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Abstract: Infection with Hepatitis C Virus (HCV) causes chronic disease in approximately 

80% of cases, resulting in chronic inflammation and cirrhosis. Current treatments are not 

completely effective, and a vaccine has yet to be developed. Spontaneous resolution of 

infection is associated with effective host adaptive immunity to HCV, including production 

of both HCV-specific T cells and neutralizing antibodies. However, the supporting role of 

soluble innate factors in protection against HCV is less well understood. The innate 

immune system provides an immediate line of defense against infections, triggering 

inflammation and playing a critical role in activating adaptive immunity. Innate immunity 

comprises both cellular and humoral components, the humoral arm consisting of pattern 

recognition molecules such as complement C1q, collectins and ficolins. These molecules 

activate the complement cascade, neutralize pathogens, and recruit antigen presenting cells. 

Here we review the current understanding of anti-viral components of the humoral innate 

immune system that play a similar role to antibodies, describing their role in immunity to 

HCV and their potential contribution to HCV pathogenesis. 
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1. Virus-Host Interactions in the Acute Phase of HCV Infection 

Hepatitis C Virus (HCV) infects approximately 170 million people worldwide, resulting in chronic, 

progressive disease in 80% of infected individuals. Infection is characterized by progressive liver 

damage, resulting in fibrosis and cirrhosis. In 5% of chronic infections hepatocellular carcinoma 

develops, necessitating liver transplantation. An acute, self limiting infection occurs in 20% of 

infections [1]. It is believed that control of infection is determined by the interplay between virus and 

the host immune system [2]. Greater understanding of the virus-host interactions in resolving 

infections is required to identify correlates of clearance and is an essential for development of new 

therapeutic interventions and effective vaccines. 

Studies of the early stages of HCV infection are limited by the generally asymptomatic nature of 

infection soon after transmission. Infections are often undiagnosed until clinical presentation of 

symptoms. As a consequence much of our understanding of viral kinetics in the early stages of 

infection comes from experimental infection of primates. Both spontaneously resolving and persistent 

infections have high viral load in the first few weeks [3]. This results in production of HCV-specific T 

cells within 2–5 weeks [4,5]. Seroconversion occurs approximately 6–8 weeks after infection [6], 

following the initial T-cell response. Adaptive immunity is believed to make an important contribution 

to spontaneous resolution. Clearance has been associated with a strong, broadly-targeted T cell 

response [5,7–9], and the rapid production of broadly neutralizing antibodies [10,11]. However, there 

is no clear consensus; spontaneous resolution of HCV infection can occur in agammaglobulinemic 

individuals, [12], and T cell responses are not always correlated with resolving infection [13]. The 

protective effect of host immunity is likely to be multi-factorial, comprising both adaptive and innate 

components. Many studies have assessed host humoral adaptive immunity in chronic and 

spontaneously resolving infections [11,14–16]. However these studies have attributed anti-viral 

properties of sera only to the presence of antibodies. It is likely that this underestimates the 

contribution of innate factors to spontaneous clearance [17] and protection from re-infection [18].  

Despite advances in our understanding of the role of adaptive response to HCV infection, much less 

is known about the contribution of acute-phase immune factors to clearance and the innate humoral 

defenses that act during chronic infection. The mammalian immune system has evolved both innate 

and adaptive arms to act co-operatively, protecting against infection and limiting the damage caused by 

invading pathogens. Innate immunity acts immediately following infection, directing production of 

pro-inflammatory cytokines and orchestrating presentation of antigens to T- and B cells. There is clear 

evidence that this interplay is essential in clearing viral infections [19,20]. In HCV infections, 

spontaneous clearance is associated with IFN-γ production [8,21] and production of proteins associated 

with antigen processing [22]. However, greater understanding of the interplay between innate and 

adaptive immunity in HCV infection is required to optimize therapies and vaccine strategies. Here we 

review the importance of innate humoral immune factors in virus infections and describe the 

accumulating evidence that this arm of the immune response is important in limiting HCV infection. 

There is evidence for direct anti-viral properties of some innate immune proteins, as well as indirect 

evidence inferred by the modulation of innate immune activity by virus-encoded proteins. The 

evidence for suppression of humoral innate immunity by HCV, and the role of these proteins in HCV 

pathogenesis are also considered. 
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2. The Role of Innate Immunity in Limiting HCV Infection 

The innate immune system has a number of roles in recognition and clearance of viral infections. 

It contributes to immune surveillance in organ systems and the circulation, directly neutralizing 

infection [23–25] as well as triggering inflammation, opsonizing pathogens, and modulating adaptive 

immunity [26–30]. Complex interplay occurs between cellular components of innate immunity, 

including monocytes, dendritic cells, platelets, Natural Killer cells and NKT cells. These cells detect 

pathogens and contribute to clearance by activating T cells and B cells and by directly degrading 

pathogens [31–34].  

