (Supplemental
Figure S1). For example, at the 13-pattern dimensionality,
we observe that pattern 1 mainly distinguishes monocytes,
while pattern 10 now captures the unifying signal across
HL60, LMPP, and AML patient cells. This result indicates
that higher dimensionalities allow CoGAPS to identify finer
differences between cell types with similar accessibility sig-
natures. At the same time, with this higher dimensionality,
patterns 4, 6, 8, 11 and 13 have signal that identifies only sin-
gle cells. Thus, we observe a tradeoff at higher dimensions
between improved differentiation of cell types and an in-
creased number of single-cell patterns, which seem less likely
to contain relevant biological signal. Based on our results
across dimensions, we retain the seven-pattern solution for
our remaining analyses in order to optimize cell type differ-
entiation while minimizing the number of patterns that are
associated with only a single cell.

Analysis of accessible features predicts regulatory programs
consistent with established biology of cell lines

After using CoGAPS patterns from the seven-dimensional
solution to define cellular populations, we use the val-
ues of the corresponding feature weights in the Amplitude
matrix to ascertain which peaks contribute the most to
each learned pattern using the PatternMarker statistic. The
peaks identified by the PatternMarker statistic reveal the ac-
cessible features of the data that themselves strongly distin-
guish cell types, which we shall refer to as PatternMarker
peaks (Figure 3A). For most cell lines, the accessibility of
the PatternMarker peaks learned from CoGAPS analysis
better distinguishes the cell lines than the pattern weights
themselves. This result suggests that the features CoGAPS
learns reflect biologically relevant differences in accessibil-
ity between the cell populations that it is stratifying. Due to
its increased granularity, this analysis provides further ev-

idence that Pattern 6 is characteristic of HL60 Leukemia
cells, and that the peaks associated with Pattern 7 are the
most accessible in PB1022 Monocytes. At the same time,
we observe that the PatternMarker peaks for Pattern 7 have
enriched accessibility among other cell lines that were as-
sociated to the pattern previously, as compared to cell lines
that were not associated. This result indicates that while Pat-
tern 7 most strongly identifies the accessibility signature of
Monocytes, CoGAPS identifies the similarities in this sig-
nature for other cell types at this dimensionality.

The learned PatternMarker peaks can be associated
with cell-specific regulatory mechanisms using pathway
and transcription factor enrichment analysis (Supplemen-
tal Files 1 and 2). For example, Pattern 1 (the K562
Erythroleukemia-associated pattern) identifies the MSigDB
HALLMARK HEME METABOLISM pathway as the
most significantly associated with the cell line (Figure 3B).
This matches our biological expectation, as increased acces-
sibility of or near genes associated with Heme metabolism is
consistent with the erythroid lineage K562 cells derive from.
The second most significant pathway is HALLMARK MI-
TOTIC SPINDLE, which suggests the uncontrolled divi-
sion of this cancer cell line may be driven by epigenetic
changes.

Motif analysis from these accessible peaks further iden-
tifies TFs with the most accessible binding sites as poten-
tially active regulators in the pattern-associated cell popu-
lation. The top 15 TFs enriched within the K562 cell as-
sociated pattern include TAL1, EGR1, RREB1 and NFE2
which have all been associated with leukemia (32–34) or,
in the case of NFE2, is an erythroid nuclear factor. TAL1
is a noteworthy hit, as K562 cells were used to establish
TAL1 as a driver of leukemia (32–34), thus providing sup-
port for the validity of this approach. To measure the like-
lihood that the TFs are themselves expressed, we then find
the relative accessibility signal at the peaks overlapping the
genes of these candidate TFs. All of the above TFs identi-
fied from motif analysis also have increased gene accessibil-
ity compared to the average peak accessibility in K562 cells,
with TAL1 having the highest relative accessibility (Supple-
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Figure 3. (A) The PatternMarker statistic is used to find the 50 most pattern-distinguishing peaks for each pattern. The counts recorded at these peaks from
the scATAC-seq experiment are binarized for accessibility and plotted across all cells in the data. (B, C) Examples of the MSigDB Hallmark Pathways with
significant overlap to genes matched to PatternMarker peaks (the four most significant pathways for each pattern) and Transcription Factors with high
numbers of possible binding sites in PatternMarker peaks. TFs listed are those that are both within the top 15 list of TFs with the most enriched binding
sites and have highly plausible functional annotations for activity in these cell lines. Fold accessibility refers to the peaks overlapping with the region of the
TF gene, relative to other peaks in the K562 Erythroleukemia cell line and PB1022 Monocyte cell line, respectively.

