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We review the pathways by which arginine vasopressin (AVP) and hydration influence

the sequelae of the metabolic syndrome induced by high fructose consumption. AVP

and inadequate hydration have been shown to worsen the severity of two phenotypes

associated with metabolic syndrome induced by high fructose intake–enhanced

lipogenesis and insulin resistance. These findings have implications for those who

frequently consume sweeteners such as high fructose corn syrup (HFCS). Patients

with metabolic syndrome are at higher risk for microalbuminuria and/or chronic kidney

disease; however, it is difficult to discriminate the detrimental renal effects of themetabolic

syndrome from those of hypertension, impaired glucose metabolism, and obesity. It

is not surprising the prevalence of chronic renal insufficiency is growing hand in hand

with obesity, insulin resistance, and metabolic syndrome in those who consume large

amounts of fructose. Higher AVP levels and low hydration status worsen the renal

insufficiency found in patients with metabolic syndrome. This inter-relationship has

public health consequences, especially among underserved populations who perform

physical labor in environments that place them at risk for dehydration. MesoAmerican

endemic nephropathy is a type of chronic kidney disease highly prevalent in hot ambient

climates from southwest Mexico through Latin America. There is growing evidence

that this public health crisis is being spurred by greater fructose consumption in

the face of dehydration and increased dehydration-dependent vasopressin secretion.

Work is needed at unraveling the mechanism(s) by which fructose consumption and

increased AVP levels can worsen the renal disease associated with components of the

metabolic syndrome.

Keywords: fructose, vasopressin (ADH), Mesoamerican nephropathy, metabolic syndrome, high fructose corn

syrup (HFCS)

INTRODUCTION

The incidence of obesity and metabolic syndrome related renal disorders has increased in recent
years. A recent cross-sectional analysis from 2011 to 2016, found the prevalence of metabolic
syndrome in the United States to be 34.7% of adults (1). Meanwhile, from 1986 to 2000, the biopsy
incidence of obesity-related glomerulopathy increased 10-fold, from 0.2 to 2% (2). It is believed

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.883365
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.883365&domain=pdf&date_stamp=2022-05-17
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jts374@drexel.edu
https://doi.org/10.3389/fcvm.2022.883365
https://www.frontiersin.org/articles/10.3389/fcvm.2022.883365/full


Student et al. THIRSTY FOR FRUCTOSE

that the rising prevalence of obesity comes from excess
consumption of sugars, and especially fructose (2, 3). It is
important to understand the causes of increased fructose
consumption in men and women. Fructose, “fruit sugar,” is
a hexose monosaccharide with the same molecular formula
as glucose (C6H12O6). High fructose corn syrup (HFCS) is
a manufactured sweetener that contains a mixture of the
monosaccharides, glucose and fructose, in varying ratios (e.g.,
45%:55%). In “sweetness,” HFCS is similar to cane sugar
(sucrose), a disaccharide first hydrolyzed in the small intestines
before systemic absorption; however sucrose digestion yields
glucose and fructose in equal parts (i.e., 50%:50%, Figure 1A)
(5). The average fructose content of popular beverages sweetened
with HFCS is 59% with several major brands approaching 65%
(6). Relative to sucrose extracted from cane sugar, high fructose,
corn-based syrup is less expensive, and the low cost explains
its widespread use. Although excess intake of both HFCS and
sucrose from cane sugar is linked to the metabolic syndrome,
some have argued that the incrementally greater percentage of
fructose in HFCS compared to sucrose puts those at greater risk
of metabolic disease when consuming more HFCS relative to
sucrose. In either case, an understanding of the role fructose plays
in the pathogenesis of metabolic syndrome is needed.