The function of innate immune cells is intimately linked with recognition by humoral innate 

immune proteins, a diverse group of proteins that act as Pattern Recognition Receptors (PRRs). These 

proteins recognize Pathogen-Associated Molecular Patterns (PAMPs) on the infecting virus particles, 

or presented on the surface of infected cells. These PRRs include pentraxins, and defense collagens 

such as C-type lectins and ficolins. In addition, elements of the complement cascade are responsible 

for recognition of pathogens, both directly and as part of immune complexes consisting of 

immunoglobulins cross-linked by viral antigens on the surface of virions or infected cells. The 

complement system and associated pathways also have functional effector properties, activating 

cascades of proteins responsible for opsonisation and lysis of enveloped virions and infected cells. 

Humoral innate proteins circulate in the bloodstream, and function both in the serum and in tissues. 

The innate immune system is highly integrated with adaptive immunity. Soluble innate molecules 

can modulate antigen presentation [35–37], directing the specificity of T cells and antibodies. In turn, 

antibodies can trigger and modulate innate antiviral effector mechanisms, contributing to enhanced 

antigen presentation [38]. Humoral innate immune factors are produced by a number of cell types, 

including monocytes, lymphocytes, and hepatocytes. Importantly, hepatocytes are the primary source 

of the complement components, mannose binding lectin, and the ficolins L-ficolin and H-ficolin. 

Localized high concentrations of these proteins may accumulate in the liver and as such may have 

important anti-HCV activity at the site of replication. Infection of these cells with HCV might also 

result in increased production of soluble PRRs [39]. Greater understanding of the interplay between 

components of the innate immune system acting in the liver may reveal novel therapeutic targets. 

3. Induction of Acute Phase Proteins in Virus Infections 

Initiation of a protective adaptive immune response to HCV infection follows inflammation and as 

such is dependent on an effective acute phase innate immune response. The inflammatory response is 

initiated by the presence of virus particles and subsequent infection of hepatocytes. Binding of 

microbial PAMPs, such as HCV glycoproteins, to antigen presenting cells results in activation and 

initiation of the inflammatory response and presentation of viral antigens to T cells [40–45]. Activation 

of these cells by viral proteins results in production of the soluble cytokines IL-1, IL-1 and TNF-, 

and the IL-6 family of cytokines, which in turn stimulate hepatocytes to produce acute-phase proteins. 

These proteins are classified as Class I or Class II. Class I proteins include complement components,  

C-reactive protein (CRP), Serum Amyloid A, and 1-acid glycoprotein. These are induced by the 

action of IL-1, IL-1 and TNF-. Class II proteins are induced by IL-6 produced from macrophages, 
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and include fibrinogen, haptoglobin, 1-antichmotrypsin and 1-antitrypsin (reviewed in [46]). These 

acute phase proteins have roles in hemostasis, increased phagocytosis, and antithrombotic pathways, 

helping regulate inflammation while mediating clearance of the pathogen. Some of these proteins have 

a role in pathogen detection, and combine with the constitutively circulating PRRs to recognize 

pathogens and recruit cells for priming of adaptive immunity (Figure 1). 

Figure 1. Overview of the production of soluble innate proteins involved in innate 

recognition of Hepatitis C Virus (HCV) antigens. Infected cells produce type I interferons, 

supporting activation of the inflammatory response. Antigen presenting cells such as 

monocytes and dendritic cells also recognize viral antigens, resulting in activation and 

production of defensins and pentraxins, as well as pro-inflammatory cytokines IL-6,  

TNF-, IL-1 and IL-1. These cytokines induce production of acute phase proteins in 

hepatocytes such as complement components, pentraxins, and defensins, which contribute 

to clearance of viruses and infected cells. The hepatocytes are also a source of the defense 

collagens mannose binding lectin (MBL), and L & H ficolins. These proteins recruit 

MBL-associated serine proteases (MASP-1 & MASP-2), triggering the complement 

cascade and also activating liver-resident stellate cells that produce collagen, resulting in 

progressive fibrosis. 

 

4. Complement Cascade 

Complement is central to innate humoral immunity, interacting with a host of soluble and 

membrane proteins. In addition to the anti-bacterial activity of the complement cascade, this collection 

of acute phase proteins (C1q, C1r, C1s, and C2-C9) has a spectrum of antiviral activity. Complement 

components contribute to clearance of virus infections both directly and indirectly, contributing to lysis 

of enveloped virions [47,48] and virus infected cells [49,50], through the action of the C5-C9 
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membrane attack complex. Many of the intermediate products of the complement cascade also act as 

potent opsonins, recruiting cellular immunity to phagocytose antigens and present viral peptides to 

CD4+ T cells. Innate immune cells including monocytes, macrophages and dendritic cells possess 

receptors CR1, CR2, gC1q-R, and cC1q-R, which bind to the complement/pathogen complexes and 

process them for activation of adaptive immunity. 

Complement activation by virus infection occurs by five discrete mechanisms (Figure 2). 

Firstly, the C1qrs complex binds to antibodies captured by either virus-infected cells or virions. 

