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Abstract

The majority of excitatory synapses in the mammalian CNS are formed on dendritic spines1, and 

spine morphology and distribution are critical for synaptic transmission2–6, synaptic integration 

and plasticity7. Here, we show that a secreted semaphorin, Sema3F, is a negative regulator of 

spine development and synaptic structure. Mice with null mutations in genes encoding Sema3F, 

and its holoreceptor components neuropilin-2 (Npn-2) and plexinA3 (PlexA3), exhibit increased 

dentate gyrus (DG) granule cell (GC) and cortical layer V pyramidal neuron spine number and 

size, and also aberrant spine distribution. Moreover, Sema3F promotes loss of spines and 

excitatory synapses in dissociated neurons in vitro, and in Npn-2−/− brain slices cortical layer V 

and DG GCs exhibit increased mEPSC frequency. In contrast, a distinct Sema3A–Npn-1/PlexA4 

signaling cascade controls basal dendritic arborization in layer V cortical neurons but does not 

influence spine morphogenesis or distribution. These disparate effects of secreted semaphorins are 

reflected in the restricted dendritic localization of Npn-2 to apical dendrites and of Npn-1 to all 

dendrites of cortical pyramidal neurons. Therefore, Sema3F signaling controls spine distribution 

along select dendritic processes, and distinct secreted semaphorin signaling events orchestrate 

CNS connectivity through the differential control of spine morphogenesis, synapse formation, and 

the elaboration of dendritic morphology.
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Several axon guidance cues, including class 3 semaphorins (Sema3s), play key roles in 

synapse formation and function8–11. For example, Sema3A promotes the elaboration of 

dendrite complexity in vitro12, 13, may similarly affect dendritic spines14, and both 

Sema3A and Sema3F can regulate synaptic transmission in acute brain slices15, 16. 

Moreover, Sema3F−/− mutant mice exhibit seizures, and the Sema3F receptor Npn-2 is 

enriched in the postsynaptic density (PSD)15. We address here the in vivo roles for these 

guidance cues and their receptors in synaptogenesis.

Sema3F and its receptor Npn-2 are expressed during synaptogenesis in the hippocampus at 

postnatal day (P)21 (Supplementary Fig. 1). Npn-2 is enriched in the DG molecular layer, 

where dendrites of granule cells reside (Supplementary Fig. 1a). Sema3F is strongly 

expressed in the hilus, along the projection pathways of both supra- and infrapyramidal 

axons, and also along entorhinal cortex axons that innervate the DG molecular layers 

(Supplementary Fig. 1d). Therefore, Sema3F and Npn-2 are expressed in patterns consistent 

with these proteins directing postnatal hippocampal neural circuit formation.

To assess the involvement of Sema3A and Sema3F in the regulation of dendritic 

morphology and synaptogenesis we performed Golgi analysis on P14, P21 and adult brains 

of wild-type (WT) mice and mice harboring targeted mutations in genes encoding class 3 

semaphorins and their receptors. We observed abnormal spine morphology and increased 

spine number in P21 and adult DG GCs in both Sema3F−/− and Npn-2−/− mutants (Fig. 1a–c, 

k; Supplementary Fig. 2h–j, n). Similar fully penetrant and expressive spine morphology 

defects were observed on apical dendrites of P21 (Supplementary Fig. 2k–m, n) and adult 

(Fig. 1d–f, j) cortical layer V pyramidal neurons in both Sema3F−/− and Npn-2−/− mutants. 

No abnormalities in spine density were observed in Npn-2−/− mutants at P14 in either DG 

GCs or layer V neurons (Supplementary Fig. 2d–g, n). Consistent with cortical neuron 

dendritic spine abnormalities in Sema3F−/− and Npn-2−/− mutants, we detected endogenous 

Npn-2 receptors in deep cortical layers and endogenous Sema3F ligand in both the P21 and 

adult neocortex (Supplementary Fig. 1g, h, j, k), suggesting Sema3F signals through its 

Npn-2 receptor to regulate spine morphogenesis.