Several potential mechanisms by which the increased
consumption and metabolism of fructose can worsen the
phenotypic expression of the metabolic syndrome relative to
glucose have been proposed. First, advanced glycation end
products (“AGE’s”) are irreversible molecular adducts, damaging
to cells, that are formed from the nonenzymatic reaction between
reducing sugars such as fructose and glucose with proteins or
lipids. Whereas, glucose contains an aldehyde, fructose has a
ketone group which makes it even more reactive with amines
found in proteins (the non-enzymatic “Maillard reaction”)
(4). Second, when fructose is administered exogenously, the
sugar is taken up by the liver and sequentially metabolized
by fructokinase and aldolase with the rapid consumption of
adenosine triphosphate (ATP) (7). A transient depletion of
ATP and intracellular phosphate shunts adenosine and inosine
to purine degradation pathways and the synthesis of uric
acid; the increased production of uric acid is accompanied by
mitochondrial oxidative stress and inflammation in the liver
(8, 9). Furthermore, in multiple tissues, uric acid can promote
the metabolism of glucose through the polyol pathway where,
in the face of high glucose concentrations, glucose is reduced
to sorbitol with its subsequent oxidation to fructose leading to
further hepatic steatosis or renal damage (Figure 1B) (10, 11).
Uric acid can also inhibit insulin signaling and induce insulin
resistance (12).

ARGININE VASOPRESSIN, FRUCTOSE,
AND THE METABOLIC SYNDROME

Arginine vasopressin (AVP) is now being implicated in the
development of metabolic syndrome. AVP is produced by two
groups of cells—neurons of the hypothalamic paraventricular
nuclei (PVN) and the supraoptic nuclei (SON). These neurons
are divided into either the magnocellular system secreting

AVP into the peripheral circulation from axon terminals within
the pituitary, and also, the parvocellular system with axons
projecting to the median eminence of the hypothalamus where
AVP is secreted into the pituitary portal circulation (13, 14).
Through the systemic circulation, or alternatively, through the
pituitary portal system, AVP activates three distinct vasopressin
receptors, V1a, V1b, and V2, encoded by three distinct genes
in humans, on chromosomes 12q14.2, 1q32.1, and Xq28,
respectively, with variation in the mechanisms of post-receptor
signal transduction (Figure 2) (15–17).

There are several pathways by which increases in circulating
AVP can contribute to the development of the metabolic
syndrome. Indeed, over 10 years ago, it was recognized that
AVP levels significantly correlated with several markers of the
metabolic syndrome, i.e., bodymass index, fasting plasma glucose
and insulin concentrations, insulin resistance, and triglyceride
levels. Vasopressin has been shown to increase stress-induced
ACTH secretion in a V1b dependent manner, and repetitive stress
is associated with the development of the metabolic syndrome
(18, 19). Subsequently, it has been shown that copeptin, the stable
carboxy-terminal portion of pro-arginine vasopressin secreted
in equimolar amounts with AVP, is independently associated
with hyperinsulinemia, the development of diabetes mellitus,
and the metabolic syndrome (20–22). Because hydration levels
mediate central AVP release and plasma AVP concentrations,
it is not surprising that hydration levels have also been shown
convincingly to correlate with the presence of the metabolic
syndrome (23–33).

AVP has been shown to stimulate of hepatic gluconeogenesis
and glycogenolysis through the activation of hepatic V1a

receptors, and also contributes to the secretion of glucagon
or insulin through the activation of pancreatic V1b receptors.
These findings are consistent with the observation that sustained
AVP infusion in laboratory rodents induced both a time and
dose-dependent increase in fasting blood glucose concentrations,
whereas lowering endogenous AVP by increasing water intake
had no effect. In the same study, the effect of AVP on
fasting blood glucose was attenuated by cotreatment with a
V1a receptor antagonist. This may help explain the reported
observations of elevated plasma AVP (copeptin) levels in patients
with diabetes (34). It is likely that these findings, that AVP
increases glycemia through the activation of V1a receptors,
are mediated by the activation of hepatic V1a receptors and
the stimulation of hepatic gluconeogenic processes. However,
further study is needed to confirm this is a purely hepatic
process. AVP also acts synergistically with central V1b receptors
to not only promote ACTH secretion, as noted above, but also
catecholamine secretion from the adrenal medulla In one clinical
study, 31 healthy adults with high copeptin levels, low 24 h urine
volumes, and high urine osmolality were recruited to consume
an additional 1.5 L of water daily for 6 weeks. Although the
intervention did not significantly affect fasting ACTH, cortisol,
fasting glucose, insulin, or glucagon concentrations, changes in
copeptin levels were highly associated with changes in ACTH
levels. These findings also make tenable that central AVP
concentrations in the pituitary portal circulation can contribute
to ACTH-mediated stress responses and the development of the
metabolic syndrome (35). In summary, there appears to be both
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FIGURE 1 | (A) (top): Differences in food sweeteners from sugar and corn. Sucrose is extracted from sugar cane or beets. Ingested sucrose from processed foods is