Co-localization of antibody molecules on an antigen results in binding of a bridging complex 

containing the multimeric recognition protein C1q, This recruits the serine proteases C1r and C1s, 

which catalyze cleavage of the C4 protein into C4a and C4b subunits [51]. The second mechanism of 

action is direct binding of C1q viral surfaces, in the absence of immunoglobulin [52,53]. Thirdly, 

complement is activated by the lectin pathway. The family of ficolins and MBL both bind to 

glycosylated proteins, recruiting MBL-associated serine proteases (MASPs) to the surface of 

pathogens, which subsequently cleave the C4 protein [54]. Cleavage of C4 is a central event in the 

complement cascade, leading to sequential cleavage of C2, The complex of the cleavage products C4b 

and C2a form a C3 convertase. C3 is cleaved into C3a and C3b (Figure 3) [55]. The C3 cleavage 

product C3b is deposited on the surface of the pathogen. The fourth mechanism of activation is the 

spontaneous deposition of C3b onto virus particles. This is independent of recognition of pathogens by 

PRRs, as C3 is cleaved at a steady rate in the circulatory system by the combination of the activated 

form of Factor B (Bb), and Factor I. Deposition of the C3b component, either by C2 cleavage or 

spontaneous deposition, happens on the surface of virions and virus infected cells. C3b has multiple 

antiviral activities. It acts as a potent opsonin, recruiting antigen presenting cells to the viral antigen. It 

can also neutralize virus infectivity by aggregating virions. In addition, C3b in complex with either 

C4b2a, or Factor Bb forms the C5 convertase complex. This leads to deposition of C5b, C6, C7, C8, 

and C9 proteins on a membrane, generating a membrane-puncturing pore. Other complement 

components have pro-inflammatory properties. The soluble cleavage products C3a and C5a also 

initiate inflammation [56], resulting in recruitment of monocytes and neutrophils. 

The complement cascade is tightly regulated at every stage of activation, to prevent non-specific 

action of complement components, protecting host cells from lysis and autoimmune attack. A principal 

regulator of complement is Factor H, which acts as a co-factor for the C3bBb. This protein binds to 

host glycosaminoglycans, inhibiting the action of the C3 convertase. The activity of C3b is also 

regulated following degradation into iC3b and C3d by Factor I. Complement deposition on host cells is 

inhibited by expression of the membrane proteins CD55 (Decay Accelerating Factor) and CD59 

(Protectin), which inhibit the deposition of the C3bBb complex, and the C9 membrane attack complex, 

respectively. In addition, the host membrane protein CD46 possesses cofactor activity for Factor I, 

which inactivates both C4b and C3b. 

The importance of complement to Flavivirus infections has been revealed by in vivo studies of West 

Nile Virus (WNV) infection. Deficiencies in C3, or complement receptors CR1 and CR2, result in 

increased WNV pathogenesis [57]. This protective effect is independent of C5a [58], suggesting a role 

for opsonisation in limiting pathogenesis. Both classical and lectin-mediated complement activation 

pathways contribute to protection [58,59]. Recruitment of complement component C1q can also 

modulate the stoichiometry of antibody neutralization, increasing the potency of specific monoclonal 
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antibodies [60]. Despite these advances in understanding the pathology of WNV, there are still only 

limited investigations of the role of complement components in HCV infection. Complement enhances 

the neutralization of HCV pseudotypes by antibodies [61]. Although this finding has yet to be 

confirmed using natural HCV virions, it is plausible that results similar to those for WNV particles will 

be observed. Complement activation is observed in chronic HCV infection, but with reduced C4 

activity [62] and concentration [63]. C4 may play a key role in HCV infection, as both HCV core and 

NS5A proteins cause reduction in C4 production by inhibiting transcription of C4 mRNA [63]. 

Greater C4 activity in HCV infections was also associated with better response to standard HCV 

treatment [62]. This implicates the complement pathway in resolving infection.  

Figure 2. Mechanisms of recognition of viral pathogens by humoral innate proteins that 

result in complement activation. The widely recognised paths of complement activation 

include recognition of viral glycoproteins (in the case of HCV, glycoproteins E1 and E2) 

by: (a) antibody (Ab)-mediated C1q binding; (b) direct C1q binding; (c) mannose binding 

lectin (MBL); (d) ficolins; as well as (e) direct deposition of C3b on the surface of viruses 

or virus-infected cells following activation by Factor B. Additional mechanisms for 

complement activation by viruses are (f) pentraxin (PTX3) binding; and (g) binding of C1q 

to the human -defensin HBD-2 inserted into a membrane. Complement activation by 

these recognition molecules is mediated by proteases that cleave the C4 protein. For C1q, 

these proteases are C1s and C1r. For MBL and ficolins these enzymes are MASP-1 and 

MASP-2. These ultimately result in C3 cleavage and generation of a C5 convertase 

complex. C3 cleavage can also occur spontaneously (e), resulting in C4-independent 

activation of C5. These diverse complement activation mechanisms highlight the broad 

range of pathogens that can be recognized and eliminated by the complement cascade.  

