
cancers

Review

Identification and Characterization of Multiple Myeloma Stem
Cell-Like Cells

Wancheng Guo 1,2,†, Haiqin Wang 1,†, Peng Chen 2, Xiaokai Shen 2, Boxin Zhang 2, Jing Liu 1, Hongling Peng 1,*
and Xiaojuan Xiao 1,*

����������
�������

Citation: Guo, W.; Wang, H.; Chen,

P.; Shen, X.; Zhang, B.; Liu, J.; Peng,

H.; Xiao, X. Identification and

Characterization of Multiple

Myeloma Stem Cell-Like Cells.

Cancers 2021, 13, 3523. https://

doi.org/10.3390/cancers13143523

Academic Editors: Cinzia Allegrucci

and Paloma Ordóñez-Morán

Received: 24 May 2021

Accepted: 4 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of
Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University,
Changsha 410011, China; 2204160215@csu.edu.cn (W.G.); 202501023@csu.edu.cn (H.W.);
liujing2018@csu.edu.cn (J.L.)

2 Xiangya Medical School, Central South University, Changsha 410013, China; 2204160219@csu.edu.cn (P.C.);
2204160222@csu.edu.cn (X.S.); 2204160218@csu.edu.cn (B.Z.)

* Correspondence: penghongling@csu.edu.cn (H.P.); xiaojuan_xiao@csu.edu.cn (X.X.);
Tel.: +86-731-85295296 (H.P.); +86-731-84805449 (X.X.)

† These authors contributed equally to this work.

Simple Summary: Although the existence of multiple myeloma (MM) cancer stem cells is controver-
sial, a large number of studies have shown that there is a kind of cells in multiple myeloma that has
stronger proliferation, migration, tumorigenesis, and drug resistance than general tumor cells, and
so we call them the multiple myeloma stem cell-like population. Therefore, the definition, screening,
and targeted inhibition of these cells are very important. In this paper, we list the markers used to
screen the MM stem cell-like population and the research of related inhibitors in MM treatment and
introduce the pathways related to stemness in MM and the main target molecules in these pathways.

Abstract: Multiple myeloma (MM) is a B-cell tumor of the blood system with high incidence and
poor prognosis. With a further understanding of the pathogenesis of MM and the bone marrow
microenvironment, a variety of adjuvant cell therapies and new drugs have been developed. However,
the drug resistance and high relapse rate of MM have not been fundamentally resolved. Studies have
shown that, in patients with MM, there is a type of poorly differentiated progenitor cell (MM stem
cell-like cells, MMSCs). Although there is no recognized standard for identification and classification,
it is confirmed that they are closely related to the drug resistance and relapse of MM. This article
therefore systematically summarizes the latest developments in MMSCs with possible markers of
MMSCs, introduces the mechanism of how MMSCs work in MM resistance and recurrence, and
discusses the active pathways that related to stemness of MM.

Keywords: multiple myeloma; MM stem cell-like cells; marker; pathway

1. Introduction

Existing statistics show that the incidence of MM is the second-highest of the blood
system tumors. Nowadays, the median age at diagnosis is 70 years; 37% of patients are
younger than 65 years, and very few patients are younger than 30 years old [1,2]. However,
MM is still an incurable disease. As the proportion of the elderly population rises, the
morbidity and mortality of MM gradually increase [3,4]. Besides, the drug resistance and
recurrence of MM are becoming increasingly prominent in clinical practice, which is closely
related to the stem cell-like population in multiple myeloma cells.

About four decades ago [5], it was supposed that there was a cell population closely
related to cancer genesis and self-renewal, and so they were called cancer stem cells (CSCs).
More and more characteristics of CSCs have been discovered recently. The current study
shows that CSCs are a kind of cell that determines the occurrence, development, and
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metastasis of tumor tissue and has three characteristics: self-renewal, differentiation, and
infinite proliferation.

Although the existence and identification of MM stem cells are controversial at present,
the existing data show that there is a kind of progenitor cell with low differentiation in the
MM cell group that has the characteristics of CSCs and so we call them ‘MM stem cell-like
cells’. The current identification of such cells depends on the detection of several surface
markers. Due to the multi-directional differentiation and self-renewal characteristics of
this cell, there is evidence that they are closely related to the relapse and drug resistance of
MM [6,7]. Therefore, further research on the characteristics of MMSCs is likely to provide a
theoretical basis for solving its high recurrence and drug resistance. The following article
will introduce the potential surface molecular markers to identify MMSCs, the mechanism
of drug resistance and recurrence of MM and therapies targeting CSC, and the activation
of the common pathways related to the stemness of MM cells.