digested in the small intestines by disaccharidase into equal parts glucose and fructose (50%:50%). Absorbed fructose is almost completely taken up by GLUT-1 and

GLUT-5 transporters in the liver which accounts for low levels of plasma fructose. Corn starch is a polysaccharide that is enzymatically hydrolyzed to

monosaccharides which in the presence of isomerase increases the relative content of fructose yielding a high fructose corn syrup (HFCS). (B) (bottom): Some

mechanisms by which fructose can result in renal injury. The endogenous conversion of glucose to fructose through the polyol pathway contributes to formation of uric

acid, which promotes mitochondrial oxidative stress and inflammation. Endogenous fructose generation also promotes lipogenesis which contributes to the

development of the metabolic syndrome. Glucose and fructose can both react directly with cellular lipids and proteins; oxidized LDL and collagen cross linked by

these reactions can induce vascular stiffness, stimulate inflammation, and promote atherogenesis (4).

FIGURE 2 | There are three subtypes of the G-protein linked vasopressin receptors. V1a receptors are found on vascular smooth muscle and platelets and induce

vasoconstriction through increased phosphatidyl inositol (PI) metabolism; V2 receptors are found primarily in on principal cells of the kidney collecting ducts and

mediate water reabsorption through aquaporins stimulated by AVP in the systemic circulation; V1b receptors are found primarily in cells of the pituitary, white adipose

tissue, and the pancreas. AVP secreted from parvocellular neurons and flowing through the hypophyseal portal circulation stimulates pituitary adrenocorticotropic

hormone (ACTH) secretion through interaction with V1b receptors in pituitary corticotrophs by potentiating the stimulatory effects of corticotrophin-releasing hormone

on ACTH.

metabolic (mediated by V1a receptor-induced gluconeogenesis)
and central (mediated by activation of V1b receptors and the
stress response) mechanisms by which AVP contributes to
hyperglycemia and the metabolic syndrome.

As noted, the V1b receptor plays a critical role in regulating
hypothalamic-pituitary-adrenal axis activity by contributing to
pituitary ACTH secretion and corticosterone release from the
adrenal gland levels under basal and stress conditions (18).
Indeed, the normal increase in circulating ACTH levels in
response to AVP is impaired in V1b receptor knockout mice,
although corticotropin-releasing hormone (CRH)-stimulated
ACTH release is not impaired. Vasopressin levels and V1b

receptor expression were elevated in rodents with exposure to
chronic stress, and the measured increase in ACTH after stress
(e.g., after a forced swim test) has been found to be significantly
suppressed in V1b receptor null mice (18, 36). Immediately after
a stressful event, there is a CRH-mediated suppression of food
intake, followed by a CRH/ACTH-dependent, glucocorticoid

mediated, stimulation of hunger and eating behavior (37).
Accordingly, chronic stress, and the resultant chronic activation
of the hypothalamic-pituitary adrenal axis, induces weight gain in
rodents and humans where it is known as “emotional eating” or
“stress-induced eating” (38–41). In addition to the hyperglycemic
effects of AVP described above, it is likely that AVP produces
behavioral changes via V1b potentiation of the CRF-ACTH-
glucocorticoid axis.