We also observed aberrant spine distribution along apical dendrites of cortical layer V 

pyramidal neurons in adult Sema3F−/− and Npn-2−/ mutant mice; 3.5-fold more spines were 

present on primary apical dendrites immediately proximal (0–50µm) to the cell soma, a 

location where few to no spines were found in WT animals (Fig. 1g–j). Analogous spine 

distribution abnormalities were observed in hippocampal DG GC primary dendrites (Fig. 1k; 

Supplementary Fig. 2 a–c). Spine number normally increases with distance from the soma in 

WT animals3. Spine distribution along the middle segments of primary dendrites of both 

layer V neurons and DG GCs was significantly altered in both Sema3F−/− and Npn-2−/− 

mutants (Fig. 1 a–f, j, k), however spine density and morphology along oblique (secondary) 

branches from primary apical dendrites, and along basal dendrites of layer V cortical 

neurons, were normal in Sema3F−/− and Npn-2−/− mutants (Supplementary Fig. 3). Spine 

number and morphology on both apical and basal dendrites of hippocampal CA1 and 

cortical layer II/III pyramidal neurons were normal in Sema3F−/− and Npn-2−/− mutants 

(Supplementary Fig. 4). Therefore, Sema3F–Npn-2 signaling restricts dendritic spine 
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number, distribution, and regulates spine morphology in select neuronal populations and 

within distinct dendritic compartments.

We next used a rescue paradigm employing in utero electroporation to deliver a Npn-2-

IRES-mGFP expression construct to a small number of cortical layer V pyramidal neurons 

in the Npn-2−/− mutant cortex at embryonic day 13.5 (E13.5), when deep layer cortical 

neurons are born. Spine density along apical dendrites was assessed in GFP+ neurons 

between P35–45. Npn-2−/− layer V pyramidal neurons expressing mGFP alone exhibited 

numerous, aberrant spines along their apical dendrites (Fig. 2a, b, d). In contrast, Npn-2−/− 

cortical neurons harboring the Npn-2-IRES-mGFP construct had 39% fewer spines than 

Npn-2−/− cortical neurons expressing mGFP alone (Fig. 2c, d). Thus, Npn-2 controls spine 

number and morphology in a cell-autonomous manner.

To assess the influence of Sema3F on excitatory synapses we treated dissociated cultured 

WT P5 DG neurons with recombinant Sema3F, followed by immunolabeling for the pre- 

and postsynaptic markers vGlut1 and PSD-95, respectively (Supplementary Fig. 5a–c). 

Sema3F decreased the average number of puncta exhibiting co-localization of vGlut-1 and 

PSD-95 by ~50%, however Sema3A treatment had no effect (Supplementary Fig. 5d). No 

significant effect on the number of vGlut1 puncta was observed following Sema3F 

treatment, however the number of PSD-95–positive puncta decreased by ~40% following 

Sema3F treatment compared to untreated, or Sema3A-treated, neurons (Supplementary Fig. 

5e). The majority of PSD-95-positive puncta in untreated cultured neurons were colocalized 

with presynaptic vGlut1, and the decrease in the number of excitatory synapses (colocalized 

vGlut1/PSD-95) was reflected in the decrease in total PSD-95-positive puncta. Sema3F 

treatment did not affect DG inhibitory synapses (Supplementary Fig. 5f–i). Therefore, 

Sema3F negatively and selectively influences excitatory synapses. We performed whole cell 

voltage clamp recordings to assess mEPSCs in layer V pyramidal neurons and DG GCs in 

acute brain slices derived from 3–4 week-old Npn-2−/− and WT mice (Fig. 2e and 

Supplementary Fig. 6). We observed a 2.4 and 1.5 fold increase in mEPSC frequency in 

Npn-2−/− layer V neurons and DG GCs, respectively, as compared to WT littermates. 