2. Markers of MMSCs and Drugs Targeting Them
2.1. Side Population Cell

Side population cells (SP cells) were first discovered by Goodell et al. They can excrete
Hoechst 33342, so they show low staining and are distributed on one side of the main
population cells [8]. SP cells’ excreting dyes are related to ABC transporters (especially
ABCG2) [9], which are a series of membrane transport proteins that hydrolyze ATP trans-
membrane transport substrates and are expressed in a variety of CSCs, resulting in drug
resistance in cancers such as esophageal cancer and oral squamous cell carcinoma [10,11].
According to the CSC theory, a small number of cancer stem cells hidden in cancer also pro-
mote tumor growth, which explains some clinical phenomena, such as the almost inevitable
recurrence of tumors after the initially successful chemotherapy and/or radiotherapy, the
phenomenon of dormancy and the metastasis of tumors [5]. Among MM cells, SP cells
in G0/G1 phases are significantly more numerous than NSP cells [12,13], which indicates
that the proportion of cells in the resting phase is higher in SP cells. SP cells from myeloma
cell lines (KMS11, OPM1, RPMI-8226, U266, et al.) have high clonogenicity, tumorigenic-
ity, and self-renewal ability [14,15]. The induced pluripotent stem cell (iPS)/embryonic
stem cells (ES) genes (SOX2, OCT4, NANOG, KLF4, et al.) are highly expressed in SP
cells [16,17]. In SP cells, drug efflux pump genes ABCG2 and ABCC3 are highly expressed
in MM cells [14,18]. In short, the above results show that SP cells are closely related to the
stemness, drug resistance, and recurrence of MM, so SP cells are often used as materials to
replace MM stem cells.

Moreover, the existence of SP cells is closely related to the microenvironment of MM
cells. Under certain microenvironmental conditions, SP cells will undergo significant
changes. Myeloma BMSCs can generate a microenvironment that supports myeloma stem
cells through the CXCR4 signaling pathway, the result of which is that, when growing
on myeloma BMSCs, the percentage of SP cells is higher than that of control BMSCs, and
SP cells have stronger clone formation ability than control BMSCs [16,19]. Granulocytic-
myeloid-derived suppressor cells (G-MDSCs) can enhance the side population, sphere
formation, and the expression of core genes of CSCs in MM cells through promoting DNA
methylation [20]. Interestingly, the percentage of SP cells is related to culture conditions,
such as culture time and hypoxic environment [16,21]. Surprisingly, the NSP cell population
can be transformed into SP cells under a specific environment (such as hypoxia), which
is regulated by the TGF-β1 pathway [14]. It is speculated that SP cells cannot completely
represent the stem cells of MM, and there may be a small number of stem cells among
NSP cells.

SP cells are also used to study the target of MM stem cell-like population or to verify
MM stem cell markers. In Minjie Gao et al., Affymetrix microarrays were performed on
7-paired light-chain (LC) restricted SP (LC/SP) and bulk MM cells (CD138+) on 14 primary
MM samples. After microarray analysis, CD24 was highly expressed in SP cells, and
subsequent experiments proved that it is an important marker of MM stem cells [22]. The



Cancers 2021, 13, 3523 3 of 16

microarray was combined with other MM databases for biometric analysis and provided
reliable molecular biological markers for the screening, prognosis, and new therapeutic
targets of myeloma LC/SP cells [23,24]. Besides, from a high throughput assay, 19 Cancer
testis antigen (CTA) genes were upregulated in the SP of MM, suggesting that CTA may be
a target for MM stem cell-specific immunotherapy [25].

Drugs targeting SP cells have been developed a lot over the years. In the flow cytomet-
ric detection of SP cells, verapamil and reserpine were used as negative controls to inhibit
the SP cells phenotype [16,26]. Proteasome inhibitors bortezomib (BTZ), carfilzomib, and
ixazomib significantly suppressed the proliferation of SP cells in MM patient cells and
MM cell lines, and metformin enhances the anti-SP effect of BTZ. Lenalidomide targets
clonogenic SP cells in MM, rather than thalidomide [14]. EZH1/2 double inhibitor (or-s1)
can effectively eradicate SP cells [27]. GSK126 can target EZH2 (epigenetic regulator), and it
can kill the myeloma stem cell-like population by ALDH and SP analysis [28]. Fenretinide
has a scavenging effect on MM-SP and NSP cells [29]. SP cells can also be reduced by c3b3
(a new diabody) that can inhibit pluripotency-related transcription factors (SOX2, OCT4,
NANOG, etc.) [12]. It is found that S1-401 (drug targeting IL-3) can improve the prognosis
of MM patients, and the growth of SP cells is inhibited [30]. Hucd26mab can reduce the
proportion of SP cells in CD26+ MM cells [31]. The combination of anti-ABCG2 monoclonal
antibody EPI MBS+mAb and ultrasound treatment can reduce the clonal ability of MM
CD138− CD34− CSC isolated from a human MM RPMI 8226 cell line and inhibit tumori-
genesis in nude mice [32]. In addition, natural products are considered biocompatible
and reliable treatments for human cancer [33,34]. Diallyl thiosulfinatecan enhances the
inhibitory effect of dexamethasone on SP cells [35]. Baicalein can downregulate ABCG2
expression and suppress SP cells [36,37]. Many types of drugs can significantly inhibit the
growth of SP cells in MM, which provides a research basis for strategies targeting MMSCs.