Teleologically, the secretion of AVP has evolved as a
mechanism to ensure appropriate hydration status and fluid
balance. Because a significant amount of water is endogenously
provided through the catabolism of fat, specifically through fatty
acid oxidation, it is intriguing to speculate that AVP would play a
role at increasing fat storage (42). Indeed, it is one reason posited
to explain the evolution of the camel’s hump, which is a fat storage
depot (43). It is noteworthy that fructose stimulates the secretion
of AVP to a greater degree than glucose. In hypothalamic
explants, fructose directly stimulates AVP secretion (44). When
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rodents are slowly infused with a hypertonic 20% solution of
either glucose or fructose, AVP levels only rise in response to
the administration of fructose. This is likely due to the facilitated
uptake of glucose, relative to impermeant fructose, into AVP-
releasing neurons sensing osmolality (45).

It has also been shown that the effect of AVP on inducing
hepatic lipogenesis and the metabolic syndrome is dependent
upon the V1b receptor. In a study utilizing vasopressin
receptor knockout mice being fed high fructose diets, V1b

receptor null mice were found to have suppressed markers
of the metabolic syndrome phenotype, including fat mass,
hepatic steatosis, serum triglycerides, transaminases, insulin,
and leptin. Interestingly, these same markers were found to
be elevated in V1a receptor deficient mice, suggesting that
while V1b receptors promote lipogenesis and the development
of the metabolic syndrome, activation of V1a receptors may
play a protective, counterregulatory role (42). These findings
from rodents were corroborated by the study of overweight
and obese subjects who consumed glucose- or fructose-
sweetened beverages providing 25% of energy requirements
for 10 weeks. Although both groups exhibited similar weight
gain during the intervention, visceral adipose volume was
significantly increased only in subjects consuming fructose, and
hepatic de novo lipogenesis was increased specifically during
fructose consumption (46). Fructose is a secretagogue for AVP,
and AVP promotes lipogenesis, hyperinsulinemia, and many
of the pathophysiological intermediaries associated with the
metabolic syndrome.

Very little orally ingested fructose hits the cerebral circulation,
therefore the effect of endogenous fructose production on
AVP secretion should be considered. Exogenous fructose is
preferentially taken up by glucose transporters (especially
GLUT5) and metabolized in the liver while glucose, transported
by GLUT1 and GLUT3, is metabolized primarily in the
brain (47). Accordingly, plasma fructose concentrations are
typically 0.01% of plasma glucose levels. Meanwhile, glucose
concentrations in cerebrospinal fluid (CSF) are roughly 60% of
its plasma concentrations whereas CSF levels of fructose are
twenty times greater than those levels found in the blood. It is
suggested from these observations that because fructose is so
rapidly metabolized by the liver, endogenous fructose generation
by the brain is physiologically significant (48). Indeed, both
the catabolism of fructose by fructokinase and synthesis of
fructose by the polyol pathway have been demonstrated in the
brain (49). Clearly, endogenous fructose production in the brain
can contribute to any AVP-dependent pathway that promotes
the metabolic syndrome phenotype despite having low plasma
concentrations of fructose.

ARGININE VASOPRESSIN, FRUCTOSE,
AND RENAL INSUFFICIENCY

The potential potentiation of the metabolic syndrome from
chronically increased levels of AVP, albeit at low levels, and
increased fructose consumption has significant public health
implications (50). This is particularly true in hot, arid lands, such
as Mesoamerica where high ambient temperatures and physical

