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This minireview describes the history of the conceptual development of conserved
extended haplotypes (CEHs): megabase-length haplotypes that exist at high (≥0.5%)
population frequency. My career began in internal medicine, shifted to pediatrics, and
clinical practice changed to research. My research interest was initially in hematology:
on plasma proteins, their metabolism, synthesis, and function. This narrowed to a
focus on proteins of the human complement system, their role in immunity and their
genetics, beginning with polymorphism and deficiency of C3. My group identified
genetic polymorphisms and/or inherited deficiencies of C2, C4, C6, and C8. After
defining glycine-rich beta glycoprotein as factor B (Bf) in the properdin system, we
found that the genes for Bf (CFB), C2, C4A, and C4B were inherited as a single
haplotypic unit which we named the “complotype.” Complotypes are located within
the major histocompatibility complex (MHC) between HLA-B and HLA-DRB1 and
are designated (in arbitrary order) by their CFB, C2, C4A, and C4B types. Pedigree
analysis revealed long stretches (several megabases) of apparently fixed DNA within
the MHC that we referred to as “extended haplotypes” (later as “CEHs”). About 10 to
12 common CEHs constitute at least 25 – 30% of MHC haplotypes among European
Caucasian populations. These CEHs contain virtually all the most common markers of
MHC-associated diseases. In the case of type 1 diabetes, we have proposed a purely
genetic and epigenetic model (with a small number of Mendelian recessive disease
genes) that explains all the puzzling features of the disease, including its rising incidence.

Keywords: complement deficiency, complotype, haplotype, HLA, MHC, pedigree, polymorphism

INTRODUCTION

During the period from 1981 to 1983, my research group published findings (Awdeh et al., 1981,
1983; Alper et al., 1982), using family-based (“pedigree”) data, showing the existence of high-
frequency population-level megabase (Mb)-length conserved extended haplotype (CEH) variants
(“CEHs”) in the human major histocompatibility complex (MHC), what we then termed MHC
“extended haplotypes.” In the late 1980s, a research group in Perth led by Roger Dawkins confirmed
(Tokunaga et al., 1989), using both serological and DNA-based methods primarily on immortalized
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cell lines from unrelated subjects homozygous for at least
some portions of the MHC (Kay et al., 1988; Tokunaga et al.,
1988), that what they had previously termed MHC “supratypes”
(Dawkins et al., 1983) were MHC “ancestral haplotypes”
(AHs; Degli-Esposti et al., 1992; Dawkins et al., 1999) and that
these were essentially the equivalent of CEHs. Additionally, data
had been published several years prior to our own work that,
as we cited in our papers of the early 1980s, provided further
evidence for the existence of CEHs in the French population
(Dausset et al., 1978). Thus, CEHs and AHs are synonyms
for Mb-length conserved polymorphic sequence variants
(each unique sequence having multiple copies in a population
among otherwise apparently unrelated pedigrees) that exist at
far higher than expected population-level frequencies (based
on their length and the polymorphic allele frequencies of their
component marker loci).

I cover several topics related to the discovery and relevance
of MHC complotypes and CEHs. The primary focus is the work
that led to the discovery of MHC CEHs: both my own laboratory’s
clinical family-based complement polymorphism studies and
contemporaneous hypotheses arising from family-based and
population-level HLA antigen polymorphism studies. The
former directly led to my group’s discovery, through serological
typing of variants for each of four MHC-linked complement
gene products, of the “complotype.” The complotype genes
turned out to cover an approximately 140 kilobase (kb) region
containing, along with other genes, four complement genes in
the central region (between the HLA class I and class II regions)
of the human MHC. By 1981, our own HLA and complement
typing data supported the complotype concept to extend the
length of the “fixed” haplotypes to at least the region from
HLA-B to HLA-DRB1 (then, HLA-DR) covering over 1 cM
(now known to be approximately 1.24 Mb in the human genome
reference sequence).