Although we observed a slight decrease in the rise time and tau decay for layer V neurons, 

no significant change in amplitude was observed compared to WT littermates (Fig. 2e and 

Supplementary Fig. 6a). No significant difference in the paired pulse amplitude ratio was 

observed between Npn-2−/− and WT neurons from layer V or DG (Supplementary Fig. 6), 

suggesting that the increase in mEPSC frequency found in Npn-2−/− mutant mice is due to 

an increase in the number of synapses rather than an increase in the probability of 

presynaptic release. These results show that Sema3F–Npn-2 signaling negatively regulates 

both excitatory synapse number and synaptic transmission in layer V and DG neurons.

To determine how loss of Sema3F and Npn-2 influences synapse formation in vivo, we used 

transmission electron microscopy (TEM) to visualize dendritic spine ultrastructure and 

excitatory synapse morphology. Spines protruding from the dendritic shafts of WT adult DG 

GCs are small (<0.1 µm2), and of the >270 spines scored (per genotype) we observed that 

most have round, uniformly shaped, spine heads (Fig. 3a). In contrast, spines in Sema3F−/− 

and Npn-2−/− mutants are enlarged, vary greatly in shape, and exhibit a >1.7-fold increase in 

area as compared to WT spines (Fig. 3a, b; Supplementary Fig. 7a, c, d, f). In spines of 

Tran et al. Page 3

Nature. Author manuscript; available in PMC 2010 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutant mice we observed pre- and postsynaptic components normally associated with WT 

synapses, including electron dense membranous folds in the postsynaptic density (PSD), 

vesicle pools near active zones, and docked vesicles associated with presynaptic termini 

(Fig. 3a, b; Supplementary Fig. 7c, d). However, in adult Sema3F−/− and Npn-2−/− mice we 

observed a ~5-fold increase in the fraction of DG GC spines harboring multiple PSDs (Fig. 

3b; Supplementary Fig. 7c, g). Serial section EM reconstructions of several mutant DG GC 

spines showed that these are perforated PSDs contacted by the same presynaptic terminal 

(Fig. 3c, d). We found similarly pronounced cortical layer V neuron spine and synaptic 

morphology defects at the ultrastructural level in both Sema3F−/− and Npn-2−/− mutants 

(Supplementary Fig. 8). Since spine stability, maturation and number increase with age17, 

18, we asked whether these abnormalities observed in adult Sema3F−/− and Npn-2−/− mice 

result from altered spine morphogenesis. Indeed, spines along P21 DG GC dendrites in 

Npn-2−/− animals already exhibit aberrant morphology similar to that seen in adult Npn-2−/− 

mutants (Supplementary Fig. 9). These TEM analyses demonstrate that Sema3F and Npn-2 

regulate spine morphogenesis and postsynaptic specializations, serving to constrain overall 

spine number, size, and PSD number.

Npns in combination with a class A plexin signaling receptor constitute most secreted 

semaphorin holoreceptors, and Sema3A preferentially signals through a Npn-1/PlexA4 

holoreceptor while Sema3F signals through a Npn-2/PlexA3 holoreceptor19–21. Analysis of 

Golgi-labeled adult PlexA3−/− and PlexA4−/− mutant brains revealed that apical dendrite 

spine morphology is dramatically altered in PlexA3−/−, but not PlexA4−/−, layer V cortical 

pyramidal neurons (Fig. 4a, a’, b–d’; Supplementary Fig. 10a), similar to what we observed 

in Sema3F−/− and Npn-2−/− mutants (Fig. 1d–f). DG GC dendritic spines in both PlexA3−/− 

and PlexA4−/− mutants are larger, more numerous, and extend much further from the GC 

dendrite shaft than WT spines (Supplementary Fig. 11a–d). TEM ultrastructural analysis of 

PlexA3−/− and PlexA4−/− mice also revealed enlarged and irregularly shaped DG GC spines 

(Supplementary Fig. 7a, b, e–g). The requirement for PlexA3 and PlexA4 for normal DG 

GC spine morphology is reminiscent of the requirement for both plexins in vivo for correct 

guidance and extension of embryonic trigeminal neurons, and in vitro for repulsive 

responses to high levels of Sema3A21.