 

Indirect data also supports the hypothesis that complement has a role in protecting against HCV 

infection. A recent report suggests that HCV might incorporate CD59 into virus particles [64]. CD59 

plays an essential role in preventing complement-mediated lysis of host cells. Present on most cell 

surfaces, CD59 binds to the C5b678 complex, preventing accumulation of the C9 proteins that form 

the membrane attack complex. Other viruses incorporate CD59 into their virions, including HIV-1, 

HTLV-1 and Vaccinia Virus [65–67]. It is plausible that HCV lipo-viral particles incorporate CD59 as 
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a mechanism to prevent complement-mediated lysis of HCV virions. The contribution of complement 

to direct lysis of HCV virions, however, remains to be demonstrated. 

The action of complement is modulated by complement receptors that bind C1q. The receptor 

gC1q-R is a multi-ligand binding protein expressed on the surface of monocytes and macrophages, as 

well as released from the surface of cells in soluble form. Protein gC1q-R has specificity for the 

globular head of the C1q molecule [68], as well as vitronectin and thrombin [69]. HCV core interacts 

directly with gC1q-R protein, resulting in reduced activation of T cells. Soluble gC1q-R is also found 

in serum in complex with core. Core protein mimics the structure of C1q sufficiently so that 

cross-reactive antibodies are produced during infection [70]. This implicates core in sequestering 

complement components and in preventing activation. 

Figure 3. Components of the complement cascade. Initial recognition of pathogens occurs 

via pattern recognition molecules such as C1q (pictured), mannose binding lectin (MBL), 

antibodies, and ficolins. Association with serine proteases, such as C1r and C1s result in 

cleavage of C4 and C2, with the resultant C4b2a membrane-bound complex cleaving C3. 

Addition of C3b to the C4b2a complex results in the C5 convertase complex C4b2a3b. The 

Alternative pathway of complement pathway is activated by cleavage of C3 by Factor B. 

This results in deposition of the C3bBbC3b complex on pathogen membranes, an 

alternative C5 convertase. Cleavage of C5 results in deposition of C5b, recruitment of C6, 

C7, C8, which modulate the formation of the membrane attack complex made of 

oligomeric C9 protein. This causes lysis of enveloped virions, or virus-infected cells. The 

soluble cleavage products C4a, C2b, C3a and C5a are potent opsonins, recruiting 

monocytes, neutrophils, and triggering inflammation. Hepatitis C Virus (HCV) interferes 

with the complement cascade at discrete steps. Both NS5a and Core proteins reduce the 

activity of C4. In addition, virus particles incorporate CD59 to prevent oligomerization of 

C9 on the surface of virus particles. 

 

5. Defense Collagens 

Complement component C1q belongs to the family of defense collagen proteins. The complement 

cascade can also be activated by other members of this family, specifically the mannose-binding lectin 
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(MBL) and the human ficolins, M-ficolin, L-ficolin and H-ficolin. In contrast to antibodies, these 

defense collagens have binding specificity for PAMPs rather than epitopes. Other defense collagens 

are expressed in humans, notably surfactant protein A and surfactant protein D. However, these will 

not be discussed as they are solely expressed in the lungs, do not activate complement, and function in 

opsonizing respiratory pathogens. 

Mannose Binding Lectin. Mannose (or mannan) Binding Lectin belongs to the collectin family of 

proteins, defined by the presence of a lectin binding domain at the C terminal end of the protein. It is 

an acute phase soluble protein produced by hepatocytes, with a structure similar to that of C1q. The 

structure has an N-terminal Cysteine-rich domain, followed by a collagen domain possessing the 

common Gly-Xaa-Yaa amino acid repeat. At the C-terminus is the lectin binding domain, a structure 

shared with defense molecules isolated from mammals, amphibians, and plants [71]. The widespread 

distribution of these proteins in diverse species highlights a conserved evolutionary requirement for 

this protein. Indeed, absence of MBL in humans is associated with increased susceptibility to 

opportunistic infections [72,73]. MBL has binding specificity for patterns of mannose and 

N-aceytlglucosamine [74] associated with pathogen surfaces and apoptotic cells [24,75,76]. MBL 

possesses similar activity to the C1q protein, resulting in cleavage of C4 and C2 following interactions 

with the MBL-associated serine proteases (MASPs) [77,78]. Cleavage is inhibited by C1q 

inhibitor [79]. Humans possess three MASPs, and another similar molecule, MAp19, which does not 

possess serine protease activity. They have structural similarity to C1s, and cognate roles in activating 

the complement cascade. MASP-2 has substrate specificity for C4 and C2, resulting in generation of 

the C3 convertase C4b2a. It also has Factor Xa-like activity, cleaving pro-thrombin to thrombin and 

initiating the clotting pathway [79,80] MASP-1 cleaves C2, also contributing to complement 

activation [81]. In addition MASP-1 has been shown to have thrombin-like activity that results in 

cleavage of fibrinogen and Factor XIII [82,83]. MASP-1 also enhances inflammation by activation of 

the Protease Activated Receptor 4 (PAR4)-mediated NF-κB pathway and the p38 MAPK activation 

pathway in endothelial cells [84]. This results in production of pro-inflammatory cytokines, 

recruitment of leukocyte migration and adhesion. MASP-3 is an alternative splice transcript of 

MASP-1, possessing alternative specificity for the insulin-like growth factor binding protein 5 

(IGFBP5) [85]. Its role in inflammation and clotting is still not clear. However, the activation of the 

clotting pathway has implications for deposition of fibrinogen in the site of infection, and may 

contribute to fibrosis, which is a hallmark of chronic HCV infection [86]. 