mentary Figure S2). The accessibility of the gene is most
notable for the peak overlapping with the transcriptional
start site (TSS) of the gene, with the frequency of the ac-
cessibility signal decreasing among the peaks further from
the TSS.

The genes overlapping with the peaks that contribute
most strongly to the Monocyte-associated Pattern 7 are
enriched for the MSigDB HALLMARK INFLAMMA-
TORY RESPONSE and HALLMARK TNFA SIGNAL-
ING VIA NFKB pathways (Figure 3C). Both pathways
are biologically consistent with the known role of mono-
cytes in immunity and inflammation, as well as with the
immunological roles of the other hematopoietic lineage
cells secondarily associated with Pattern 7. Within the
top 15 TFs with the most enriched binding sites, IRF1,
STAT1, CEBPA and SPI1 all have previously established
roles in the regulation of monocytes (35–38) and all TF
genes have increased gene accessibility relative to average
for monocyte peaks in the data (Figure 3C). The path-
way and TF enrichment results for all other patterns are
listed in Supplemental Files 1 and 2 and provided as R
objects at https://github.com/rossinerbe/ATACCoGAPS-
Analysis-Code/tree/master/data. Taken together, these re-

sults demonstrate the capacity of scATAC-CoGAPS to
identify regulatory features of biological relevance from
scATAC-seq data.

To examine whether the genomic region annotation-
based method we use to determine the relevance of ge-
nomic peaks for pathway enrichment produces similar re-
sults to GREAT (27), which is a standard tool for deter-
mining the functional relevance of genomic elements, we ap-
ply GREAT to find genes associated with the peaks learned
by CoGAPS from the Schep et al. (2017) data set. We
then perform the same gene set overlap test to find enrich-
ment of MSigDB Hallmark Pathways for both the signif-
icant GREAT gene list as we performed for the gene list
generated from our region annotation-based method. The
statistically significant pathways from this GREAT analy-
sis are listed in Supplemental File 3 (compare to Supple-
mental File 1 from CoGAPS) and in easily parsed format
at https://github.com/rossinerbe/ATACCoGAPS-Analysis-
Code/tree/master/data. We find that GREAT-identified
genes produce highly similar Pathway enrichment results.
While the GREAT enrichment produces fewer significant
pathways, the most significantly associated pathway for
each pattern is the same for all patterns (excepting the two

https://github.com/rossinerbe/ATACCoGAPS-Analysis-Code/tree/master/data
https://github.com/rossinerbe/ATACCoGAPS-Analysis-Code/tree/master/data
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patterns for which GREAT analysis returns no significant
results).

Summarization of the count matrix by DNA motifs extends
the regulatory patterns CoGAPS learns from scATAC-seq

While using peaks as summarization of ATAC-seq reads
provides more avenues for downstream analysis, it has been
previously shown that motif-level summarization is an addi-
tional information rich feature space for scATAC-seq anal-
ysis (7). Therefore, we compare our previous peak-level Co-
GAPS analyses for the Schep et al. data set to motif-based
CoGAPS analyses (labeled Pattern Defining Motifs in Fig-
ure 1B) of the same dataset to assess the impact of feature
selection on the inferred regulatory programs. CoGAPS
analysis of this motif-based count matrix identified 10 total
patterns from the data (Supplemental Figure S3A). Patterns
4, 6 and 8 from this motif-level CoGAPS run differentiate
GM-LCLs, BJ Fibroblasts and TF1 Erythroblasts, respec-
tively.