The remaining sections review: (a) technical advancements in
the definition of HLA, complement and other MHC-associated
gene alleles as well as advancements in our understanding of
the core MHC genomic architecture; (b) CEH extension to
most of the remaining MHC region; (c) identification of ethnic
differences in MHC CEH distributions; (d) insights into MHC-
associated genetic diseases achieved through the knowledge
of and use of pedigree-based MHC haplotypes; and (e) the
development of new genetic disease models as a consequence of
considering the existence of CEHs.

FROM FAMILY-BASED CLINICAL
HEMATOLOGY TO SEROLOGICAL
IMMUNOGENETICS

Throughout my career I have followed my curiosity. This
has resulted in multiple major shifts, including from internal
medicine to pediatrics, from patient care to research, from
hematology to immunology and from immunology to
genetics. After clinical training, 2 years of general medical
practice and board certification in internal medicine, my
interest in academic research began in 1959 in Albert Coons’

laboratory at Harvard Medical School. There, I learned
basic protein analytical techniques, and I applied for and
received a U.S. Public Health Service fellowship to study
clinical hematology with Jan Waldenström and Carl-Bertil
Laurell at the University of Lund in Malmö, Sweden. In the
mid-1940s, Waldenström had described an immunoglobulin-
M-producing hematologic neoplastic disorder which bears his
name (Waldenström, 1958), and Laurell had just described
alpha-1 antitrypsin deficiency (Laurell and Eriksson, 1963)
and its resulting chronic obstructive pulmonary disease. So
began my research odyssey. Under their superb guidance,
my first studies were of the metabolism of immunoglobulins
(Alper et al., 1963).

After returning to Boston, I joined Frank Gardner’s
Hematology Division at what was then the Peter Bent Brigham
Hospital. I was involved in studies of the synthesis and
metabolism of plasma proteins such as haptoglobin, fibrinogen,
immunoglobulins (Alper et al., 1965) and beta1c globulin (Alper
et al., 1966). Studies of the latter showed it to be the third
component of complement, C3 (Klemperer et al., 1965), and
the liver was its primary (Alper et al., 1969a) although not only
(Einstein et al., 1977; Carroll, 1998) site of synthesis.

On moving to Boston Children’s Hospital under Charles
Janeway, I set up a diagnostic serum protein analysis
service (modeled after Laurell’s clinical laboratory service at
Malmö General Hospital) at the Blood Grouping Laboratory
[then headed by Louis K. Diamond (Alper et al., 2002)]. This
is where I began family-based (“pedigree”) studies to evaluate
complement protein polymorphisms. My interest in complement
was initiated by studies of the human C3 complement protein
in vivo, which led to the identification (with Fred Rosen) of the
metabolism and early complement activation cascade immune
function of C3 (Alper and Rosen, 1967).

We then began the methodical analysis of C3 genetic
polymorphism (Alper and Propp, 1968) and its inherited
deficiency (Alper et al., 1969b). My interest in the C3 genetic
polymorphism led to the development, with Myron Johnson,
of the technique of immunofixation electrophoresis (Alper and
Johnson, 1969). This greatly facilitated the detection of genetic
polymorphisms for a wide variety of proteins.

One of the plasma proteins analyzed by this technique was
glycine-rich beta glycoprotein (Boenisch and Alper, 1970), and
we showed it to be highly polymorphic with two common
genetic variants (Alper et al., 1972). Further complement
protein genetics studies demonstrated polymorphisms in C6
(Alper et al., 1975), C2 (Alper, 1976), C8 (Raum et al.,
1979), and C4 (Awdeh et al., 1979). It was the demonstration
(with Ira Goodkofsky and Irwin Lepow) that glycine-rich
beta glycoprotein is Factor B (Bf, the product of what is
now the named gene CFB) of the alternative complement
pathway (Alper et al., 1973) that connected our interests in serum
proteins, immunology, and genetics.