The gene encoding the MBL protein (MBL2) is known to possess polymorphisms that have a 

significant impact on oligomer formation and serum concentrations of the protein [87–91]. Early 

investigations of polymorphisms in the MBL2 gene in HCV infections associated underlying genetic 

differences with treatment outcome [92,93] and disease progression [94]. However, the role of MBL in 

HCV disease progression is not clear. Some studies have associated low serum levels of MBL to 

increased chance of liver fibrosis [95], while others demonstrated no effect of serum MBL 

concentration on HCV disease [96]. In contrast, others associated increased MBL and MASP-1 levels 

with pathogenesis [86]. Comparison between these studies is complicated by differences in population 

ethnicity, treatment status, and HCV genotype. Further studies of the activation of inflammation by 

MBL are required to demonstrate an association with HCV pathogenesis.  
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A recent study demonstrated that MBL binds to the HCV surface glycoproteins E1 and E2, 

activating the complement pathway and also neutralizing entry of HCV into hepatoma cells in a similar 

way to antibodies [24]. This is consistent with the neutralizing activity of MBL observed against  

HIV-1 [23]. Dependent on the viral genotype, HCV E1 and E2 glycoproteins possess between 13 

and 15 glycosylation sites that present mannose targets to MBL [97]. These glycosylation sites are 

proximal to receptor binding sites that are essential for HCV entry. As such, the neutralization of entry 

mediated by this lectin is consistent with the location of these mannose moieties. This suggests that 

clinical administration of MBL may be therapeutically useful against HCV infections. However, the 

pro-inflammatory nature of MBL-associated serine proteases would have to be taken into account 

when considering passive immunotherapy. Another clinical application for administration of MBL 

could be intervention during liver transplantation. Serum MBL levels are predictive of susceptibility to 

nosocomial infection during transplantation [98]. Passive administration could have the effect of 

reducing infection of a transplanted liver, while at the same time protecting against re-infection of the 

graft with HCV. 

Ficolins. The family of ficolins share great structural similarity to the collectins, and play a similar role 

in innate immunity. Three human ficolins have been identified. M-ficolin (ficolin-1) is produced by 

macrophages in response to pro-inflammatory cytokines. L-ficolin (ficolin-2) and H-ficolin (ficolin-3, 

or Hakata antigen) are both expressed by hepatocytes [99]. They share a common overall structure, 

possessing a Cysteine-rich N-terminal domain, followed by a collagen repeat region. However, in 

contrast to MBL and C1q they possess a fibrinogen-like head region. The ficolin monomers associate 

to form higher-order oligomers with high avidity binding properties. All three molecules share binding 

specificity for acetylated compounds through interactions with the fibrinogen-like domain. Virus 

glycans often incorporate N-acetyl glucosamine (GlcNAc) moieties, which are recognized by 

ficolins [100]. Each of the glycans associated with the HCV glycoproteins contain a core GlcNAc2 

moiety, and in vitro expression of these proteins has revealed that two of these glycans (N423 and 

N430) possess terminal GlcNAc residues [97]. It is still unclear if the glycoproteins incorporated into 

the virus particles possess these specific modifications. However, this hypothesis is supported by the 

finding that L-ficolin has specificity for the HCV E1 and E2 glycoproteins [39,101], resulting in 

neutralization of HCVpp and HCVcc [101], and contributing to activation of the complement 

cascade [39]. Expression of L-ficolin is also up-regulated in HCV-infected cells [39], suggesting that 

they might constitute a component of the acute phase response following infection. Polymorphisms in 

the promoter and coding regions of the ficolin proteins are associated with differential expression of 

L-ficolin [102], but less variability is observed in serum concentrations when compared to MBL. The 

indirect functions of ficolins are very similar to MBL. They bind to MASP-1 and MASP-2, triggering 

complement activation and cleavage of clotting factors in an identical way to MBL [103]. As such, 

they represent an additional innate PRR with a unique pattern of specificity, broadening the activation 

profile of the complement cascade. Further investigations are required to establish the role of ficolins 

in HCV infection. Interestingly, ficolins might be a component of the response that results in treatment 

induced clearance of infection. M-ficolin is one of only three genes that display up-regulated 

expression in individuals with the protective CC allele of the rs12979860 polymorphism in the IL28B 

promoter region [104]. This allele is associated with favorable treatment response and disease 
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outcome [105]. This contrasted with lower expression of the pathway of interferon-stimulated genes in 

patients with this IL28B variant allele. It is plausible that increased M-ficolin expression represents a 

functional consequence of this polymorphism, resulting in enhanced neutralization, opsonization, or 

complement deposition required to suppress virus infection. However, further studies are required to 

extend these preliminary findings.  