Mice homozygous for a knock-in mutation that expresses a Npn-1 protein incapable of 

binding to Sema3A (Npn-1Sema−) phenocopy embryonic neuronal defects observed in Npn-1 

null mice and exhibit dramatically reduced growth and branching of layer V cortical neuron 

basal dendritic arbors12. Moreover, acute application of Sema3A to WT brain slices 

promotes an increase in growth and branching of basal dendritic arbors13. However, 

Npn-1Sema− (Fig. 4a, a’, c, c’; Supplementary Fig. 10a) and Sema3A−/− (not shown) mice do 

not exhibit spine density defects along apical dendrites of cortical layer V neurons. These 

results show that Sema3A–Npn-1 signaling positively regulates dendrite growth and 

branching, but they do not address whether plexin signaling underlies these functions or 

whether defects in spine morphology in Sema3F, Npn-2, and PlexA3 mutants are correlated 

with other dendrite morphogenesis defects. Therefore, we performed Golgi staining on adult 

brains from WT, Sema3A−/−, Sema3F−/−, Npn-1Sema−, Npn-2−/−, PlexA3−/− and PlexA4−/− 

mice. Dendrite orientation and branching in DG GCs in all mutants analyzed was identical 
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to WT (Supplementary Fig. 11e–k). Layer V cortical neuron basal dendrites were also 

similar to WT in Sema3F−/−, Npn-2−/− and PlexA3−/− mutants (Fig. 4a, b; Sema3F−/− and 

Npn-2−/− not shown). However, Npn-1Sema−, PlexA4−/−, and Sema3A−/− mice exhibited 

severe reductions (~3.8-fold at 63 µm from the cell soma) in the elaboration of basal 

dendrites of these cortical pyramidal neurons as compared to WT (Fig. 4a, c, d; 

Supplementary 10b; Sema3A−/− not shown). Therefore, spine defects observed along layer V 

cortical apical dendrite processes in Sema3F, Npn-2, and PlexA3 mutant mice are not 

correlated with the basal dendritic arbor phenotypes observed in the PlexA4−/−, Npn-1Sema−, 

and Sema3A−/− mutants12, 13, thus revealing distinct functions of Sema3A–Npn-1/PlexA4 

signaling in the promotion of basal dendrite complexity, and of Sema3F–Npn-2/PlexA3 in 

constraining spine number, distribution and synaptic transmission.

To ask how distinct Sema3 signaling pathways independently regulate cortical neuron basal 

dendrite morphology and apical dendrite spine morphogenesis, we examined subcellular 

Npn receptor distribution on dissociated E14.5 cortical neurons grown for 18 DIV using AP-

Sema3F (to reveal cell surface Npn-2) and AP-Sema3A (to reveal Npn-1). We observed that 

cell surface Npn-2 receptors were predominantly localized to the primary apical dendrite in 

cortical neurons with pyramidal morphology (Fig. 5a–f, j); Npn-2 was absent from both 

basal dendrites and oblique, or secondary, branches off of primary apical dendrites in these 

neurons (Fig. 5a, d, k and Supplementary Fig. 12b). This observation was confirmed using 

Npn-2 antibodies (Supplementary Fig. 11a–a’’’). Npn-1 receptors, in contrast, were more 

uniformly distributed on all dendritic processes (Fig. 5g–i, j). This exquisite pattern of 

Npn-2 distribution likely explains the restricted effects of Sema3F on spines associated with 

primary apical dendrites (Fig. 1j and Supplementary Fig. 3h).