exertion, and accordingly high levels of AVP, are associated
with the growing prevalence of the metabolic syndrome and
the development of chronic kidney disease (51, 52). Indeed,
Mesoamerican endemic nephropathy is a type of chronic kidney
disease of unknown origin that is highly prevalent amongmanual
laborers from southwest Mexico through Latin America (53,
54). In fact, study of manual laborers in Nicaragua revealed
14% of all men had an estimated glomerular filtration rate
(eGFR) of <60 mL/min/1.73 m2 (55). Similar findings were
yielded in a study of El Salvadorian coastal communities, where
18% of men had an eGFR <60 mL/min/1.73 m2 (56). As a
chronic kidney disease of nontraditional origin (CKDnt), the
incidence and public health burden of Mesoamerican endemic
nephropathy cannot be attributed to classical risk factors such
as hypertension or diabetes. The exact cause of CKDnt has yet
to be determined, and recurrent heat stress/dehydration and
agrochemicals remain among the most widely discussed risk
factors (57). The Pan American Health Organization (PANAHO)
has reported “the death toll of the epidemic of CKDnt in
Mesoamerica runs into the tens of thousands, affecting mostly
young men.” Because this deteriorating renal disease is observed
mostly in plantation workers exposed to physically stressful work
environments and high ambient temperatures, PANAHO has
further gone on to recommend a “water-shade-rest” intervention
to farm workers (58).

The increased consumption of sweetened beverages is
associated with urbanization and economic growth. As such,
more intensified policy efforts are needed to ensure that
hydration occurs with water, not through sweetened beverages
that increase the intake of sugar and, subsequently, increase
the global burden of obesity and chronic diseases. There is
growing evidence that hydration with beverages sweetened with
high fructose corn syrup potentiates the renal insufficiency
found in those who must toil in high ambient temperature
climates. However, as any traveler to an underdeveloped country
has observed, the advertising for sugar sweetened beverages is
ubiquitous, equaled only by the fervent pitches for various cell
phone carriers. In the United States, it is estimated that the
average American consumes roughly 54.7 g of fructose per day
and nearly 30 kg of carbohydrate each year from added sweetners
(59, 60). In Latin America, average individual sugar intake is
estimated at 99.4 g/day, with an average of 65.5 g/day coming
from added sugar (61).

In a study with laboratory rodents pair fed a diet containing
60% fructose, 60% dextrose, or standard rat chow, the fructose
fed rats had worse outcomes in a reduced renal mass
model of chronic kidney disease. Proteinuria was increased
and creatinine clearance was diminished in the rodents fed
fructose when compared to glucose- and control-fed rodents.
Glomerulosclerosis, tubular atrophy, tubular dilatation, and
inflammation were all greater in the fructose fed rats (62). The
toxic effect of fructose is not limited to injured kidneys as dietary
fructose has been shown to produce a similarly pathologic effect
on normal rodent kidneys (63). Endogenous fructose generation
via the polyol pathway may be particularly pathologic because,
in addition to the production of fructose, this pathway may also
increase the relative abundance of sorbitol, which plays a role in
directly inducing renal injury (64). In a study of the potential
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role of endogenous fructose production, as opposed to dietary
fructose, wild-type mice with streptozotocin-induced diabetes
were shown to develop proteinuria, reduced glomerular filtration
rate, and renal glomerular and proximal tubular injury. However,
unlike control mice, rodents genetically deficient in fructokinase
demonstrated significantly less proteinuria, renal dysfunction,
renal injury, and inflammation. These studies further support a
role for fructokinase and its metabolites as a novel mediator of
diabetic nephropathy (65).

Fructose can directly stimulate AVP release or induce the
secretion of AVP by the hyperosmolarity generated by increasing
sorbitol concentrations via the polyol pathway. Conversely,
genetic ablation of fructokinase diminishes AVP secretion
induced by dehydration (45). Given this intimate relationship
between AVP and fructose, it is necessary to understand what
effect fructose has on the physiologic responses to dehydration
in men and women if we are to understand the endemic
nephropathy of Mesoamerica. In one study, mice were exposed
to repetitive heat stress for 5 weeks. Compared to control
animals given water, there was a progressive worsening of renal
inflammation and fibrosis in mice given rehydration with 10%
fructose in water. It was suggested that following heat-induced
renal injury, oral fructose ingestion may accelerate kidney
damage (66). Another study examining heat-induced renal
injury found that compared to water, rehydration with fructose
following heat stress resulted in significant decrements in renal
blood flow (measured via Doppler ultrasound) and creatinine
clearance along with significantly elevated renal vascular
resistance. Interestingly, co-administration of conivaptan, a
nonselective vasopressin receptor antagonist, prevented these
changes, suggesting fructose mediated renal injury following heat
stress occurs in an AVP-dependent fashion (67).