Independent of my group, during the late 1960s and early
1970s, two of my future collaborators also were working on
new techniques to study immune-related protein variants. Zuheir
Awdeh, then working at the National Institute for Medical
Research in London, described a new method of isoelectric
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focusing in polyacrylamide gels (Awdeh et al., 1968). After several
years in London working on protein separations, often with
serum proteins, he moved first to the American University in
Beirut and then, in the late 1970s, he joined my group in Boston.
Meanwhile, Edmond Yunis, who had published biomedical
studies for years prior, trained with D. Bernard Amos at Duke
University in HLA typing in 1967, immediately set up an HLA
typing laboratory at the University of Minnesota and published
work independently and, separately, with both Robert Good
(Yunis et al., 1967) and Amos (Amos and Yunis, 1969; Yunis
and Amos, 1971). In the late 1970s, Edmond was recruited to
Harvard Medical School and, separately, to manage the American
Red Cross typing facility in Boston. He and I began collaborating
soon thereafter.

FROM COMPLEMENT
IMMUNOGENETICS TO THE HUMAN
MHC COMPLOTYPE

In 1974, Fred Allen, Jr., of the New York Blood Center, published
a report linking Bf to HLA (then termed “HL-A”) in humans
(Allen, 1974), and we, in 1975, showed that Bf was linked to
the MHC in the rhesus macaque (Ziegler et al., 1975). Allen and
associates at The Rockefeller University also provided evidence
linking C2 to HLA (Fu et al., 1974). Other groups independently,
in 1975 and 1976, discovered close linkage between HLA markers
in the human MHC and, separately, both with Bf and C2. My
group’s demonstration of structural genetic polymorphism in
C2 in family studies as well as genetic polymorphisms of other
complement proteins in the same families led to our discovery
of the close linkage between C2 and Bf (Alper, 1976). Thus, it
was becoming clear that at least two complement genes were
likely both closely linked to one another as well as to other
human MHC markers.

Two years later, Jean Dausset’s group published on linkage
disequilibrium (LD) between HLA-A, -B, -DR, Bf, and C2
(among other loci) in studies of 53 French families (Dausset
et al., 1978). Although two-locus (Mattiuz et al., 1970) and
three-locus (Piazza, 1975) LD within the human MHC region
had been described for almost a decade using unrelated subject
data, Dausset’s 1978 publication was the first using pedigree-
based multi-locus LD analysis of both HLA and complement
gene markers. They found multi-locus LD mostly between
various MHC segments (one of which was from HLA-C to -DR).
However, they suggested that long-range MHC haplotypes in
strong disequilibrium were “relatively limited.” It is unclear
whether the relatively primitive typing of the time, the sample
size, the lack of C4 typing and/or the LD methodology
they employed led to their conclusion of only “limited” LD
throughout the MHC.

Soon thereafter, we found that there was both close linkage
between these loci and C4 (Raum et al., 1980) and that
human C4 could be viewed as two distinct genetic loci–C4A
and C4B (Awdeh and Alper, 1980). These findings led us to
describe the MHC BF-C2-C4A-C4B complement haplotypes
as “complotypes” (Alper et al., 1983). We noted that we

had seen no recombinants within this region after analyzing
hundreds of meioses.

EXTENDING THE REGIONAL
COMPLOTYPE TO LONG-RANGE MHC
CEHS (FAMILY STUDIES)

Immediately upon developing the MHC complotype concept
and prior to its publication, we published our hypothesis of
and evidence for long-range MHC haplotypes containing
complotypes in relation to HLA-A, HLA-B, and HLA-DR
(Alper et al., 1982). Our work revealed “extended haplotypes”
[Awdeh et al., 1983; later termed “conserved extended
haplotypes” (Alper et al., 1992); and then abbreviated as
CEHs (Yunis et al., 2003)]. Work from the 1980s to the 2000s
extended the extent of “fixity” (sequence identity or near identity
of population haplotype variants sharing the same major MHC
markers of a single CEH) of CEHs from HLA-A to HLA-DQB1–a
total distance of over 2 cM (now known to be approximately
2.72 Mb) and, to some extent from HLA-A to HLA-DPB1
(3.15 Mb). CEH allele definition and haplotype extension beyond
the HLA-B to HLA-DRB1 region has progressed over the last
nearly 40 years and is covered in the next section.