To ask whether Sema3F–Npn-2 signaling can directly regulate cortical neuron spine density 

and morphology, we next employed an assay in which dendritic spines are visualized 

following transfection of primary neuronal cultures derived from mouse E14.5 neocortex 

with an IRES-myristoylated GFP (mGFP) construct (Supplementary Fig. 13a). Sema3F-

treated WT cortical neurons with pyramidal morphology have along their apical, but not 

basal, dendrites 33% fewer spines than do untreated (control) or Sema3A-treated neurons 

(Supplementary Fig. 13b–c, j). In contrast, Npn-2−/− cortical neurons transfected with IRES-

mGFP displayed a similar number of spines along their apical dendritic process in both 

untreated and Sema3F-treated cultures (Supplementary Fig. 13d, e, j). However, Npn-2−/− 

cortical neurons transfected with a Npn-2–IRES-mGFP construct and subsequently treated 

with Sema3F have 24% fewer spines along their apical dendrites as compared to untreated 

Npn-2−/− neurons (Supplementary Fig. 13f, g, j). Overexpression of Npn-2 using Npn-2-

IRES-mGFP in WT dissociated cortical neurons produced no difference in apical or basal 

dendritic spine number, as compared to WT neurons transfected with IRES-mGFP 

(Supplementary Fig. 14a, c, e). However, Sema3F treatment of WT neurons over-expressing 

Npn-2 led to a 30% and 23% reduction in apical and basal dendritic spines, respectively, as 

compared to untreated neurons (Supplementary Fig. 13b, d, e).

The Npn-2 intracellular domain contains a C-terminal PDZ ligand motif (SEA) that may be 

critical for Npn-2/PlexA3 localization and Sema3F/Npn-2–mediated regulation of spine 

morphology and synapse structure. We transfected dissociated Npn-2−/− cortical neurons 
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with a Npn-2 SEA-deletion expression construct (Npn-2-ΔSEA-IRES-mGFP) and assessed 

Sema3F effects on spine morphology. Npn-2-IRES-mGFP and Npn-2-ΔSEA-IRES-mGFP 

constructs both promote expression of Npn-2 protein on the cell surface of Npn-2−/− cortical 

neurons (Supplementary Fig. 12d, e). However, Npn-2−/− neurons transfected with Npn-2-

ΔSEA-IRES-mGFP do not exhibit a reduction in spine density following Sema3F treatment 

(Fig. 13h-j). Therefore, Sema3F-mediated reduction in spine number along cortical dendritic 

processes is dependent upon the Npn-2 cytoplasmic SEA PDZ domain-binding motif.

We demonstrate here that spatially segregated secreted semaphorin signaling orchestrates 

the elaboration of distinct morphological features in select hippocampal and cortical 

pyramidal neuron dendrites. The organization and distribution of excitatory synapses along 

primary, secondary and higher order dendritic branches defines how presynaptic inputs are 

integrated into neural networks. Thus, the precise control of both excitatory and inhibitory 

synapse distribution during neural development is essential for the formation of functional 

circuits. Our finding that Sema3F orchestrates the spatial distribution of spines along apical 

dendrites of cortical pyramidal and hippocampal granule neurons suggests that this secreted 

cue is essential for integration of excitatory inputs onto these neurons. Supporting this idea, 

both cortical and hippocampal neurons from Npn-2−/− mutant mice exhibit an increased 

mESPC frequency, and we observed previously that mice lacking components of the 

Sema3F–Npn-2/PlexA3 signaling module exhibit alterations in synaptic transmission and 

seizures15. These findings underscore the necessity of understanding the mechanisms 

underlying Sema3F–Npn-2/PlexA3 control of differential spine growth and distribution, and 

Sema3A–Npn-1/PlexA4 control of basal dendrite growth. Npn-2 is localized to the PSD15 

and we show here that the Npn-2 PDZ domain-binding motif is essential for Sema3F 

responsiveness. The precise localization of Sema3 holoreceptor complexes via one or more 

PDZ scaffold proteins associated with postsynaptic components may serve to provide 

directed Sema3 signaling to subcellular dendritic compartments, regulating dendritic spine 

morphology and spatial distribution of synapses.