Many of these findings have been supported by additional
study. Fluid restriction followed by water hydration mildly
increased urine osmolality and induced a 15% decrement
in creatinine clearance while increasing two markers of
tubular damage, urinary N-Acetyl-β-D-glucosaminidase and
kidney injury molecule-1. These changes were accompanied
by overexpression of V1a and V2 renal receptors, the polyol
fructokinase pathway, and increased renal oxidative stress
with reduced expression of antioxidant enzymes. Hydration
with an unspecified 11% glucose/fructose sweetened beverage
significantly amplified those alterations, and it is suggested that
current habits of re-hydration with sweetened beverages could be
a risk factor in developing kidney damage (68).

The findings in rodents regarding fructose and renal injury
have been recapitulated in men and women. In one study of 12
healthy adults, subjects drank 2 liters of a fructose containing soft
drink or water during 4 h of exercise. Serum creatinine increased
≥0.30 mg/dl post exercise in 75% of participants in the soft
drink trial compared with 8% in water trial, which is consistent
with the Kidney Disease Improving Global Outcomes definition
of acute kidney injury (69). Changes in serum uric acid from
pre-exercise were greater in the soft drink trial than the water
trial at post-exercise, and there were greater increases from pre-
exercise to post-exercise in serum copeptin in the soft drink
trial. It was suggested that consuming a fructose beverage during

and following exercise in the heat induces kidney injury through
a vasopressin-mediated mechanism, which was consistent
with the findings observed in rodents (70). Subsequently,13
healthy subjects who consumed 500mL of a HFCS-sweetened
soft drink had augmented kidney vasoconstriction (measured
by Doppler ultrasound) to sympathetic stimulation induced
with the cold pressor test when compared to subjects who
consumed water. During a separate trial, venous blood samples
were obtained in 12 healthy adults before and 30min after
consumption of 500mL water with artificial sweetener, sucrose,
or high fructose corn syrup. Increases in serum uric acid
were greater in those who consumed high fructose corn
syrup compared to those who consumed artificial sweetener
or sucrose.

In summary, it is suggested that high fructose corn syrup
acutely increases vascular resistance in the kidneys with
simultaneous elevations in circulating uric acid and vasopressin
(71). There are consistent suggestions that hypohydration
and rehydration with fructose-based sweetened beverages
facilitate the secretion of AVP and predispose humans to
metabolic syndrome and the development of renal insufficiency.
Despite such consistent suggestions, our understanding of
this relationship and the mechanisms by which fructose and
vasopressin could induce metabolic and renal disease remain
incomplete. Further study utilizing selective and nonselective
vasopressin agonists and antagonists could prove useful in
characterizing the physiological changes produced by AVP,
establishing the precise mechanisms by which AVP verses
fructose contributes to renal disease, and identifying the utility of
AVP receptor blockade to combat diseases such asMesoamerican
endemic nephropathy. Fructose could be a key mediator in
this cascade and the mechanisms by which it exerts its toxic
effects warrants further exploration. It is worth noting that
exogenous AVP is frequently administered, in the absence
of fructose, as a means of pressor support in critically ill
patients and has been found to protect against renal injury
in this setting (72). Finally, further epidemiological study of
fructose consumption and renal insufficiency, particularly in
Mesoamerica, could help reduce the impact of CKDnt and
obesity related kidney disease. Regardless, as evidenced by this
review, there is ample evidence to suggest fructose and AVP
contribute to the development of metabolic and renal disease.
We should not be thirsty for fructose, but instead, thirsty
for water.
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