First, I wish to highlight the region from HLA-C to HLA-DQB1
[a 1.4 Mb portion (40%), skewed toward the centromeric end,
of the 3.48 Mb “classical” MHC region stretching from ZFP57
to HCG24 (Horton et al., 2004)] in terms of the population
frequencies of CEHs and provide the briefest of summaries as
to how those distributions vary between human populations.
There are about 10–12 common (>1%) CEHs among European
Caucasians (Alper et al., 1992; Yunis et al., 2003; Szilágyi et al.,
2010). Such CEHs have a combined frequency of 25–30% in
this population with specific CEHs varying in frequency among
different European subpopulations (Szilágyi et al., 2010). Two
reviews previously documented just a few of the CEHs in both
Caucasian and non-Caucasian populations (Dawkins et al., 1999;
Yunis et al., 2003).

Ethnic population allele variation within the MHC has been
known since the beginning of HLA (Ceppellini et al., 1965)
and complement (Alper et al., 1972) typing. Although most
of my work has focused on European Caucasians, we began
analyzing CEH population variation explicitly in the late 1980s by
studying the salt-wasting disease congenital adrenal hyperplasia
in ethnically admixed families from Venezuela (Layrisse et al.,
1987). Our other early studies on CEH variants in populations
other than dominant European Caucasian ethnicities include
Ahmed et al., 1990 – among Ashkenazi Jews; Fraser et al., 1990
and Fraser et al., 1991 – among individuals of African and
African-American descent; and Delgado et al., 1996 – among
South Asian individuals from New Delhi and Ahmedabad.
Both then (e.g., Kay et al., 1988) and more recently, other
groups have reported on both previously and newly identified
CEHs and their frequencies in families from Mexico (Zúñiga
et al., 2013), Japan (Morishima et al., 2010; Ikeda et al., 2015)
and Nigeria (Testi et al., 2015) – just to name a few. CEH
variants and their relative frequencies vary widely, largely due to
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historical population admixture. Pedigree-analyzed MHC CEH
population variation analyses have often been secondary to
medical studies, and much further work remains to be conducted
in non-European Caucasian populations to explore the full-range
of human diversity within the MHC.

MHC ALLELE DEFINITION AND CEH
“FIXITY” ANALYSES

Two excellent reviews on the evolving “map” of the human
MHC (Horton et al., 2004) and HLA nomenclature (Hurley,
2021) provide the necessary context for understanding how
the precision with which individual CEH variants have been
defined has changed over the past 35 years. Not only have
gene names changed (both before and after 2004), but the
technology for identifying component alleles has switched from
mostly serological to, starting in the early 1980s, DNA-based
typing –the latter with rapidly increasing detail as DNA
sequencing technology has advanced.

In the mid-1980s, purely DNA-based genetic allele analysis
began its ascendance after MHC chromosomal mapping was
achieved (e.g., the complotype region: Carroll et al., 1984; Carroll
et al., 1985), and this led to further insights. Thus, available
MHC complotype polymorphisms expanded (Schneider, 1990),
and attempts were made by us (Whitehead et al., 1988;
Truedsson et al., 1993; Simon et al., 1997) to correlate protein-
based complotypes with DNA-based variants and by others to
create a DNA-based nomenclature associated with MHC CEHs
(Yu, 1998; Bánlaki et al., 2012; Sekar et al., 2016). Unfortunately,
this region’s duplication and deletion complexity continues to
make it extremely difficult to DNA sequence the central MHC
even using consanguineous cell lines (Horton et al., 2008).

Some of our own work providing increasing allelic detail and
evidence for fixity (or sub-type fixity) of various MHC CEH
variants or their regional “block” components include: Kruskall
et al., 1987; Whitehead et al., 1988; Egea et al., 1991; Yunis
et al., 1993, 2003; Garcia-Merino et al., 1996; Turbay et al., 1997;
Clavijo et al., 1998; Pinto et al., 2004; Bilbao et al., 2006; Romero
et al., 2007; Larsen et al., 2014; Vadva et al., 2019. Other groups
have also contributed to the further characterization of CEH/AH
allelic definition and fixity. A small selection of these includes
Zhang et al., 1990; Jongeneel et al., 1991; Degli-Esposti et al.,
1992, 1995; Tay et al., 1997; Dawkins et al., 1999; Stewart et al.,
2004; Aly et al., 2006; Smith et al., 2006; Traherne et al., 2006;
Morishima et al., 2010; Kulski et al., 2011, 2021; Baschal et al.,
2012; Askar et al., 2013; Lam et al., 2015.