6. Pentraxins 

Pentraxins are a conserved family of pattern recognition molecules produced in genetically diverse 

species, suggesting a strong selective advantage for these proteins. Members of this family share 

structural homology, with a conserved 200aa C-terminal pentraxin domain [106]. This diverse group 

includes the short pentraxins Serum Amyloid P (SAP) and C-reactive protein (CRP), and the long 

pentraxins exemplified by PTX3. Short pentraxins are acute phase proteins produced in the liver [107], 

while long pentraxins are expressed by dendritic cells in response to activation of TLR signaling 

pathways [108]. Despite structural differences, all pentraxins are pentameric protein structures with 

calcium-dependent binding to lipoproteins, as well as calcium-independent binding to other ligands. 

CRP is an acute phase protein that is produced by hepatocytes in response to IL-6. It activates 

complement C1q in the presence of phosphocholine, produced by apoptotic cells and present in the 

capsule of some bacterial species. Although it is believed not to be involved in direct recognition of 

viruses, CRP has been implicated in mixed cryoglobulinemia associated with HCV infection [109]. 

More relevant to protection against virus infections is the prototype long pentraxin PTX3 [110]. It has 

diverse binding interactions, including host proteins, bacteria, and virus glycoproteins [111,112]. Like 

CRP, PTX3 also binds to the globular head domain of complement C1q. This interaction augments 

complement activation when PTX3 is immobilized [113], but inhibits antibody interactions with C1q 

when in solution. This suggests that PTX3 binding to virus glycoproteins might provide an additional 

mechanism by which complement can be deposited on viruses and infected cells, enhancing deposition 

of C1q and C3b on apoptotic cell surfaces. PTX3 is a rapid acute phase protein. Expression is 

immediately up-regulated following infection or inflammation [114]. PTX3 is recruited to the synapse 

between dendritic cells and apoptotic cells. This results in modulation of antigen presentation 

pathways in the DC, reducing the cell’s cross-presentation of HCV antigens to CD8+ T cells [115]. It 

remains to be determined if this pattern recognition molecule has a role in the immune response to 

HCV infection. 

7. Lipoproteins 

There is an emerging role for lipoproteins in innate immunity. Serum Amyloid A1 (SAA-1) and 

Serum Amyloid A2 (SAA-2) are acute phase lipoproteins rapidly produced in the liver following 

trauma or infection, or following stimulation by the inflammatory cytokines IL-6 and TNF [116,117]. 

The SAA proteins potently enhance cytokine production from peripheral blood mononuclear 

cells [118], promoting inflammation. In HIV-1 infection, SAA production occurs significantly before 

detection of viral RNA [17], suggesting that this may have a significant role in limiting the initial viral 

burst of replication. As well as its role in acute phase inflammation, SAA plays a physiological role in 

transport of cholesterol mediated by Scavenger Receptor B1 (SR-B1) [119–121]. SAA circulates as 
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complexes with high-density lipoprotein (HDL) and causes remodeling of HDL in acute phase 

inflammation. As such, SAA may play a unique and intriguing role in preventing HCV infection.  

SR-B1 and HDL are implicated in the entry pathway of HCV. SR-B1 binding of virions is essential in 

the early steps of HCV entry [122–125], and this entry is augmented by binding of HDL [126–128]. 

SAA inhibits HCV entry by binding to virus particles [129,130], and this interaction is inhibited by the 

presence of HDL [129]. Together these findings suggest that SAA binds to HCV lipo-viral particles 

(LVP) consisting of lipoproteins and the HCV virion, blocking the interaction between LVPs and 

SRB1. In this model, HDL is able to strip away SAA from particles and enhance entry of the virus into 

hepatocytes. It is unclear if this anti-viral pathway has in vivo efficacy. Studies of the circulating SAA 

concentrations in chronic HCV infection have shown slightly increased levels [129], or no difference 

to normal controls [131]. This contrasts with acute viral infections, and is consistent with the 

observation that SAA is produced only in the early stages of acute infection [131].  

In addition to SAA, high-density lipoproteins may also have a role in innate immunity. Along with 

the major role of HDL in promoting cholesterol efflux from peripheral tissues and recovery in 

hepatocytes, HDL modulates activation of the complement cascade, as well as influencing expression 

of PTX3 [132]. This implicates HDL in orchestrating innate immunity in the liver, modulating the 

action of soluble innate factors. 

8. Defensins 

Humans express two types of defensins, -defensins (human neutrophil peptides HNP1-4, HD5 and 

HD6), and -defensins (hBD1-4). Both types of defensin are short (20–40 amino acids) soluble, 

charged peptides with anti-microbial properties [133,134]. The -defensins possess anti-viral activity, 

blocking virus entry and replication [25,135], as well as modulating complement activation by 

C1q [136]. They act by inserting into membranes, destabilizing virus particles and recruiting 

macrophages and enhancing phagocytosis. The -defensins play a similar role in antiviral defense, 

binding to virions and preventing entry [23]. hBD-1 is constitutively expressed by most cell types, but 

expression can be up-regulated in plasmacytoid dendritic cells (pDCs) and monocytes in reaction to 

virus infections [137]. In contrast, hBD2 is an acute phase protein produced by pDCs, monocytes, and 

epithelial cells in response to inflammatory cytokines and the presence of virus infection [138]. hBD2 

can bind C1q resulting in complement deposition [139]. hBD have been implicated in protection 

against HIV-1 infection in serially exposed uninfected individuals [140]. Despite the broad range of 

anti-viral activity observed for defensins [141] there is a paucity of research investigating the role of 

defensins in HCV infection. The -defensins are produced in chronic HCV infection, and correlate 

with liver fibrosis [142]. However, it is unclear if binding of these peptides to virus particles inhibits 

infection in vitro or in vivo. 

