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Abstract

Coliphages are alternative fecal indicators that may be suitable surrogates for viral pathogens, 

but majority of standard detection methods utilize insufficient volumes for routine detection 

in environmental waters. We compared three somatic and F+ coliphage methods based on a 

paired measurement from 1 L samples collected from the Great Lakes (n = 74). Methods 

include: 1) dead-end hollow fiber ultrafilter with single agar layer (D-HFUF-SAL); 2) modified 

SAL (M-SAL); and 3) direct membrane filtration (DMF) technique. Overall, D-HFUF-SAL 

outperformed other methods as it yielded the lowest frequency of non-detects [(ND); 10.8%] 

and the highest average concentrations of recovered coliphage for positive samples (2.51 ± 1.02 

[standard deviation, SD] log10 plaque forming unit/liter (PFU/L) and 0.79 ± 0.71 (SD) log10 

PFU/L for somatic and F+, respectively). M-SAL yielded 29.7% ND and average concentrations 

of 2.26 ± 1.15 (SD) log10 PFU/L (somatic) and 0.59 ± 0.82 (SD) log10 PFU/L (F+ ). DMF 

performance was inferior to D-HFUF-SAL and M-SAL methods (ND of 65.6%; average somatic 

coliphage concentration 1.52 ± 1.32 [SD] log10 PFU/L, no F+ detected), indicating this procedure 

is unsuitable for 1 L surface water sample volumes. This study represents an important step toward 

the use of a coliphage method for recreational water quality criteria purposes.
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Enteric viruses are the leading cause of recreational waterborne disease outbreaks (Sinclair 

et al., 2009), but detection and enumeration of viral pathogens in environmental waters 

can be costly, technically challenging, and time consuming. Coliphage may be adequate 

viral surrogates since they have similar morphological characteristics to enteric pathogenic 

viruses (King et al., 2011), are present in high levels in wastewater and fecal material 

(Gantzer et al., 1998; McMinn et al., 2014), exhibit similar reductions to viral pathogens 

through wastewater treatment processes (Nappier et al., 2006; Pouillot et al., 2015) and 

replication in the environment is highly unlikely (Jofre, 2009; Muniesa and Jofre, 2004). 

Somatic and F+ (or male-specific) coliphage enumeration is routinely used by regulatory 

groups for a variety of applications (e.g. monitoring of groundwater, biosolids, water 

recycling and aquaculture practices) (Department of Environment and Conservation, 2012; 

Food and Drug Administration and Interstate Shellfish Sanitation Commission, 2015; North 

Carolina Environmental Quality, 2011; Queensland Government Environmental Protection 

Agency, 2005; United States Environmental Protection Agency, 2006). EPA is currently 

working to develop recreational water criteria for coliphage (United States Environmental 

Protection Agency, 2015, 2016).

Current coliphage standard culture-based methods include single-agar layer (SAL) 

plaque assay (American Public Health Association, 2005d; United States Environmental 

Protection Agency, 2001b), double-agar layer (DAL) plaque assay (American Public 

Health Association, 2005a,b,c; International Organization for Standardization, 1995, 2000), 

enrichment (United States Environmental Protection Agency, 2001a) and direct membrane 

filtration (American Public Health Association, 2005e). These methods recommend test 

sample volumes ≤ 100 mL, and when applied to surface waters, often result in a high 

frequency of non-detects (ND) (Abdelzaher et al., 2011; Boehm et al., 2009; Colford et 

al., 2007; Medema et al., 1995; Viau et al., 2011; von Schirnding et al., 1992; Wade et al., 

2010), even when fecal indicator bacteria (E. coli or enterococci) are present at 1–2 orders 

of magnitude higher concentrations (Boehm et al., 2009; Ortega et al., 2009; Viau et al., 

2011). A simple solution to decrease the frequency of ND results in contaminated waters 

is to increase the sample volume tested. However, little is known about the performance of 

standard coliphage methods with larger surface water sample volumes (≥ 1 L).