STUDYING GENETIC TRAITS AND A
NEW GENETIC MODEL BASED ON THE
CEH CONCEPT

To study complex genetic disease, most geneticists use a “case vs.
control” study design of unrelated subjects who are, putatively,
demographically similar other than for disease status. Individual
loci–typically, single nucleotide polymorphisms (SNPs) or, in the

human MHC, individual HLA loci–are tested in such a design to
localize the most likely marker(s) associated with genetic traits
and diseases (Bush and Moore, 2012). In the case of type 1
diabetes (T1D), a very large number of genes throughout the
genome exhibit small but significant differences in frequency in
patients as compared to controls (Barrett et al., 2009; Reddy et al.,
2011; Bakay et al., 2019). Genes marked by these SNPs are said to
increase the “risk” of having the disease. In our view, these SNPs
mostly mark different Caucasian subpopulations (Awdeh et al.,
2006; Alper et al., 2019), and haplotype-based studies provide
a much more complex but realistic source for testing genetic
disease associations.

Our work has focused on a “disease vs. family control”
haplotype study design using families (Fleischnick et al., 1983;
Raum et al., 1984; Alper et al., 1987, 2000, 2006b; Hauser
et al., 1989; Ahmed et al., 1993; Larsen and Alper, 2004; Alper
and Larsen, 2015, 2017; Vadva et al., 2019). As recently noted,
family study had always been a useful tool for studying human
disease genetics (Bodmer, 2019). Case-control design is primarily
used to save costs and time (i.e., not having to find willing
family participants). Human genetics has moved away from
family-based haplotype studies to unrelated subject genotype
studies. In our view, preferable study methods include the
disease-family control haplotype design or a design comparing
specific haplotype homozygotes, heterozygotes, and non-carriers
(Alper et al., 2000). This latter prospective method or one
utilizing monozygotic twins (Alper et al., 2006a) can also be
used to study incomplete penetrance of complex genetic traits
(Alper and Awdeh, 2000).

Based on these considerations and our own findings in family
studies, we have proposed a stochastic epigenetic Mendelian
oligogenic (SEMO) model for T1D (Alper et al., 2019). We
posit a small number (2 to 5) of (relatively) unlinked Mendelian
recessive genes required for disease susceptibility. We attribute
epigenetic alteration of one of the genes causing incomplete
penetrance as determined by the approximately 50% rate of T1D
concordance both in monozygotic twins of patients and in the
offspring of two parents with T1D (Rjasanowski et al., 2003) as
well as the onset of disease in late childhood. The SEMO model
explains the rising incidence of T1D by noting that past selection
against this life-threatening disease could be achieved through the
reduction in frequency of any of the causal genes (Awdeh et al.,
2006). If parents are from subpopulations that selected against
different causal genes, the risk of complete disease susceptibility
in the offspring will be higher than that of either parent. In
support of this explanation is the observation that grandparental
subpopulation mixing in T1D families at 54% is twice that of
control families (27%) (Awdeh et al., 2006).

DISCUSSION

This review is my account of the discovery and implications
of a little understood feature of the human MHC: the CEH.
I summarized the main reports leading to demonstration of
the existence of multiple CEH variants and several key reports
investigating details of their structure and usage in the ensuing
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four decades. Also highlighted were several critical steps and
methodologies that led to the CEH concept. Several features of
CEHs yet to be determined were also described. CEHs may exist
elsewhere in the human genome and likely those of at least some
other diploid species, but further studies are required to delineate
the extent to which each is true. This review could not cover all
aspects of CEHs, but I attempted to focus on major developments.
Many questions and a great deal of unexplored territory remains.
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