The other patterns identify additional cell populations
that are not found when the data are analyzed using peak
feature space (Supplemental Figure S3A). For example, Pat-
tern 10 identifies regulatory similarity between K562 Ery-
throleukemia cells and TF1 Erythroblasts, a pattern that
peak based analysis does not find (Supplemental Figure
S3B). In Pattern 10, we identify high enrichment of can-
didate TF binding sites for GATA transcription factors,
which are known to have critical roles in erythroid differ-
entiation and are shared between Erythroleukemia and Ery-
throblasts (39). We additionally find that the PatternMarker
motifs identified by CoGAPS in this analysis are nearly
all different than the motifs found by peak-based analysis.
When patterns that seem to differentiate the same cell types
are compared, <10% of the motifs identified by each anal-
ysis overlap (overlap for Fibroblast associated patterns is
given in Supplemental File 4 and provided as an R object
at https://github.com/rossinerbe/ATACCoGAPS-Analysis-
Code/tree/master/data).

These results suggest that using DNA motif-based sum-
marizations identifies additional regulatory information
from the same cell types contained within the same data,
and directly supports the use of both peak and motif based
summarizations to fully characterize the regulatory biol-
ogy of cellular subpopulations in scATAC-seq data. No-
tably, motif-based summarization appears to better identify
patterns of accessibility that are shared across multiple cell
types, while peak-based summarization better differentiates
individual cell types.

Transfer learning with projectR establishes the generality of
the regulatory programs CoGAPS patterns capture

Once we have established signatures of accessibility for cell
populations in our data, we employ transfer learning with
the R/Bioconductor package projectR (14,15) to determine
whether these signatures appear in similar cell populations
from other experiments. Notably projectR can efficiently
detect the presence of previously learned patterns of acces-
sibility in separate scATAC-seq data as a means of in sil-
ico validation and discovery. This capability allows for the

development of cell population-specific accessibility signa-
tures based on CoGAPS results, which can be used to test
for regulatory programs of interest in novel samples.

We demonstrate projectR’s application to scATAC-seq
by transferring the patterns learned in peak-level summaries
of the Schep et al. (7) cell line data to scATAC-seq data
from Buenrostro et al. (28), which contains 10 different
hematopoietic lineage cell types labelled via Fluorescence
Activated Cell Sorting (cell types listed in Supplemental Ta-
ble S3). We project the monocyte-associated pattern (Pat-
tern 7) from the Schep et al. data onto the Buenrostro et al.
data and observe that the monocytes in the target data
are most significantly associated to the accessibility pattern
(Figure 4A). Comparing average cell line association with
the pattern in the target data may make the specificity of the
monocyte association more visually clear (Supplementary
Figure S4). As previously noted, there is considerable Pat-
tern 7 signal among other non-monocyte hematopoietic-
lineage cells within the Schep et al. data set, and this is re-
flected in the general signal observed in the Buenrostro tar-
get data set.

ProjectR can also provide information on the regulatory
overlap between different cell types. In this case, it provides
insight into the regulatory similarity between two distinct
cell populations. For example, projection of the K562 Ery-
throleukemia cell line pattern from the Schep et al. data
(Pattern 1) into the Buenrostro et al. data has the strongest
signal in Megakaryocyte–Erythrocyte progenitors (Figure
4B). This observation supports the presence of overlap-
ping patterns of accessibility between these two popula-
tions, consistent with the expected regulatory similarity be-
tween Erythroleukemia and Erythrocyte progenitor cells.

Analysis of matched scRNA-seq data validates regulatory
programs learned from scATAC-CoGAPS

When scRNA-seq data is available for cells from the same
experimental conditions as scATAC-seq data, we can val-
idate ATAC-CoGAPS predicted TF activity using tran-
scription data of known TF gene targets. CoGAPS anal-
ysis is performed as previously described for the scATAC-
seq data, allowing for prediction of active TFs. CoGAPS
can then be applied to the matched scRNA-seq data to
find pattern-defining genes for each cell population as de-
scribed in (13). These genes can be ranked on the basis of
their contribution to each pattern (using the PatternMarker
statistic), and then tested for enrichment in the set of genes
known to be regulated by a candidate TF using Gene Set
Enrichment Analysis (GSEA) (19) (Supplementary Figure
S5). In this analysis method, genes known to be regulated
by a TF are used as the ‘pathways’ input for GSEA with the
ranked PatternMarker genes, including only the TFs pre-
dicted to be active by scATAC-seq analysis.