In this study, we evaluate the performance of three somatic and F+ coliphage methods 

with 1 L sample volumes, including dead-end hollow fiber ultrafiltration (Mull and Hill, 

2012; Smith and Hill, 2009) with SAL (D-HFUF-SAL) (McMinn et al., 2017), an improved 

direct membrane filtration procedure (DMF) (Sobsey et al., 2004) and SAL (United States 

Environmental Protection Agency, 2001b) modified to accommodate a 1 L sample volume 

(M-SAL). Performance comparisons are based on paired measurements from a series of 

1 L surface water samples collected from the Great Lakes region. In addition, practical 

implementation factors such as the occurrence of ND results, cost, and sample processing 

time are discussed.

McMinn et al. Page 2

J Virol Methods. Author manuscript; available in PMC 2020 March 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Surface waters originated from Lake Michigan (Washington Park Beach in Michigan City, 

Indiana) (n = 37) and nearby Trail Creek (n = 37). Samples were collected during the 2015 

Great Lakes beach season at a frequency of five samples per week. The sample collection 

procedures are detailed elsewhere (Wanjugi et al., 2018). The D-HFUF-SAL (McMinn et 

al., 2017) and DMF (Sobsey et al., 2004) methods were performed as previously described, 

while media and reagents were in-creased 10-fold for the M-SAL procedure (United States 

Environmental Protection Agency, 2001b); please see supplemental information for more 

details.

All data were log10 transformed and expressed as plaque forming unit (PFU) per liter 

(L) for positive samples only as ND samples were not included in the concentration data. 

Statistical analyses were performed using SigmaPlot version 13.0 (Systat Software, inc., 

San Jose, CA). One-way analysis of variance (ANOVA) followed by Holm-Sidak multiple 

comparisons or Kruskal-Wallis ANOVA on ranks (followed by Tukey tests) were applied to 

somatic and F+ coliphage datasets (from both sites), while Wilcoxon signed rank tests were 

used for overall comparisons between the coliphage types or sites.

Method performance metrics are summarized in Table 1, while coliphage concentrations 

are depicted in Fig. 1. In Lake Michigan samples, somatic coliphage were detected more 

frequently and at higher levels using the D-HFUF-SAL compared to the other two methods 

tested (Table 1, Fig. 1A). Average concentrations for positive samples en-umerated using 

D-HFUF-SAL method (1.65 ± 0.63 [SD] log10 PFU/L) were comparable to M-SAL (p 
= 0.124, 1.26 ± 0.67 [SD] log10 PFU/L), but concentrations obtained by DMF (0.30 

± 0.44 [SD] log10 PFU/L) (Fig. 1A) were significantly (p < 0.001) lower than either 

D-HFUF-SAL or M-SAL methods. The DMF method did not yield any F+ coliphage 

results from Lake Michigan samples, but they were detected using the other two methods 

(Fig. 1A) with D-HFUF-SAL (0.32 ± 0.34 [SD] log10 PFU/L) method resulting in higher 

average concentration for positive samples as compared to the M-SAL (0.05 ± 0.26 [SD] 

log10 PFU/L) (Fig. 1A). D-HFUF-SAL yielded significantly higher concentrations of F+ 

coliphage (p < 0.001) for positive samples than either M-SAL or DMF methods, but there 

was no statistically significant difference in F+ coliphage concentrations obtained by the 

M-SAL and DMF methods (p = 0.899).

Somatic coliphage were consistently detected in Trail Creek water samples irrespective 

of the method (Table 1). D-HFUF-SAL and M-SAL exhibited similar somatic coliphage 

mean concentrations for positive samples in Trail Creek samples; 3.38 ± 0.43 (SD) log10 

PFU/L and 3.25 ± 0.44 (SD) log10 PFU/L, respectively (p = 0.252) (Fig. 1B). Significantly 

lower levels (p < 0.001) of somatic coliphage for positive samples were observed with the 

DMF method (2.75 ± 0.49 [SD] log10 PFU/L) (Fig. 1B). Comparable (p = 0.659) average 

concentrations of F+ coliphage in positive samples were found in Trail Creek waters using 

the D-HFUF-SAL method (1.25 ± 0.68 [SD] log10 PFU/L) and M-SAL (1.22 ± 0.85 [SD] 

log10 PFU/L), but concentrations obtained by the DMF method were significantly lower 

(p < 0.001) (Fig. 1B). Overall, somatic coliphage concentrations were significantly higher 

than the F+ coliphage, irrespective of method and matrix (p < 0.001), and concentrations of 

both coliphage types were typically higher in the Trail Creek samples compared to the Lake 

Michigan samples (p < 0.001).
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Regarding frequency of NDs, D-HFUF-SAL exhibited the lowest ND range overall, with 

0%–2.7% (somatic) and 5.4%–35% (F+) (Table 1). M-SAL resulted in the second lowest 

ND occurrence (0%–8.1% for somatic; 16.2%–94.6% for F+), followed by DMF (0%–

62.2% for somatic and 100% for F+) (Table 1).