Methods Summary

The day when a vaginal plug was observed is designated as embryonic day (E) 0.5 and the 

day of birth as postnatal (P) day 0. Golgi labeling was performed as described (FD 

NeuroTechnologies). For in utero electroporation, E13.5 embryos from timed-pregnant WT 

and Npn-2−/− females from homozygous crosses were used. WT P5 dentate gyrus 

hippocampi, and WT or Npn-2−/− E14.5 cortices, were dissected and dissociated for primary 

culture experiments. See Supplemental Methods for additional experimental procedures, 

including: TEM, serial 3-D reconstruction, immunocytochemistry, physiological recordings, 

and quantification parameters for spine density, synaptic puncta, Sholl analysis, and AP-

fluorescence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Tran et al. Page 6

Nature. Author manuscript; available in PMC 2010 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

We thank Michael Delannoy and the Johns Hopkins University School of Medicine Microscope Facility for 
assistance with EM analysis; Michele Pucak and the NINDS Multi-photon Core Facility at JHMI; Dwight Bergles 
and David Linden for comments on the manuscript; Rafael Yuste for helpful discussions; Kayam Chak and 
members of the Kolodkin and Ginty laboratories for assistance throughout the course of this project. This work was 
supported by R01 MH59199 to DDG and ALK; NRSA F32 NS051003 to TST; R01 DC-006881 and NSF 
DB1-0420580 to MER; and P50 MH06883 to RLH and DDG. DDG, RLH and ALK are investigators of the 
Howard Hughes Medical Institute.

References

1. Nimchinsky E, Sabatini B, Svoboda K. Structure and function of dendritic spines. Annu Rev 
Physiol. 2002; 64:313–353. [PubMed: 11826272] 

2. Elston G, Defelipe J. Spine distribution in cortical pyramidal cells: a common organizational 
principle across species. Prog Brain Res. 2002; 136:109–133. [PubMed: 12143375] 

3. Ballesteros-Yáñez I, Benavides-Piccione R, Elston G, Yuste R, Defelipe J. Density and morphology 
of dendritic spines in mouse neocortex. Neuroscience. 2006; 138:403–409. [PubMed: 16457955] 

4. Hayashi Y, Majewska A. Dendritic spine geometry: functional implication and regulation. Neuron. 
2005; 46:529–532. [PubMed: 15944122] 

5. Alvarez V, Sabatini B. Anatomical and physiological plasticity of dendritic spines. Annu Rev 
Neurosci. 2007; 30:79–97. [PubMed: 17280523] 

6. Gao W-J, Zheng Z-H. Target-specific differences in somatodendritic morphology of layer V 
pyramidal neurons in rat motor cortex. J Comp Neurol. 2004; 476:174–185. [PubMed: 15248197] 

7. Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 
2008; 9:206–221. [PubMed: 18270515] 

8. McAllister A. Dynamic Aspects of CNS Synapse Formation. Annu Rev Neurosci. 2007; 30:425–
450. [PubMed: 17417940] 

9. Packard M, et al. The Drosophila Wnt, wingless, provides an essential signal for pre- and 
postsynaptic differentiation. Cell. 2002; 111:319–330. [PubMed: 12419243] 

10. Poon V, Klassen M, Shen K. UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic 
components from dendrites. Nature. 2008; 455:669–673. [PubMed: 18776887] 

11. Pasterkamp R, Giger R. Semaphorin function in neural plasticity and disease. Curr Opin 
Neruobiol. 2009; 19:263–274.

12. Gu C, et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and 
cardiovascular development. Dev. Cell. 2003; 5:45–57. [PubMed: 12852851] 

13. Fenstermaker V, Chen Y, Ghosh A, Yuste R. Regulation of dendritic length and branching by 
semaphorin 3A. J Neurobiol. 2004; 58:403–412. [PubMed: 14750152] 

14. Yamashita N, et al. Regulation of spine development by Semaphorin3A through Cyclin-Dependent 
Kinase 5 phosphorylation of Collapsin Response Mediator Protein 1. J Neurosci. 2007; 27:12546–
12554. [PubMed: 18003833] 

15. Sahay A, et al. Secreted semaphorins modulate synaptic transmission in the adult hippocampus. J 
Neurosci. 2005; 25:3613–3620. [PubMed: 15814792] 

16. Bouzioukh F, et al. Semaphorin3A regulates synaptic function of differentiated hippocampal 
neurons. Euro. J. Neurosci. 2006; 23:2247–2254.