No matching scRNA-seq data was available for the Schep
et al. data set. Therefore, we sought to validate this method
using matched scRNA-seq and scATAC-seq data from
mouse embryonic cardiac progenitor cells at days 8.5 and
9.5 of development, as described by Jia et al. (29). We run
CoGAPS on both data sets to learn seven patterns in peak-
level summarized scATAC-seq data and six patterns in the
scRNA-seq data. There is much more regulatory similarity
than dissimilarity between cardiac progenitors only one day

https://github.com/rossinerbe/ATACCoGAPS-Analysis-Code/tree/master/data
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Figure 4. (A) Projection of peak accessibility associated primarily with monocytes in the Schep data set into the Hematopoietic lineage Buenrostro data
set. The Monocytes in the Buenrostro set are the cell type most significantly associated with the pattern, as determined by a pairwise Wilcoxon Rank Sum
Test. (B) Projection of the accessibility signature associated with the K562 Erythroleukemia cell line in the Schep data into the hematopoietic lineage data.
This signature is most significantly associated with Megakaryocyte-Erythrocyte Progenitor cells.

apart in development, and thus the most distinctive patterns
we find in the scATAC-seq data set are those that reflect
sustained open chromatin across days 8.5 and 9.5 of devel-
opment (Patterns 1 and 7) (Supplementary Figure S6). As
patterns 3 and 6 from the scRNA-seq experiment also have
signal across all cells in the data, we continue by compar-
ing the patterns found across cells rather than the patterns
that stratify distinct cell populations. To make this com-
parison, we first find TFs enriched within the scATACseq
data for all cells, and then list the genes known to be regu-
lated by each of the TFs. Then, we find the PatternMarker
genes from scRNA-seq from the patterns that show signal
across all cell types (patterns 3 and 6). GSEA between the
sets of genes regulated by the predicted TFs and the Pattern-
Marker genes provides significant support for Tbx20 TF ac-
tivity (FDR adjusted P-value of 0.015) and Hnf4a activity
(FDR adjusted P-value of 0.042) across these developing
cardiac cells (Figure 5A, B). Tbx20 plays a major role in car-
diac development (40), which is consistent with the known
biology of embryonic cardiac cells. A homologue of Hnf4a
was recently shown to play an important role in normal em-
bryonic development of the chicken heart (41). This result
corroborates that finding and suggests that Hnf4a may play
a role in cardiac development across a wide phylogenetic
range; particularly that it acts in mammals as well.

To investigate the accessibility of genes associated with
Tbx20 using scRNA-seq, we find overlapping peaks of said
genes within matched scATAC-seq data. The peaks corre-
sponding to the Tbx2 gene and the Nkx2–5 gene are acces-
sible across the cells in the data (fold accessibility 2.39 and
1.51, respectively), while Mef2c and Nppa peaks are less ac-
cessible than average (fold accessibility 0.84 and 0.30) (Fig-

ure 5C, Supplementary Figure S7). The Tbx2 gene is partic-
ularly accessible in the peak overlapping with its transcrip-
tional start site (fold accessibility 3.11). The lack of acces-
sibility among the Mef2c and Nppa genes suggests that ac-
cessibility and gene expression do not always align, though
we do observe general correspondence between the two data
modalities, particularly in transcriptional start site overlap-
ping peaks.

Comparison to other methods demonstrates the particular ef-
ficacy of CoGAPS in identifying biologically relevant pat-
terns