2.2. ALDH

ALDH is an intracellular enzyme that participates in the detoxification and differenti-
ation of cells through oxidation and plays a role in the development of drug resistance in
cancer cells. In CSCs, ALDH can regulate the differentiation, apoptosis, and growth of CSC
and participate in drug resistance [38]. In addition, ALDH is highly active in leukemia and
solid tumors of the colon, breast, brain, prostate, pancreas, and ovary and is likely to be a
target for cancer diagnosis and treatment [26,39]. These characteristics of ALDH show that
it has certain significance in the identification of MM stem cells.

ALDH1+ MM cells contribute to MM stemness and resistance. ALDH1+ MM cells
have higher colony-forming ability than ALDH1− cells, and their tumorigenic rate is
significantly higher in NOD/SCID mice, indicating that ALDH1+ cells have tumorigenic
stem cell-like features [40]. ALDH1A1 is the dominant isoform in MM; when the expression
of ALDH1A1 in ARP1 and OPM1 cells was driven by a lentivirus vector, the cells showed
resistance to bortezomib and adriamycin [41]. In BTZ-resistant (ANBL6-BR) cells, ALDH1+

cells constitute a larger proportion of the population than in wild-type (ANBL6) cells,
and ALDH1A1 is highly expressed in BTZ-resistant cells [42]. ALDH-activity detection
has been used to reflect the stemness of MM cells in the study of drug killing-effect
detection, surface markers, and characteristic proteins identification in the MM stem cell-
like population [18,43–45]

Targeting ALDH+ cells is a new strategy for the treatment of acute myeloid leukemia
(AML) and breast cancer [46,47]. For example, in the CD34+ CD38− phenotype of AML
cells and pre-leukemic stem cells, ALDH is often highly expressed, which can be inhibited
by the new isatin analog KS99 [48]. It has been reported that ALDH inhibitor disulfiram
acts in a copper-dependent manner on ALDH1A1 and Hedgehog transcription factors
GLI1 and GLI2 to clear ALDH-positive MM cells [49]. Interestingly, 5-fluoro-2′- deoxyuri-
dine (FdUrd) stimulation led to decreased activity of ALDH. In addition, lycorine can
suppress the Wnt/β-catenin pathway and has a cytotoxicity effect on MM ALDH1+ cells.
Additionally, wee1 kinase inhibitor MK1775 can significantly decrease the rate of ALDH1+
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cells. Surprisingly, proteasome inhibitor BTZ can enhance the percent of ALDH1+ cells in
glioblastoma, synovial sarcoma, pancreatic adenocarcinoma, and MM cells [42,50]. Fur-
thermore, lycorine or wee1 kinase inhibitor MK1775 can decrease the rate of ALDH1+

cells in combination with BTZ [35,42]. However, the role of immunomodulators, other
proteasome inhibitors, and other MM clinical drugs in ALDH has not yet been reported.
This is something that future research can focus on.

2.3. CD138

CD138 (syndecan-1) is a kind of cell-adhesion molecule, whose deletion can lead to
the loss of contact inhibition in some cells. CD138 was absent in poorly differentiated B
cells and highly expressed in terminally differentiated B cells [51–53]. In vivo and in vitro
experiments showed that MM cells derived from CD138− cells had stronger clone-forming
ability and stronger stemness characteristics than CD138+ cells, which was related to the
drug resistance of MM [54,55]. As early as 2003, William et al. found that whether in
MM cell lines (RPMI 8226 and NCI-H929) or clinical samples of MM patients, MM cells
with CD138− had stronger colony-forming and proliferation ability [56]. In the CD138−

MM group, the downregulation of CD229 could reduce the ability of MM cell colony
formation and enhance the effect of chemotherapy [57]. CD138−ALDH1+ MM cells have
strong colony-forming and tumor initiation ability [58]. In addition, some scholars further
explored the effect of SH3GL3 on the migration and invasion of the CD138− MM stem
cell-like population [59]. Recently, Phoebe et al. described the role of interferon regulatory
factor 4 (IRF4) in the regeneration of myeloma progenitor cells in cell stem cell and found
that the overexpression of IRF4 increased the proportion of myeloma progenitor cells,
among which CD138− is used as an important screening marker for myeloma progenitor
cells [60].