When considering cost associated with each method, the assessment is based on current 

manufacturers prices for disposable items such as petri dishes and filters, as well as various 

chemicals and reagents (e.g. agar, tryptic soy broth, nalidix acid, streptomycin, ampicillin, 

X-gal, IPTG, MgCl2, CaCl2, MgSO4, tryptone, glucose, Tween 80, Antifoam Y-30, sodium 

hexametaphosphate) but we’ve excluded common laboratory disposables such as serological 

pipettes, pipette tips, gloves and similar. Regarding the processing time, we have assumed 

that sample is being processed by a single analyst familiar with the routine water quality 

assessment (e.g. membrane filtration and /or defined substrate technology for enumeration 

of E. coli and enterococci) and possessing basic knowledge of microbiological culture 

techniques. The cost per sample for D-HFUF-SAL and DMF was comparable, while M

SAL was approximately ten times higher, reflecting the increase in supplies and reagents 

needed to process 1 L sample volumes (Table 2). D-HFUF-SAL required the least amount 

of time to process a single sample, followed by M-SAL. The time required for DMF varied 

greatly due to the potential for substantial membrane clogging (Table 2).

Overall, the D-HFUF-SAL method yielded the highest levels of both coliphage types and the 

lowest incidence of ND results, suggesting that the addition of an ultrafiltration step to the 

SAL procedure enhances method performance for surface water applications. These results 

are similar to a recent study, where a low percentage of ND results was observed in surface 

waters ranging from 0% (somatic) to 25% (F+) (McMinn et al., 2017). M-SAL method 

performed similarly to D-HFUF-SAL when incidence of ND samples was low (i.e. < 10%), 

but it yielded significantly lower coliphage concentrations when incidence of NDs was high 

(e.g. F+ coliphage in Lake Michigan samples). However, the high cost per sample and 

extended sample processing time may render this approach unfeasible for sample volumes 

greater than 100 mL. While an earlier study utilizing DMF reported detectable somatic 

and F+ coliphage in 88% and 48% of estuary samples, respectively (Love et al., 2010), a 

much lower incidence was observed with Great Lake region surface water samples tested 

in this study. It is challenging to compare study outcomes due to different water sample 

types (estuary versus river/beach samples), as well as potentially different levels and sources 

of fecal contamination. However, it is worth noting that the two studies utilized different 

filtration strategies where 100 mL samples were divided into 10 separate subsamples in one 

approach (Love et al., 2010), and a 1 L volume was passed through a single filter when 

possible in this study as recommended by the method developers (Sobsey et al., 2004). 

This practice often led to membrane clogging, longer filtration times, and in many cases, 

resulted in a layer of particulate matter on the filter surface, which may have interfered 

with plaque formation and visualization (typically when turbidity exceeded 10 NTU). A 

different tactic, where a 1L sample is subdivided into 10 × 100mL subsamples, may have 

yielded a different result, but would undoubtedly be more expensive and time consuming. 

In summary, we compared three (D-HFUF-SAL, M-SAL, DMF) somatic and F+ coliphage 

methods on paired 1 L samples collected from the Great Lakes region. Our results suggest 

that D-HFUF-SAL significantly outperformed the other two methods as it provided the 

McMinn et al. Page 4

J Virol Methods. Author manuscript; available in PMC 2020 March 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



lowest frequency of non-detects and the highest concentration of coliphages. This study 

represents an important step toward the use of a coliphage method for surface waters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