In order to demonstrate the value of applying CoGAPS
to scATAC-seq data as opposed to gradient-based Non-
Negative Matrix Factorization (NMF) methods, we run the
sparse Non-Negative Double Singular Value Decomposi-
tion NMF (NNDSVD-NMF) implementation provided by
the scikit-learn python library on the Schep et al. data set
(7), using the coding framework provided by (5). This NMF
implementation in nearly as effective as CoGAPS at find-
ing patterns that differentiate the constituent cell lines of
the data set (Figure 6A). Pattern 1 identifies cells from the
three GM-LCL repeats in one pattern, though it has differ-
entiating signal for less than a third of the individual cells.
Pattern 2 differentiates K562 cells, Pattern 3 appears simi-
lar to the seventh CoGAPS pattern, showing signal across
Monocytes, leukemia, and LMPP cell lines. Pattern 4 dis-
tinguishes TF1 Erythroblasts, Pattern 5 has signal for both
Fibroblasts and Embryonic Stem Cells, and Pattern 6 has
signal for HL60 Leukemia, while Pattern 7 has signal for a
single GM-LCL cell.
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Figure 5. (A) qqPlot of P-values for gene set enrichment analysis of the Transcription Factors’ gene networks predicted from scATAC-seq CoGAPS and the
genes ranked by scRNA-seq CoGAPS. (B) Known genes regulated by Tbx20 and their PatternMarker ranks from CoGAPS analysis in matched scRNA-
seq. (C) Accessibility at the Tbx2 gene in the scATAC-seq data, showing the correspondence of its accessibility and expression levels across mouse cardiac
progenitor cells, at embryonic days 8.5 and 9.5. The Transcriptional Start Site overlapping peak (marked with TSS) is the most consistently accessible.

While this capacity to distinguish cell types is simi-
lar to that of CoGAPS (see Figure 2), the features that
NNDSVD-NMF associates with these patterns are less spe-
cific to cell types than those learned from CoGAPS patterns
are (Figure 6B). Only patterns 4 and 5 identify peaks specific
to their corresponding cell lines (compare to Figure 3A for
the same data plotted from CoGAPS results). Therefore, it
appears that while NNDSVD-NMF is able to find patterns
that generally distinguish cell types, the biological features
learned are less representative of those cell types than those
found by CoGAPS.

To further compare our results to a state of the art (42)
Bayesian topic modeling method for scATAC-seq analysis,
we apply cisTopic (6) to the Schep et al., 2017 data. CisTopic
provides a framework for choosing a single dimensionality,
which is not available to the NMF algorithms and has a
faster run-time than CoGAPS.

On the Schep et al. data set, cisTopic found 23 regula-
tory topics in the data set (Figure 7A). cisTopic generally
identifies multiple topics per cell type, while CoGAPS more
commonly identifies a single pattern per cell type. The top-
ics learned by cisTopic are able to differentiate cell types to a
similar degree to CoGAPS. cisTopic is also unable to find la-
tent features which differentiate the two AML patients from
LMPP cells or monocytes and, likewise CoGAPS, identi-
fies topics of unifying accessibility between the patient cells,
monocytes, HL60 cells, and LMPP cells. These results pro-

vide further evidence of the regulatory similarities among
these cell lines. cisTopic identifies potentially upregulated
pathways based on the peaks that differentiate topics, in
a similar manner to what we apply in CoGAPS. Specifi-
cally, in the Monocyte associated pattern/topics each al-
gorithm identifies the same or very similar GO terms (Fig-
ure 7B): all along the lines of immune regulation, immune
response, and leukocyte activation. For these cells, the al-
gorithms appear to be identifying roughly equivalent reg-
ulatory systems. However, when we turn to the pathways
that have significant association to K562 Erythroleukemia
cells, there is considerable divergence. CoGAPS primar-
ily identifies terms associated to hemostasis and blood co-
agulation (not unsurprising in an Erythroleukemia), while
cisTopic finds pathways of phagocytosis and Fc receptor
signaling (Figure 7C), which are receptors known to exist on
K562 cells (26). Each also returns different pathways that
make very little sense in K562 cells: astrocyte differentiation
from CoGAPS and protoporphyrinogen IX metabolic pro-
cess and epithelial cell proliferation involved in renal tubule
morphogenesis from cisTopic. It is possible these pathways
appear due to the epigenetic dysregulation of this cancer
cell line (43). The fact that CoGAPS and cisTopic iden-
tify different pathways, each that align with known biol-
ogy of the cell line, suggests that each algorithm may often
find different, legitimate regulatory patterns in scATAC-seq
data. Thus, neither method alone is able to capture all rel-
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Figure 6. (A) Heatmap of the cell weights output by NNDSVD-NMF run on the Schep et al. (2017) data. The patterns learned generally distinguish
particular cell lines or groups of cell lines together. Intended to provide a comparison with the CoGAPS output plotted in Figure 2. (B) Heatmap of the
accessibility of the 50 peaks most associated with each pattern from the NNDSVD-NMF analysis. Peaks do not strongly distinguish the cell types the
patterns were associated with in (A). Intended for comparison with Figure 3A.

evant regulatory features contained within the data. How-
ever, cisTopic does not readily output features that are ap-
plicable for transfer learning with ProjectR to enable com-
parable cross-study and cross-platform data analysis with
CoGAPS.