17. Yuste R, Bonhoeffer T. Genesis of dendritic spines: insights from ultrastructural and imaging 
studies. Nat Rev Neurosci. 2004; 5:24–34. [PubMed: 14708001] 

18. Zuo Y, Lin A, Chang P, Gan W. Development of long-term dendritic spine stability in diverse 
regions of cerebral cortex. Neuron. 2005; 46:181–189. [PubMed: 15848798] 

19. Cheng H, et al. Plexin-A3 mediates semaphorin signaling and regulates the development of 
hippocampal axonal projections. Neuron. 2001; 32:249–263. [PubMed: 11683995] 

20. Suto F, et al. Plexin-a4 mediates axon-repulsive activities of both secreted and transmembrane 
semaphorins and plays roles in nerve fiber guidance. J Neurosci. 2005; 25:3628–3637. [PubMed: 
15814794] 

Tran et al. Page 7

Nature. Author manuscript; available in PMC 2010 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Yaron A, Huang PH, Cheng HJ, Tessier-Lavigne M. Differential requirement for Plexin-A3 and -
A4 in mediating responses of sensory and sympathetic neurons to distinct class 3 Semaphorins. 
Neuron. 2005; 45:513–523. [PubMed: 15721238] 

Tran et al. Page 8

Nature. Author manuscript; available in PMC 2010 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Sema3F and Npn-2 regulate dendritic spine number, distribution and morphology in 
adult layer V pyramidal neurons and dentate gyrus granule cells in vivo
a–f, Golgi stained Sema3F−/− (b, e) and Npn-2−/− (c, f) brains show that DG GC and layer V 

pyramidal apical dendritic spines (white arrows) are more numerous as compared to WT (a, 
d). g–i, Layer V pyramidal neurons have more spines on primary apical dendrites 0–25 µm 

from the soma in Sema3F−/− (h) and Npn-2−/− (i) mutants as compared to WT mice (g). j, k, 

Quantification of spine density 0–50µm from the cell body on layer V pyramidal primary 

apical dendrites (WT, 0.10 ±0.01; Sema3F−/−, 0.34 ±0.01; Npn-2−/−, 0.35 ±0.01 spines/µm) 
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and 0–25µm from the cell body on DG GC primary dendrites (WT, 0.55 ±0.03; Sema3F−/−, 

1.08 ±0.04 and Npn-2−/−, 1.21 ±0.04 spines/µm). There is a significant increase in spine 

number on dendritic segments located 100–150µm from the cell body in layer V (WT, 1.33 

±0.14; Sema3F−/−, 2.14 ±0.13; Npn-2−/−, 2.00 ±0.11 spines/µm) and 50–75µm from the DG 

neuron cell body (WT, 1.28 ±0.13; Sema3F−/−, 2.40 ±0.11; Npn-2−/−, 2.34 ±0.12 spines/µm) 

in these mutants. There is no significant difference in spine density at 200–250µm or 100–

125µm from the cell body in layer V and DG neurons, respectively. Error bars, ±SEM, 

ANOVA, post-hoc Tukey in j and k; **, p=0.01; ***, p=0.001 compared to WT. Scale bars: 

10 µm in f for a–f and 2.5 µm in i for g–i.
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Figure 2. Sema3F–Npn-2 control of spine number is Npn-2 cell-autonomous, and Npn-2 loss-of-
function results in increased frequency of mEPSCs
a–c, Layer V neurons from P45 WT and Npn-2−/− animals from E13.5 embryos in utero 

electroporated with IRES-mGFP (a, b), and a Npn-2−/− embryo electroporated with Npn-2-