Abdelzaher AM, Wright ME, Ortega C, Hasan AR, Shibata T, Solo-Gabriele HM, Kish J, Withum K, 
He G, Elmir SM, Bonilla JA, Bonilla TD, Palmer CJ, Scott TM, Lukasik J, Harwood VJ, McQuaig 
S, Sinigalliano CD, Gidley ML, Wanless D, Plano LR, Garza AC, Zhu X, Stewart JR, Dickerson 
JW, Yampara-Iquise H, Carson C, Fleisher JM, Fleming LE, 2011. Daily measures of microbes and 
human health at a non-point source marine beach. J. Water Health 9, 443–457. [PubMed: 21976192] 

American Public Health Association, A.W.W.A., Water Environment Federation, 2005a. 9224 B. 
Somatic coliphages assay. In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE (Eds.), Standard 
Methods for the Examination of Water and Wastewater. American Public Health Association, 
American Water Works Association, Water Environment Federation, Washington, D.C.

American Public Health Association, A.W.W.A., Water Environment Federation, 2005b. 9224 C. 
Male-specific coliphage assay using Escherichia coli famp. In: Eaton AD, Clesceri LS, Rice EW, 
Greenberg AE (Eds.), Standard Methods for the Examination of Water and Wastewater. American 
Public Health Association, American Water Works Association, Water Environment Federation, 
Washington, D.C.

American Public Health Association, A.W.W.A., Water Environment Federation, 2005c. 9224 D. 
Male-specific coliphage assay using Salmonella typhimurium WG49. In: Eaton AD, Clesceri LS, 
Rice EW, Greenberg AE (Eds.), Standard Methods for the Examination of Water and Wastewater. 
American Public Health Association, American Water Works Association, Water Environment 
Federation, Washington, D.C.

American Public Health Association, A.W.W.A., Water Environment Federation, 2005d. 9224 E. 
Single agar layer method. In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE (Eds.), Standard 
Methods for the Examination of Water and Wastewater. American Public Health Association, 
American Water Works Association, Water Environment Federation, Washington, D.C.

American Public Health Association, A.W.W.A., Water Environment Federation, 2005e. 9224 F. 
Membrane filter method. In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE (Eds.), Standard 
Methods for the Examination of Water and Wastewater. American Public Health Association, 
American Water Works Association, Water Environment Federation, Washnigton, D.C.

Boehm AB, Yamahara KM, Love DC, Peterson BM, McNeill K, Nelson KL, 2009. Covariation 
and photoinactivation of traditional and novel indicator organisms and human viruses at a sewage
impacted marine beach. Environ. Sci. Technol 43, 8046–8052. [PubMed: 19924921] 

Colford JM Jr., Wade TJ, Schiff KC, Wright CC, Griffith JF, Sandhu SK, Burns S, Sobsey M, Lovelace 
G, Weisberg SB, 2007. Water quality indicators and the risk of illness at beaches with nonpoint 
sources of fecal contamination. Epidemiology 18, 27–35. [PubMed: 17149140] 

Department of Environment and Conservation, 2012. Western Australian Guidelines for Biosolids 
Management. Perth, Australia..

Food and Drug Administration and Interstate Shellfish Sanitation Commission, 2015. National 
Shellfish Sanitation Program. Guide for the Control of Molluscan Shellfish.

Gantzer C, Maul A, Audic JM, Schwartzbrod L, 1998. Detection of infectious enteroviruses, 
enterovirus genomes, somatic coliphages, and Bacteroid.es fragilis phages in treated wastewater. 
Appl. Environ. Microbiol 64, 4307–4312. [PubMed: 9797281] 

International Organization for Standardization, 1995. Water Quality-Detection and Enumeration of 
Bacteriophages-Part 1: Enumeration of F-Specific Bacteriophages. Geneva, Switzerland..

International Organization for Standardization, 2000. Water Quality-Detection and Enumeration of 
Bacteriophages-Part 2: Enumeration of Somatic Coliphages. Geneva, Switzerland..

McMinn et al. Page 5

J Virol Methods. Author manuscript; available in PMC 2020 March 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Jofre J, 2009. Is the replication of somatic coliphages in water environments significant? J. Appl. 
Microbiol 106, 1059–1069. [PubMed: 19040701] 

King AMQ, Adams MJ, Carstens EB, Lefkowitz WJ, 2011. Virus Taxonomy: Classification and 
Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. 
Elsevier Academic Press, London, UK.