Lastly, to assess our integrated approach for using
scATAC-seq and scRNA-seq data to predict TF activity in
particular cell types, we compared to the integrative cluster-
ing and TF motif enrichment tools provided by the popular
single-cell software package Seurat (26). We apply the Seu-
rat integrated workflow to the Jia et al. (2018) data set (29)
and find that is does not noticeably improve differentiation
of the cells in the data (Supplemental Figure S8A) relative to
what is produced by CoGAPS patterns (Supplemental Fig-
ure S6), with both algorithms appearing to distinguish some
minor cell populations, but not along the known axis of day
of development. We then tested which TF motifs were found
to be enriched in the different populations found by UMAP

clustering in Seurat (Supplemental Figure S8B). None of
the comparisons identified any cardiac specific TFs, though
several general developmental TFs were found. Because of
this reliance on clustering, Seurat is limited to comparison
of TFs that are enriched between clusters as opposed to TFs
shared across multiple features in NMF or topic modeling.

DISCUSSION

Single-cell epigenomics methods such as scATAC-seq cap-
ture a wide array of regulatory features genome wide, but
our ability to extract this information is still limited. Here
we present the application of CoGAPS and projectR to
scATAC-seq, providing an analysis framework for Bayesian
Non-Negative Matrix Factorization to uncover regulatory
information from sparse, high-dimensional epigenomics
data and project these learned patterns across data sets and
sequencing platforms.
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Figure 7. (A) Heatmap of cisTopics learned on the Schep et al data set. 23 topics were learned, including topics that differentiate all cell types except the
leukemia patients. (B) The GO terms significantly enriched for the topics and patterns associated with the PB1022 Monocyte cell line for cisTopic and
scATAC-CoGAPS, respectively. Similar GO terms are observed. (C) The GO terms significantly enriched for the topics and patterns associated with the
K562 Erythroleukemia cell line for cisTopic and scATAC-CoGAPS. The GO terms found diverge considerably.
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CoGAPS (Coordinated Gene Expression in Pattern Sets)
was originally developed for the analysis of gene expres-
sion data. The ability of CoGAPS to extract relevant pat-
terns from different data sources is a great strength of the
algorithm. Here, we leverage this capacity to develop a ba-
sic framework for integrative analysis of multiple scATAC-
seq and scRNA-seq data sets. Since CoGAPS can be ap-
plied to any sequencing technology that can produce a
count matrix, this framework we present has the poten-
tial to support the integrated analysis of additional multi-
omics data sets. The importance of this capacity continues
to grow with the increasing affordability and concomitant
ubiquity of sequencing technologies, and the massive and
varied data sets such technologies produce. Furthermore,
CoGAPS allows for the summarization of reads to any rel-
evant genomic feature (e.g. peaks, DNA motifs etc.) and
facilitates the learning of a wider range of regulatory pat-
terns than methods that require a specific summarization
method.