IRES-mGFP (c). d, Quantification of spine density (50–100µm from soma) in Npn-2−/− 

neurons transfected with Npn-2-IRES-mGFP (0.61 ±0.03 spines/µm) as compared to IRES-

mGFP (0.99 ±0.03 spines/µm), and to WT neurons transfected with IRES-mGFP (0.72 

±0.04 spines/µm). e, Recordings of mEPSCs from cortical slices show a significant increase 

Tran et al. Page 11

Nature. Author manuscript; available in PMC 2010 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in mEPSC frequency in Npn-2−/− layer V pyramidal neurons (4.85 ±0.87 Hz) as compared 

to WT littermates (2.04 ±0.64 Hz). There is no significant difference in mEPSC amplitude 

between WT (9.21 ±0.32 pA) and Npn-2−/− (8.60 ±0.35 pA) neurons. Representative 

mEPSC traces (top, WT; bottom, Npn-2−/−) are shown. Error bars in d and e, ±SEM; 

ANOVA, post-hoc Tukey for d; p=0.001 for **, WT:IRES-mGFP vs. Npn-2−/−:IRES-mGFP 

and ψ, Npn-2−/−:IRES-mGFP vs. Npn-2−/−:Npn-2-IRES-mGFP; p=0.071 for WT vs. 

Npn-2−/−:Npn-2-IRES-mGFP. T-test for e, **, p=0.024 for frequency and p=0.231 for 

amplitude. Scale bars: 10 µm in c for a–c, and 5 pA × 1s in e.
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Figure 3. Sema3F-Npn2 signaling regulates spine morphology and synaptic ultrastructure in vivo
a, b, DG GC dendritic spine TEM ultrastructural analysis reveals enlarged and misshapen 

spines (arrowheads) in Npn2−/− (b) as compared to WT mice (a). c, d, 3-D reconstructions 

of serial TEM illustrates two completely separate PSDs within a single spine from a 

Npn-2−/− mutant mouse (d), in contrast to a WT spine (c) with one PSD per spine head. 

Scale bars: 500 nm in b for a, b, and 250 nm3 in d for c, d
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Figure 4. Distinct Sema3–Npn/PlexA signaling modules regulate apical dendrite spine 
morphology and basal dendrite process complexity
a–d, Golgi-labeled adult brains illuminate basal dendritic morphologies in cortical layer V 

pyramidal neurons from WT (a, circle), PlexA3−/− (b), Npn-1Sema− (c), and PlexA4−/− (d) 

mice. a’–d’, show spine morphologies from neurons in a–d. Scale bars: 10 µm in d for a–d 
and 4 µm in d’ for a’–d’.
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Figure 5. Npn-1 and Npn-2 are localized to distinct cortical pyramidal neuron dendritic domains
a–i, Alkaline phosphatase (AP)-Sema3F (a–f) or AP-Sema3A (g–i) fusion proteins were 

used to localize endogenous Npn-2 and Npn-1, respectively, on cortical pyramidal neurons 

in primary culture. Endogenous Npn-2 (a, c, d, f) is predominately restricted to the major 

apical dendrites of pyramidal neurons as shown by anti-AP labeling (a–c). Npn-2 is not 

observed on basal (white arrows in a, c) or secondary apical dendritic branches (white 

arrows in d, e) illuminated by anti-Map2 staining. Npn-1 (g, i) is observed on basal and 

apical dendritic processes (h, i). j, k, Fluorescence intensities were quantified by measuring 
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apical/basal fluorescence ratios and normalizing to apical/basal Map2 fluorescence ratios for 

AP-Sema3F–labeled neurons (j, 3.70 ±0.87), and for AP-Sema3A–labeled neurons (0.80 

±0.14). The Npn-2/Map2 fluorescence ratio in primary apical dendrites (yellow bar, k) is 

0.95 (±0.17), and in secondary apical dendrites (red bar, k) is 0.08 (±0.06). Gray boxes, f, 
indicate area of measurement in k. Scale bars: 25 µm in i for a–i.
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