2.4. CD24

CD24 antigen is a cell-adhesion protein linked to glycosylphosphatidylinositol (GPI),
which can mediate the antigen-dependent activation and proliferation of B cells. CD24 has
high expression in many types of tumors and promotes cancer invasion and metastasis.
CD24+ has already been regarded as a CSC marker in ovarian cancer [61] and liver can-
cer [62], while CD24− has been found in breast CSCs [63]. A recent study showed that the
tumor-initiating cells in multiple myeloma can be identified by CD24 [22]. In SP cells or
MM cells in patients after treatment, CD24 has higher expression level in the SP cells of
MM patients and MM patients after treatment, and high expression of CD24 indicates poor
prognosis in MM patients. In addition, CD24−-positive cells have stronger clone formation
ability and tumorigenicity, higher iPS/ES gene expression, and stronger resistance to MM
clinical drugs BTZ, carfilzomib, and melphalan [22].

2.5. iPS/ES Genes

SOX2 is a member of the SOX gene family and belongs to the B1 subgroup of the SOX
family B group. OCT4 is an octamer transcription factor, mainly expressed in totipotent
embryonic stem cells and germ cells and downregulated during cell differentiation [64,65].
SOX2 and OCT4 can regulate the initiation of tumors and the function of CSCs [66,67].
SOX2 and OCT4 are highly expressed in SP cells [17], and SOX2 and OCT4 mRNA knock-
down reduce the proportion of SP cells, suggesting that these factors are necessary to
maintain SP content in MM cells. SOX2 and OCT4 may be a clinical drug target for MM.
The expression of SOX2 in RPMI-8226 can be suppressed by cotylenin A [68]. In addition
to SOX2 and OCT4, iPS/ES genes such as Nanog may also be used as MM stem cell-like
population markers, and further study is needed.

2.6. BTK

BTK, a key target in MM drug therapy, has a positive regulatory effect on stem
genes (OCT4, SOX2, NANOG, and MYC) through the Akt/Wnt/β-Catenin pathway and
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enhances the self-renewal ability of MM cells. The overexpression of BTK in myeloma
cells can increase their clonogenic ability and drug resistance, while inducible knockout of
BTK abolished them [17]. In addition, the expression of stem genes such as OCT4, SOX2,
and NANOG can be upregulated by BMSCs through the BTK pathway and increase MM
clonogenicity [69].

2.7. RARα2

The expression of RARα increased significantly when MM recurred. The survival
rate of MM patients with RARα2 expression was significantly decreased, and RARα2
knockdown could significantly induce cell death and growth inhibition [18]. Besides,
RARα2 was also overexpressed in multiple myeloma stem-like cells. Overexpression of
RARα2 in MM cell lines can lead to increased drug resistance and clonal potential, activation
of stem pathways (Wnt and Hedgehog pathway), increased SP cells ratio, ALDH, and stem
gene expression [70].

2.8. ROS

It has been proved that cancer stem cells in hematology neoplasms, such as AML,
have a low level of ROS, relatively [71–73]. In MM, evidence also shows that SP cells have a
lower level of ROS than NSP cells, which means ROS may be a stem-cell marker in MM [29].
This may be a new direction for exploring MM stem cells.

In the study of MM stemness modulation, some molecules show no difference between
MM cells and MM stem-cell-like cells, and then they may not be used in MM stem-
cell-like population identification. However, they are still possible targets, including
USP1, Wee1, and CD44, etc. USP1 siRNA knockdown can reduce the survival ability of
multiple myeloma cells. The USP1 inhibitor SJB selectively blocked the activity of USP1.
SJB also reduced the viability of multiple myeloma cell lines and patients’ tumor cells,
inhibited the growth of multiple myeloma cells induced by bone marrow plasmacytoid
dendritic cells, and overcame BTZ resistance [74]. High expression of Wee1 indicates poor
survival in MM, and CD138+ plasma cells in MM patients have high sensitivity to MK1775
(Wee1 inhibitor) [75]. CD44 is a surface marker of breast, gastric, and colon cancer stem
cells [76], and CD44 is closely related to the cell adhesion-mediated drug resistance of
MM cells [77,78], which suggests that CD44 may also serve as a marker of MM stemness.
Targeting these molecules is a potential treatment for inhibiting stemness and overcoming
resistance in MM.