One of the main reasons to apply single-cell analysis
methods is to identify heterogeneity in cell populations.
This can be particularly useful in the context of identifying
differences between diseased cells and healthy cells. The fact
that these abnormal cell populations can be quite small can
cause problems for dimensionality reduction methods. For
many dimensionality reduction techniques, it can be diffi-
cult to determine whether the association of a small popula-
tion of cells with a particular dimension is due to technical
or biological factors. The ability of CoGAPS to quantify
both how well the cells fit an identified pattern (as shown
in Figure 2) and how strongly each genomic feature is as-
sociated with the pattern (as shown in Figure 3A) can pro-
vide considerable insight into whether a pattern is biological
in origin. Patterns 6 and 7 from the peak based analysis of
the Schep et al. (2017) data set provide an excellent exam-
ple of how we can clarify the biological meaning of the pat-
terns CoGAPS identifies. When we plot the Pattern matrix
in Figure 2, Pattern 6 has notable signal for only a handful
of HL60 Leukemia cells. Pattern 7, conversely, has signal
across many cells and cell types. Without a good way to ob-
serve the contribution of biological features to each pattern,
it could be challenging to interpret these two patterns. How-
ever, as we see in Figure 3A, when we plot the genomic peaks
most associated with each pattern, it becomes much clearer
that each pattern is finding something biologically distinc-
tive. Pattern 6 is most associated with peaks that are more
accessible in HL60 cells than any other cell type in the data,
allowing us to interpret that pattern as an HL60 leukemia
pattern. Pattern 7 peaks are much more strongly associated
with PB1022 monocytes than any other cell type, suggest-
ing the biology of the pattern is primarily driven by that cell
line. This further indicates that the other cell types associ-
ated with that pattern have considerable overlap in accessi-
bility signature with monocytes. Still, distinguishing when
unsupervised learning methods uncover technical artifacts
from biological features without complete a priori annota-
tions remains a critical area of future research in single cell
analysis methods.

We further extend our ability to validate the biological
relevance of CoGAPS patterns through both cross-study
and cross-platform analyses with transfer learning from

projectR (14,15). The projectR software package makes it
possible to determine whether the patterns learned in one
data set are present in others, and can do so in a way that
is fast and easy to implement. This a major strength of the
approach we present, as it helps to simultaneously extend
and validate learned regulatory patterns, while also allow-
ing for the comparison of regulatory biology in multiple
scATAC-seq data sets. Most current scATAC-seq analysis
methods are limited in application to a single data set and
any results cannot be directly related to other data sets or
analyses. This fact severely limits the efficiency of broad
analyses, and the information that can be learned from dis-
tinct but complementary data sets. ProjectR thus synergizes
with CoGAPS and has tremendous potential for use in an-
alyzing disease-specific data sets. For example, if we can
establish robust signatures of disease or treatment associ-
ated biology, such as genomic dysregulation and markers
of drug efficacy, respectively, we can use CoGAPS and pro-
jectR to leverage clinical data for an improved understand-
ing of disease mechanisms (44,45) and to guide treatment
decisions.

The projectR transfer learning software is broadly appli-
cable for features learned with unsupervised methods in ad-
dition to CoGAPS (15). This flexibility of projectR will sup-
port further cross-study analyses with emerging scATAC-
seq methods (30). While this study demonstrates the ro-
bustness of CoGAPS for inferring regulatory biology from
scATAC-seq data, we resolve different aspects of that biol-
ogy at different dimensionalities and data summarizations.
We hypothesize that accounting for these features across hy-
perparameters as well as additional features informed from
ensembles of features learned from alternative methods are
critical to resolve the complex landscape of regulatory biol-
ogy encoded in the data, consistent with emerging literature
on multi-resolution methods (46).

We compared cisTopic and CoGAPS to determine how
well our analysis framework performed relative to a state-
of-the-art Bayesian scATAC-seq analysis method. Each al-
gorithm has some particular advantages: CoGAPS in the
capacity to check for the presence of learned regulatory sig-
natures in other datasets using projectR, the ability to use
alternative feature summarizations beyond genomic peaks,
and application of scRNA-seq CoGAPS for integration of
data modalites, while cisTopic provides a more straightfor-
ward procedure for choosing dimensionality and faster al-
gorithm runtime. A critical note we find by comparing the
results of each on the Schep et al. (2017) data is that the two
algorithms seem to relatively regularly find non-overlapping
latent features of the data, with neither forming a com-
plete picture of the regulatory mechanisms encapsulated in
scATAC-seq. This is consistent with the findings that a more
complete regulatory landscape is uncovered through anal-
ysis of CoGAPS patterns across multiple dimensions. To-
gether, these findings support ensemble-based and multi-
resolution methods to completely map the regulatory land-
scape of biological systems from single cell data consistent
with other recent studies of unsupervised learning methods
(46).