Love DC, Lovelace GL, Money ES, Sobsey MD, 2010. Microbial fecal indicator concentrations in 
water and their correlation to environmental parameters in nine geographically diverse estuaries. 
Water Qual. Expos. Health 2, 85–95.

McMinn BR, Korajkic A, Ashbolt NJ, 2014. Evaluation of Bacteroides fragilis GB-124 bacteriophages 
as novel human-associated faecal indicators in the United States. Lett. Appl. Microbiol 59, 115–
121. [PubMed: 24725119] 

McMinn BR, Huff EM, Rhodes ER, Korajkic A, 2017. Concentration and quantification of somatic 
and F+ coliphages from recreational waters. J. Virol. Methods 249, 58–65. [PubMed: 28843788] 

Medema GJ, van Asperen IA, Klokman-Houweling JM, Nooitgedagt A, van de Laar MJW, Havelaar 
AH, 1995. The relationship between health effects in triathletes and microbiological quality of 
freshwater. Water Sci. Technol 31, 19–26.

Mull B, Hill VR, 2012. Recovery of diverse microbes in high turbidity surface water samples using 
dead-end ultrafiltration. J. Microbiol. Methods 91, 429–433. [PubMed: 23064261] 

Muniesa M, Jofre J, 2004. Factors influencing the replication of somatic coliphages in the water 
environment. Antonie Van Leeuwenhoek 86, 65–76. [PubMed: 15103238] 

Nappier SP, Aitken MD, Sobsey MD, 2006. Male-specific coliphages as indicators of thermal 
inactivation of pathogens in biosolids. Appl. Environ. Microbiol 72, 2471–2475. [PubMed: 
16597945] 

North Carolina Environmental Quality, 2011. North Carolina Adm. Code 15A NCAC 2U Reclaimed 
Water, North Carolina. Department of Environment and Natural Resources, Raleigh, NC.

Ortega C, Solo-Gabriele HM, Abdelzaher A, Wright M, Deng Y, Stark LM, 2009. Correlations 
between microbial indicators, pathogens, and environmental factors in a subtropical estuary. Mar. 
Pollut. Bull 58, 1374–1381. [PubMed: 19464704] 

Pouillot R, Van Doren JM, Woods J, Plante D, Smith M, Goblick G, Roberts C, Locas A, Hajen W, 
Stobo J, White J, Holtzman J, Buenaventura E, Burkhardt W 3rd, Catford A, Edwards R, DePaola 
A, Calci KR, 2015. Meta-analysis of the reduction of norovirus and male-specific coliphage 
concentrations in wastewater treatment plants. Appl. Environ. Microbiol 81, 4669–4681. [PubMed: 
25934626] 

Queensland Government Environmental Protection Agency, 2005. Queensland Water Recycling 
Guidelines. Brisbane, Australia..

Sinclair RG, Jones EL, Gerba CP, 2009. Viruses in recreational water-borne disease outbreaks: a 
review. J. Appl. Microbiol 107, 1769–1780. [PubMed: 19486213] 

Smith CM, Hill VR, 2009. Dead-end hollow-fiber ultrafiltration for recovery of diverse microbes from 
water. Appl. Environ. Microbiol 75, 5284–5289. [PubMed: 19561183] 

Sobsey MD, Yates MV, Hsu FC, Lovelace G, Battigelli D, Margolin A, Pillai SD, Nwachuku N, 2004. 
Development and evaluation of methods to detect coliphages in large volumes of water. Water Sci. 
Technol 50, 211–217.

United States Environmental Protection Agency, 2001a. Method 1601: Male-Specific (F+) and 
Somatic Coliphage in Water by Two-Step Enrichment Procedure. Washington, D.C.. .

United States Environmental Protection Agency, 2001b. Method 1602: Male-Specific (F+) and 
Somatic Coliphage in Water by Single Agar Layer (SAL) Procedure. Washington, D.C.. .

United States Environmental Protection Agency, 2006. National Primary Drinking Water Regulations: 
Groundwater Rule. Final Rule; 40 CFR Parts 9, 141 and 142, Federal Register, vol. 71 n. 216, 
Washington, D.C.