The characteristics of MM stem cell-like population and corresponding inhibitors were
listed in Table 1.

Table 1. Markers of the MM stem cell-like population and inhibitors of them.

Surface Marker Function Drug Mechanism Reference Study

SP cells/ABC
transporter

Trans-membrane
transportation; related to
drug resistance of CSCs;

regulating oxidation
reduction status; regulating

membrane lipid composition;
regulating the release of

nutrients and metabolites,
and regulating the tumor

microenvironment

HLA class I small
molecule antibody

Lenalidomide
Ibrutinib

Targeting β-catenin and
suppressing stem genes such as

SOX2, OCT3/4, and Nanog.
Affecting phosphorylation of AKT,

GSK-3-α/β, MEK1, c-JUN, P53,
and P70S6K

Targeting Bruton’s tyrosine kinase

[10,14,17]

EZH1/2 double
inhibitor (or-s1)

Targeting EZH1 and EZH2,
causing Wnt signaling repression [27]

HuCD26mAb Specifically inhibiting SP cells [29]

Fenretinide
Targeting IL-3, blocking
pDC-induced MM cell

proliferation
[30]

Targeting CD26 in SP cells [31]
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Table 1. Cont.

Surface Marker Function Drug Mechanism Reference Study

ALDH

Promoting the
dehydrogenation of

acetaldehyde, participating
in cell detoxification through

oxidation, regulating the
differentiation, apoptosis,

and growth of CSC through
the Ra signal pathway, and
reducing the ROS in CSCs

GSK126

Abrogating the methylated histone
3 level, blocking the

Wnt/β-catenin pathway, and
inhibiting of EZH2

methyltransferase activity

[28]

Lycorine Inhibiting ALDH1+ cells through
the Wnt/βcatenin pathway [42]

I-5-iodo-4′-thio-2′-
deoxyuridine Decreasing the activity of ALDH [44]

KS99

Targeting leukemia stem cells with
high aldehyde dehydrogenase
activity and inhibiting STAT3

phosphorylation and inhibiting
the activation of Bruton’s tyrosine

kinase.

[48]

Disulfiram/Cu

Targeting ALDH1A1, inhibiting
the expression of NANOG and
OCT, and suppressing the Hh

pathway by inhibiting
transcription factors Gli1 and Gli2.

[49]

MK1775 Inhibiting ALDH1+ cells through
Wee1 kinase [75]

CD24

Cell adhesion protein,
mediating B cell

antigen-dependent
activation, distinguishing
pre-B cells from Mature B

cells, and overexpressed in
SP cells

SWA11(CD24
antibody) Targeting CD24 [22]

SOX2

Related to tumor invasion,
metastasis, and EMT; an

important index in clinical
trials at present

cotylenin A and
vincristine

Inhibiting SOX2 mRNA
expression in myeloma cells [68]

CD44

Necessary medium for the
bone-marrow adhesion of
MM cells; participating in

cell-adhesion-mediated drug
resistance

All-trans retinoic
acid (ATRA)

Downregulating the expression of
total β-catenin, cell surface, and

total CD44 in a mice
xenotransplantation model;

decreasing lenalidomide-resistant
MM cells’ adhesion; and
enhancing the effect of

lenalidomide.

[78]

3. Active Signaling Pathways Related to MMSCs and Drugs Targeting Them

Currently, the pathways involved in the stemness of MM include the Wnt/β-catenin,
Hedgehog, Notch, and PI3K/Akt pathways, which play a vital role in a variety of cancer
stem cells [79–82]. The following will describe the status of these signaling pathways in
MM and the current drugs for these pathways.

3.1. Wnt/β-Catenin

Wnt signaling pathway is a group of multi-downstream channel signal transduction
pathways, which plays a role in various stages of tumor formation. In the past, many Wnt
pathway inhibitors have appeared and been used in various clinical tumor trials [83,84]. In
MM, abnormality in the Wnt pathway is often caused by genetic or epigenetic mutations
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in the Wnt-regulating components, which plays an important role in the pathogenesis of
MM and is likely to be an important therapeutic target for MM [85].