Another finding from this work that may aid the devel-
opment of ATAC-seq analysis methods in general is that
TF motif-based analysis tends to find more patterns that
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have signal across cell types, while peak-based analysis finds
more cell type specific signal. We hypothesize that each
peak mostly contains signal corresponding to one or a few
genes, and therefore peaks more finely map cell populations
to distinct cell types. Transcription factor motifs, on the
other hand, contain signal corresponding to larger regula-
tory changes that are more likely to be shared between cell
types (47), and thus analysis in this space yields more pat-
terns with signal across cell types. If this hypothesis is cor-
rect, it seems possible that an enhancer-based space could
provide another higher order feature, that could identify
more patterns of regulatory biology that act across multi-
ple cell types. Using these different summarization levels,
separately as we do in this work, or in an integrated frame-
work, has the potential to improve how well our analyses
correspond to the different mechanisms by which genes are
regulated.

Matrix factorization is well suited to the problem of un-
derstanding scATAC-seq data, as the technique learns pat-
terns that distinguish both features and cells within the two
factorized output matrices. This output is conducive to a
more thorough analysis of the regulatory differences be-
tween the cell populations in the data than most available
methods can provide. Thus, it is unsurprising that matrix
factorization has been previously applied to scATAC-seq
analysis (48–50). We use CoGAPS because it’s Bayesian op-
timization of the factorization finds more biologically dis-
tinctive features than standard NMF implementations, as
we display with the comparison to NNDSVD-NMF in this
work. Duren et al. and Zeng et al. each have applied a cou-
pled factorization for integrative analysis of multiple se-
quencing modalities, allowing for simultaneous clustering
and investigation of regulatory biology (48–50). ProjectR
can potentially be applied to the output of these coupled
factorizations, allowing for transfer of these integrated pat-
terns of regulatory biology across data sets. Coupled factor-
ization may be a promising avenue for future development
of integrative analysis with CoGAPS, and projectR will be
able to serve in this context to determine whether different
coupled factorization methods identify similar patterns of
regulatory biology.

The methodology we introduce to use expression (from
RNA-seq) of TF targets to provide orthogonal evidence for
the activity of scATAC-predicted TFs was shown to iden-
tify TFs associated with known and novel regulatory car-
diac developmental biology in a very specific and generally
homogenous cell population (days 8.5 and 9.5 of develop-
ing cardiac cells in a mouse embryo) (29). The TF motif
enrichment method employed by the popular analysis suite
Seurat was unable to identify enrichment of cardiac devel-
opment related motifs in this data. This result seems likely
to be largely due to the fact that their method relies on the
comparisons of subsets of the data and cannot find mo-
tif enrichment across cells, whereas CoGAPS patterns can
identify uniform accessibility signal present in the superma-
jority of cells. Using RNA-seq data to validate TF activity
is further recommended from a conceptual perspective. Any
ATAC-seq analysis method will not be able to determine
if, for example, the TF of interest has suffered a functional
knock-out or otherwise is inactivated in a way that leaves
its genomic region accessible (51). At the same time, RNA-

seq analysis cannot determine if the expression of a set of
genes is due to a particular TF if those genes can be regu-
lated by multiple factors. Thus, the use of both lines of ev-
idence provides considerably more confidence as to the im-
portant regulatory actors in a biological process of interest
– a consideration of particular interest for studies attempt-
ing to discern molecular targets for disease treatment.

We note that multi-platform data integration is a
broad area of research, extending well beyond matrix
factorization-based approaches. Coupled correlation anal-
ysis has recently been applied to scATAC-seq and scRNA-
seq, both allowing for integrative analysis and imputation
of spatial transcriptomics information (26). Linked Self-
Organizing Maps have also been used in this context, pro-
viding the capacity to find differences between relatively
similar cell types (52). In the area of experimental methods
development, recent research has provided techniques for
parallel sequencing of RNA, accessibility, and methylation
from single cells, vastly lowering both the time and mone-
tary cost of joint profiling of single cells (53,54). Further,
multiple efforts are underway to sequence transcriptomics
and chromatin accessibility from the same single cell, which
promises to improve the fidelity of multimodal analysis and
the ability of multi-omics computational methods to learn
the regulatory biology of constituent cell populations.
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