9. Evasion of Immune Responses 

HCV utilizes a number of mechanisms to evade host defenses, including elements of the humoral 

innate immune system (Table 1). The majority of virions circulate in the blood associated with 

lipoproteins [143,144], forming a lipo-viral particle [145]. This complex includes the HCV virion, and 

low density lipoproteins containing apolipoproteins E, C1 and B [146,147]. These associations are 
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mediated by the HCV-encoded glycoproteins and are intimately related to resistance to antibody 

neutralization [148,149]. HCV virions are also extensively glycosylated, which is believed to reduce 

the immunogenicity of the envelope glycoproteins and contribute to evasion of recognition by 

neutralizing antibodies [150,151]. Additionally, three hypervariable regions in the E2 protein [152] 

tolerate extensive genetic heterogeneity and act as immune ‘decoys’, possessing immunodominant 

epitopes to which antibodies are rapidly produced [153]. Despite these evasion mechanisms, targets for 

innate immunity remain conserved; the glycosylation motifs that are essential for HCV biogenesis 

represent a target for defense collagens. Many of these glycans are conserved between functional 

isolates representing all HCV genotypes [152]. If these innate binding proteins have a neutralizing 

effect on virus replication, mutants escaping recognition would be expected to be preferentially 

selected. To date, defense collagen-resistant HCV strains have not been described. Some glycosylation 

sites in the envelope glycoproteins do vary between isolates, suggesting at least some plasticity in the 

glycosylation surrounding virus particles. There is evidence from pandemic H1N1 influenza 

viruses that supports the proposition that defense collagens apply selection pressure on virus 

populations [154]. It is plausible that other innate immune proteins apply selective pressure on the viral 

population in the early stages of infection following transmission. Longitudinal analysis of the 

susceptibility of HCV isolates to recognition by innate proteins will reveal if this is a biologically 

relevant effect. There is evidence of evasion of other innate humoral proteins, especially the 

complement cascade. The incorporation of CD59 into HCV virions suggests that HCV has evolved to 

resist deposition of the membrane attack complex onto virions [64]. The inhibition of C4 production 

by HCV core and NS5A proteins also provides evidence that there is a selective advantage to disabling 

the complement cascade [63]. A novel, yet undescribed result of the association of virions with 

lipoproteins may be the prevention of Serum Amyloid A binding to the virus, preventing the inhibitory 

effects of this innate protein.  

Table 1. Hepatitis C Virus (HCV) interactions with components of the humoral innate 

immune system and possible escape from innate immune recognition. 

Component Function HCV Escape Mechanism Reference(s) 

Complement C4 
Key mediator of 
opsonisation, direct lysis, 
and inflammation 

Core and NS5a proteins inhibit 
transcription of C4 

[63] 

Complement C5-9 
Generation of the 
membrane attack 
complex 

Incorporation of CD59 into HCV 
virions 

[62] 

gC1q-R 

Enhanced chemotaxis 
and phagocytosis; 
decreased activation of 
B- and T cells 

Core interacts with gC1q-R, 
suppressing T cell activation 

[70] 

Defense collagens (MBL; 
Ficolins) 

Recognition of 
glycoproteins 

HCV glycoproteins have differential 
glycosylation patterns; association 
with lipoproteins may block access of 
defense collagens 

[152]; [145] 

Serum Amyloid A (SAA) 
Binding to glycoproteins, 
inhibiting entry 

Interaction with High-density 
lipoprotein (HDL)/SR-B1 prevents 
SAA binding? 
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10. Role of Innate Immunity in Pathogenesis of HCV Infection 

So far we have established that the humoral innate immune system contributes to immunity against 

viral pathogens, including HCV. However, these same proteins can contribute to the pathology of 

HCV disease [155]. Innate immunity is broadly implicated in liver fibrosis in chronic HCV infection, 

and initiation of cryoglobulinemia that is associated with 40% of HCV infections. Liver fibrosis is 

caused by the accumulation of extracellular matrix in the liver, particularly collagen. This deposition 

of fibrotic material is mediated by stellate cells, portal fibroblasts and myofibroblasts (reviewed 

in [156]). In HCV infection, fibrosis severity correlates with activation of stellate cells [157], which 

can be activated by cleavage of Protease Activated Receptors by thrombin [158,159]. This implicates 

MBL-associated serine proteases in stellate cell activation. Indeed, activity of MBL/MASP-1 

complexes is positively associated with developing fibrosis [86,95,160,161]. 