Drugs targeting the Wnt signal pathway have been developed frequently. Interestingly,
Wnt3a can enhance the ratio of ALDH1+ cells by enhancing the expression of the β-
catenin protein, but lycorine can inhibit ALDH1+ cells through Wnt/β-catenin pathway
inhibition [42]. There are similar inhibitors, such as GSK126 [28], resveratrol [86] and
BC2059 [87]. These studies indicate the significant role of the Wnt pathway in MM, and
inhibition of the Wnt/β-catenin pathway is a potential method to inhibit the growth of
MMSCs.

3.2. Hedgehog

Hedgehog (Hh) belongs to the intercellular signaling family, which plays an important
role in the regulation of embryonic/somatic stem cells and the development regulation
of tissues and organs. Alonso et al. proposed that Hedgehog and retinol-like signals
could alter the microenvironment of MM by upregulating stromal CYP26, which helps
to maintain a retinoic acid-low (RA-low) microenvironment, prevent differentiation and
causing the resistance of BTZ [88]. Martello M et al. also proposed that controlling the Hh
pathway in MM to prevent its overactivation might play a role in preventing MM recurrence.
The researchers showed that patients could be divided into two groups according to the
expression level of the Hh gene, among which patients with excessive activation of plasma
cell Hh had poor prognosis and survival period, suggesting the promoting effect of Hh
activation on MM recurrence [89]. Knocking down the GLI, signal transduction protein
of hedgehog can cause the rate of SP cells to decrease [90]. These studies show that
the Hedgehog pathway is critical in maintaining MM stemness and drug resistance but
inhibitors need to be developed.

3.3. Notch

Notch is a transmembrane protein that can act as a receptor, as well as regulate cell
transcription. The activation of Notch signaling is related to the pathogenesis of leukemia,
lymphoma, MM, and other hematologic tumors [91,92]. The Notch signal pathway is
important in MM chemotherapy resistance. Subsequent studies have shown that the
activation of the Notch pathway plays a major role in myeloma cell resistance mediated by
bone marrow stroma, and the use of γ-secretase inhibitor (GSI) can specifically inhibit the
Notch pathway, reducing bone marrow stroma-mediated resistance and make myeloma
cells sensitive to chemotherapy [93]. Jagged1-induced Notch activation has been shown
to contribute to the BTZ resistance of myeloma cells in in vivo experiments [94]. Recent
studies have shown that the inhibition of Jagged ligands can reduce bone marrow stromal
cell-induced drug resistance (BTZ, lenalidomide, melphalan), suggesting that the Notch
pathway is likely to be involved in MM resistance [95].

3.4. PI3K/Akt

The PI3K signaling pathway is extremely important for the growth of tumor cells [96,97],
and its activation can lead to the inactivation of multiple tumor-suppressor genes. Mul-
tiple growth factors of myeloma cells can also play a role through the PI3K/Akt/mTOR
pathway. Moreover, the activation of PI3K/Akt/mTOR is an important cause of bone
lysis in MM patients [98]. Recent studies have found a positive correlation between the
expression of ABCG2 on the surface of the side population of MM cells and the activation
of PI3K/Akt/mTOR [99]. It has been demonstrated that microRNA-451 could regulate
the PI3K/Akt/mTOR signaling pathway in multiple myeloma and then contribute to the
stemness of side population cells [13]. The activation of this pathway has also been shown
in bone marrow specimens of MM patients, which indicated that miR-205-5p could target
RUNX1 and inhibit the activation of the PI3K/AKT/mTOR pathway to inhibit MM cell
apoptosis [97,98]. In summary, the PI3K pathway is shown to be important for MMSCs.
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Despite the related pathways of the MM stem-cell-like population not being fully clear,
the above pathways have been proven to be closely related to MM stemness. The discovery
and development of drugs targeting these pathways have potential clinical value for the
treatment of MM. Figure 1 is a look at how these signaling pathways work in MM and the
drugs that currently target them. And Table 2 shows the function and possible inhibitor of
these pathways in MM.
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a disintegrin and metalloprotease; NICD, Notch1 intracellular domain; RBP-Jk, recombination signal-binding protein-
Jkappa; MAML, mastermind-like family members. This image describes the common pathways related to stemness and
corresponding targets in MM cells. The Wnt, Notch, and hedgehog pathways can regulate MM cells at the transcription
level, and PI3K at the translation level, and all of them are involved in the regulation of cell growth, survival, and drug
resistance. In the Wnt pathway, GSK3 β protein expression was upregulated, and Wnt activation was inhibited on condition
of PCDH10 gene overexpression. Drugs such as piceatannol, bc2059, imaquinone, and ethyl monoquinone can downregulate
β-ctnn protein and inhibit Wnt pathway. R-spondings can act on lgr4 and promote Wnt pathway activation. In Hedgehog
pathway, Shh and Gli1 can regulate bcl-2. In the Notch pathway, sahn1 can bind to the intracellular domain ICN of Notch
and affect the recruitment of MMAL. GSI (an enzyme inhibitor) can act on γ-secretase and cause MM cell toxicity. In the
PI3K/Akt/mTOR pathway, buparlisib can act on P110, while nvp-bez235 (imidazoloquinoline derivative) can bind to the
ATP binding slit of PI3K and mTOR kinases and inhibit this pathway. These are the drug targets that have been studied.
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Table 2. Common pathway related to stemness in MM and corresponding drugs/regulators.