United States Environmental Protection Agency, 2015. Review of Coliphages as Possible Indicators of 
Fecal Contamination for Ambient Water Quality. Washington, D.C.. .

United States Environmental Protection Agency, 2016. 2016 Coliphage Experts Workshop: Discussion 
Topics and Findings. Washington, D.C.. .

McMinn et al. Page 6

J Virol Methods. Author manuscript; available in PMC 2020 March 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Viau EJ, Goodwin KD, Yamahara KM, Layton BA, Sassoubre LM, Burns SL, Tong HI, Wong SH, 
Lu Y, Boehm AB, 2011. Bacterial pathogens in Hawaiian coastal streams—associations with fecal 
indicators, land cover, and water quality. Water Res. 45, 3279–3290. [PubMed: 21492899] 

von Schirnding YER, Kfir G, Cabelli V, Franklin L, Joubert G, 1992. Morbidity among bathers 
exposed to polluted seawater. A prospective epidemiological study. S. Afr. Med. J 81, 543–546. 
[PubMed: 1598644] 

Wade TJ, Sams E, Brenner KP, Haugland R, Chern E, Beach M, Wymer L, Rankin CC, Love D, 
Li Q, Noble R, Dufour AP, 2010. Rapidly measured indicators of recreational water quality and 
swimming-associated illness at marine beaches: a prospective cohort study. Environ. Health A: 
Glob. Access Sci. Source 9, 66.

Wanjugi P, Sivaganesan M, Korajkic A, McMinn B, Kelty CA, Rhodes E, Cyterski M, Zepp R, 
Oshima K, Stachler E, Kinzelman J, Kurdas SR, Citriglia M, Hsu FC, Acrey B, Shanks OC, 2018. 
Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters. Water Res. 140, 
200–210. [PubMed: 29715644] 

McMinn et al. Page 7

J Virol Methods. Author manuscript; available in PMC 2020 March 20.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. 1. 
Concentrations of somatic (shaded boxes) and F+ (empty boxes) coliphage in positive 

samples for Lake Michigan Beach (panel A) and Trail Creek (panel B) samples. Boxes are 

delimited by 25th and 75th percentiles, solid line within the box represents median and 

dashed line represents average. Whiskers are 10th and 90th percentile values. Values outside 

of the range are depicted as black dots. Dead-end hollow fiber ultrafiltration with single 

agar layer (D-HFUF-SAL), modified single agar layer (M-SAL), direct membrane filtration 

(DMF). N = 37 at each sample location for each coliphage type and method.
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Table 1

Performance metrics of D-HFUF-SAL, M-SAL and DMF in Lake Michigan and Trail Creek samples.

Coliphage type Lake Michigan Trail Creek

D-HFUF-SAL
a

M-SAL
a

DMF
a D-HFUF-SAL M-SAL DMF

Somatic 2.7% 8.1% 62.2% 0% 0% 0%

F+ 35.1% 94.6% 100% 5.4% 16.2% 100%

a
Dead-end hollow fiber ultrafiltration with single agar layer plaque assay (D-HFUF-SAL), modified single agar layer plaque assay (M-SAL), direct 

membrane filtration (DMF).
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Table 2

Cost and time requirements per sample for D-HFUF-SAL, M-SAL and DMF methods.

Logistics Method
a

D-HFUF-SAL M-SAL DMF

Cost per sample
b $30–$40 $250–$300 $30–$40

Time required
c 10–15 min 25–30 min

5–60 min
d

a
Dead-end hollow fiber ultrafiltration with single agar layer plaque assay (D-HFUF-SAL), modified single agar layer plaque assay (M-SAL), direct 

membrane filtration (DMF).

b
Based on the current manufacturer pricing for disposable items such as petri dishes and filters, as well as various chemicals and reagents (e.g. 

agar, tryptic soy broth, nalidix acid, streptomycin, ampicillin, X-gal, IPTG, MgCl2, CaCl2, MgSO4, tryptone, glucose, Tween 80, Antifoam Y-30, 

sodium hexametaphosphate).

c
Assuming single analyst familiar with the routine water quality assessment procedures and possessing basic knowledge of microbiological culture 

techniques is processing the sample.

d
Processing time was highly variable depending on number of filters required and filtering speed.
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