Another pathology specifically associated with innate immunity in HCV infection is the 

accumulation of autoantibodies, resulting in cryoglobulinemia [162]. These antibodies are directed to a 

range of host proteins, including immunoglobulins [163], cardiolipin [164], and members of the 

soluble innate immune proteins. Despite there being no evidence for CRP interactions with HCV, 

autoantibodies to CRP are produced in HCV infection, related to cryoglobulinemia [109]. Antibodies 

to C1q are observed in up to 38% of HCV infections [165]. The production of autoantibodies that react 

with C1q results in vascular damage [166], a pathology associated with mixed cryoglobulinemia. 

HCV-associated cryoglobulinemic glomerulonephritis is also associated with autoantibodies to the 

C1q and C4d molecules [167], as well as MBL and MASP [168]. Autoantibody production might be a 

consequence of the interaction between HCV E2 protein and CD81 on the surface of B lymphocytes. 

This interaction is known to reduce the activation threshold and promote hypermutation of the 

immunoglobulin gene [169,170], indicating a mechanism for autoantibody production. 

The complement receptor gC1q-R may have an extremely important role in resolution of infection. 

HCV core protein interactions with gC1q-R can cause pathogenic effects in vivo. In chimpanzees, 

expression of this receptor on the surface of T-cells correlated with reduced capacity for activation and 

proliferation, suggesting that the core interaction inhibits T cell activation [171,172]. Circulating 

gC1q-R has also been implicated in mixed cryoglobulinemia. This soluble form of the receptor is 

caused by dysregulation of gC1q-R shedding following interaction with core protein. The receptor 

circulates as a complex with core, sequestering the C4d cleavage product to vascular tissue and 

causing complement mediated lysis [166]. 

11. Contribution of Innate Immunity to HCV Vaccination and Therapy 

Designing vaccines to highly mutable RNA viruses poses a significant challenge. It is likely that 

activation of broad T cell responses, and potently neutralizing antibodies will be required for 

suppression of viral replication and clearance. However, optimizing antigen recognition by innate 

immunity is essential to induce the optimal adaptive immune response. Vaccine induced immunity is 

regulated by stimulation of innate immune factors such as complement and the defense collagens. 

These innate molecules provide co-stimulatory signals that are required for the generation of protective 

immune memory. Greater understanding of innate immune modulation will yield directed vaccines 
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synthesised to optimize production of adaptive immunity. The evidence supporting the role of HCV 

proteins in inhibiting many aspects of innate immunity informs the search for important innate factors. 

Controlling gene transcription to alter the serum concentration of these humoral proteins might 

improve vaccine efficacy. There is evidence that complement components have a role in regulating 

activation of B cells and T cells [173–175]. They also augment antibody neutralization [60], and can 

directly neutralize virus infectivity [176]. This is likely to be the case for additional PRRs that 

modulate complement activation. These properties might also prove useful in augmentation of 

therapies by passive administration of soluble PRRs. Direct neutralization of virus particles and 

indirect immune activation are both desirable qualities. However, given the role of these molecules in 

activating stellate cells, therapeutic forms of these proteins might need modification to retain anti-viral 

properties, while preventing collagen deposition. Synthetic, recombinant forms of these lectins have 

recently been used to improve ligand affinity and activity [177]. Similar modifications might develop 

therapeutically useful molecules. 

12. Concluding Remarks and Future Perspectives 

There is an emerging role for soluble innate immune proteins in contributing to neutralization of 

HCV infection and clearance of HCV infected cells. There is evidence that pattern recognition 

molecules such as MBL, serum ficolins and lipoproteins all contribute to recognition of virus 

infections. This leads to activation of complement pathways, resulting in specific lysis of virions, 

opsonization of viruses and increased phagocytosis, and direct neutralization of virus particles. The 

importance of this anti-viral response is highlighted by modulation of key complement components by 

HCV-encoded proteins. However, there is still little known about the interplay between HCV and the 

complement cascade. 

The neutralizing effect of these innate molecules is an under-appreciated phenomenon. Many 

studies of serum neutralization do not account for the presence of these proteins. There are no studies 

of the dynamics of acute-phase proteins in early HCV infection, and many reports of serum 

neutralization of HCV entry consider antibodies as sole mediators of neutralization [11,14–16]. 

Studies using fractionated serum resolve the potential for multi-factorial neutralization in HCV 

infections [178,179]. Greater understanding of the dynamics of pattern recognition receptors and 

neutralizing antibodies will define the relative contributions of these two interrelated immune effectors. 

Little is known about the evolution of HCV in response to PRRs. Although there is evidence that 

other RNA viruses escape recognition by collectins, there is little evidence of selection of 

PRR-refractive HCV isolates, either in vitro or in vivo. It is possible that the emerging quasi-species 

following transmission of HCV is shaped by the surveillance PRRs and the acute-phase proteins that 

are produced immediately following infection. This would make PRRs important therapeutic 

interventions that might prevent establishment of acute phase viraemia and development of chronic 

infections. Although under-studied, innate immunity has great potential as a target for the development 

of novel anti-HCV therapies. 
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