Pathway Function Drug/Target Gene Mechanism References

Wnt/β-catenin

Mediating the proliferation,
migration, and drug resistance of

MM cells; promoting the
differentiation of osteoblasts

Resveratrol

Downregulating the expression
of lncrna-neat1 in MM cells by
suppressing the Wnt signaling

pathway and UPR

[86]

BC2059 Downregulating β-catenin
protein [87]

Piceatannol

Decreasing the level of β-catenin,
the transcriptional activity of

Tcf4/lef complex, and the level
of its target gene Axin 2

[100]

Tumor suppressor
gene PCDH10

Inhibiting the nuclear
localization, lef/TCF activity,
bcl-9, and Akt expression of

β-catenin

[101]

ilimaquinone and
ethylsmenoquinone

Decreasing the level of β-catenin
in the cell [102]

LiCl

Inducing G2/M phase arrest of
the MM cell cycle; activating the

Wnt/β-catenin signaling
pathway to induce MM cell

apoptosis

[103]

Hedgehog
CYP26

Forming a low retinoic acid
environment and producing

resistance to BTZ
[88]

Changing the tumor
microenvironment, participating

in BORTEZOMIB resistance,
inhibiting the apoptosis of MM

cells
SHH (sonic
hedgehog)

Inhibiting the apoptosis of
myeloma cells [104]

Notch
Participating in the development
of MM, related to strom-mediated

drug resistance.

GSI (γ-secretase
inhibitor)

Inhibiting the second cleavage of
Notch receptor [93]

miR-125b
Targeting MALAT1 and

regulating the proliferation of
MM cells

[105]

PI3K/Akt
Tumor-suppressor gene

inactivation, related to bone lysis

miR-215-5p Targeting RUNX1 and inhibiting
the PI3K/AKT/mTOR pathway [106]

miR-30d
Targeting metaherherin and

inhibiting the PI3K/Akt signal
pathway

[107]

NVP-BEZ235 Binding to the ATP binding gap
of PI3K and mTOR kinases [108]

4. Epigenetic Regulation of MM Stem Pathway

In 2015, Lydia HOPP et al. conducted a multiomics analysis of transcriptome and
methylome data for B-cell lymphoma and pointed out that promoter methylation and
histone modification can regulate the corresponding dry gene expression [109]. Epigenetic
regulatory proteins (such as HDAC [110]) are also considered new targets for MM therapy.
One objective is to explore the current therapeutic prospect of histone deacetylase inhibitor
panobinostat in relapsed/refractory MM. In addition, the drug resistance and tumorigenic-
ity of MM are regulated by non-coding RNA [111,112]. There are several non-coding RNAs
that can regulate the activity of the previously mentioned stem-cell pathway. For example,
miR-125b can regulate the expression of Notch1 and the activation of the Notch pathway
in MM cells [105]. In a study by E Morelli et al., miR-125b-5p mimics can regulate the
expression of IRF4, prolonging the survival time in a MM nude mice model. MicroRNA-
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451 regulates the stemness of side population cells via the PI3K/Akt/mTOR signaling
pathway in multiple myeloma [13]. The high expression ofmiR-215-5p can inhibit MM
cell apoptosis by targeting RUNX1 and inhibiting the activation of the PI3K/AKT/mTOR
pathway [97,106].

5. Dispute on MM Stem Cells

Different from the definition of a stem cell, the definition of a cancer stem cell not only
emphasizes its unlimited proliferation ability and differentiation into different types of
cells but also its tumor-initiation effect and insensitivity to treatment [113,114]. In fact, the
concept of MM tumor stem cells was proposed to explain the recurrence and reburning of
MM cells, that is, although the tumor cells in MM patients are almost completely killed,
the patients will still relapse [7]. At that time, the researchers called the small amount of
MM cells with high tumorigenicity and drug resistance after treatment the MM stem cells.
Although these cells have high tumorigenicity or stem pathway activation, there is no direct
evidence that there are single tumor stem cells that can differentiate into various tumor cell
groups in MM tumors. However, research on these residual cells is of great significance
to the development of clinical therapy. Follow-up researchers continue to explore and
improve their marker characteristics and functional characteristics (Table 3).

Table 3. Biological function characteristics of MM with specific markers.

MM with Specific Markers Biological Function Characteristics References

Side population cell High clonogenicity, tumorigenicity, and
self-renewal ability [14,15]

ALDH1+ MM High colony-forming ability, resistance to
bortezomib and adriamycin [40,41]

CD138− MM Strong colony-forming and tumor initiation
ability [58]

CD24+ MM
Strong colony-forming ability and

tumorigenicity, high iPS/ES genes expression,
and strong resistance to MM clinical drugs

[22]

6. Conclusions and Future Perspectives

CSCs are a kind of cell that determines the occurrence, development, and metastasis
of tumor tissue and has three characteristics: self-renewal, differentiation, and infinite
proliferation. At present, CSCs have been found and defined in breast cancer, liver cancer,
lung cancer, ovarian cancer, and other solid tumors. The surface markers include CD133,
CD90, CD176, EpCAM, and so on [115,116]. The discovery of these surface markers makes
the separation and screening technology of some solid CSCs capable, which provides
important conditions for the research and development of anti-cancer drugs and on the
elaboration of the mechanisms behind cancer resistance and recurrence.

There are similarities and differences between the markers of MM stem-cell-like
cells and solid tumor stem cells. According to Table 1, MM cells with ALDH and ABC
transporters are most likely to contain an MM stem-cell-like population, while CD24,
CD44, and SOX2 play an auxiliary role in MM stem-cell-like population screening. ALDH
and ABC transporter are markers of colorectal CSC, lung CSC and so on [117]. CD44 is
used to screen more solid CSC than ALDH and ABC transporter, but its position in MM
stem-cell-like population screening is not as good as theirs [118]. CD133 is also considered
a marker for many solid tumor stem cells, but there is no evidence that CD133 can be used
as a marker for a MM stem-cell-like population [118].

Although the definition of MMSCs (multiple myeloma stem cells) is controversial
at present, the existing evidence shows that there are tumor-initiating cells in the MM
cell population. These cells are closely related to the development, drug resistance, and
recurrence of MM. Therefore, the definition, screening, and targeted inhibition of these cells
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are very important. In this paper, we list the markers used to screen the MM stem-cell-like
population and the research into related inhibitors in MM treatment and introduce the
pathways related to stemness in MM and the main target molecules in these pathways. At
present, the mainstream view is that MMSCs are located in SP cells or the ALDH1+ cell
population, which replaces MMSCs for research. Interestingly, BTZ can significantly inhibit
the rate of SP cells but enhance the rate of ALDH1+ cells [42,119]. SP cells and ALDH1+

cells may represent different populations. However, we are not sure whether all MMSCs
have these two biomarkers or whether they have other biomarkers. Although the MM stem-
cell-like population is one of the causes of MM resistance, other factors are not excluded,
such as cell-adhesion-mediated resistance, genetic-abnormality-mediated resistance, cell
apoptosis, aging, DNA-repair-mechanism-defects-mediated resistance, and metabolic-
changes-induced resistance. The mechanism of MM recurrence is also complex. It involves
the tumor microenvironment and immune status, which is far from the explanation of MM
stem cells.

Except for proteasome, the CD38 monoclonal antibody (daratumab) has also been
applied to multiple myeloma, constantly enriching the therapy of MM patients. However,
there are some drug resistance problems in the treatment of Dara, which may be related to
various factors, such as the decrease of CD38+ immune cells [5,120]. If multiple types of
monoclonal antibodies can be developed and used alternately in the clinic, it is likely to
alleviate the clinical problem of CD38+ immune-cell reduction caused by the repeated use
of CD38 monoclonal antibody alone. Several stemness markers (such as CD24 and ALDH1)
mentioned in this paper are possible targets for the development of new monoclonal
antibody drugs.

In recent years, the effect of epigenetic regulation on MM stemness has gradually
become clear. HDAC and several miRs have been identified. In fact, the current research
on Mir imbalance in MM has been quite in-depth, and the use of nanocarriers to deliver
Mirs in the treatment of MM has a certain development value [121]. However, the Mirs
mentioned in this paper are only verified at the cellular level. The function of these Mirs
in MM animal models and primary MM patients has not been fully verified, so further
research is needed.
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