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    Introduction 
 A wide variety of cells have the ability to sense and migrate 

 directionally along external gradients of chemoattractants. This 

process, called chemotaxis, is fundamental for a multitude of 

physiological processes including embryogenesis, angiogenesis, 

and wound healing. It is also important in the pathophysiology 

of asthma, arthritis, and metastatic invasion ( Ridley et al., 2003 ). 

Upon exposure to a chemoattractant gradient, cells polarize, 

orient themselves, and migrate directionally. In this context, fast 

moving neutrophils and  Dictyostelium discoideum  cells are in 

a league of their own ( Parent, 2004 ). These cells have the abil-

ity to sense extremely shallow chemoattractant gradients and 

quickly transduce them into highly polarized cellular responses, 

where F-actin is highly enriched at the front for pseudopod ex-

tension and myosin II is mainly assembled at the back for con-

traction and retraction. For both neutrophils and  Dictyostelium , 

chemoattractants mediate their effects by binding to seven trans-

membrane, G protein – coupled receptors. Activation of the re-

ceptors leads to dissociation of heterotrimeric G proteins into 

G �  and G �  �  subunits and activation of multiple downstream 

effectors that ultimately give rise to cell polarity and migration 

( Van Haastert and Devreotes, 2004 ;  Affolter and Weijer, 2005 ; 

 Bagorda et al., 2006 ). 

  Dictyostelium  has been invaluable to decipher the signal 

transduction mechanisms regulating chemotaxis ( Kimmel and 

Parent, 2003 ;  Franca-Koh et al., 2006 ). Upon starvation, these 

cells rely on chemotaxis to locate and migrate toward each other 

and form an aggregate that will differentiate into a multicellular 

organism. Remarkably, as the cells polarize and migrate direc-

tionally to form the aggregate, they do so by aligning in a head-

to-tail fashion, forming characteristic chains of cells or streams. 

The ability of  Dictyostelium  cells to spontaneously aggregate 

and stream relies on the presence of an exquisitely regulated 

signal relay loop that is centered on cAMP. In this organism, the 

detection, synthesis, and degradation of cAMP are highly regu-

lated ( Kriebel and Parent, 2004 ). The addition of chemoattrac-

tants leads to a burst in the activity of adenylyl cyclase (ACA), 
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and carefully monitored the fl uorescence recovery over time. 

We reasoned that if the recovery is solely dependent on mem-

brane diffusion, it should proceed in a vectorial fashion from 

the adjacent unbleached areas. Conversely, if replenishment 

involves an intracellular pool of ACA, we should measure an 

even fl uorescence recovery in the middle and the boundaries 

of the bleached zone ( Fig. 2 A ). We optimized our FRAP con-

ditions to study the recovery of ACA over a large portion of 

the plasma membrane for long periods of time. To reduce 

photodamage, we captured images every 45 s, which precluded 

us from obtaining quantitative diffusion measurements. As a 

control for these experiments, we used cells expressing the seven-

transmembrane chemoattractant cAR1 fused to YFP, which is 

uniformly distributed on the plasma membrane and does not 

localize to intracellular vesicles ( Xiao et al., 1997 ). Differenti-

ated cells were plated at very low density, allowing them to 

become apolar ( Kriebel et al., 2003 ), and a small region of the 

cell periphery was bleached. As depicted in  Fig. 2 B , we fi nd 

a dramatic difference in the fl uorescence recovery patterns of 

the cAR1-YFP/ car 1/3 �    and ACA-YFP/ aca  �    cells. Whereas the 

receptor shows a recovery pattern reminiscent of membrane 

which converts ATP into cAMP. Most of the cAMP produced is 

secreted and acts as a chemoattractant by binding to specifi c 

G protein – coupled receptors exposed at the cell surface (cAMP 

receptors [cARs];  Parent and Devreotes, 1996b ). Receptor stim-

ulation leads to the activation of a variety of effectors, includ-

ing ACA, which amplifi es and relays the signal to neighboring 

cells. Finally, the extracellular concentration of cAMP is tightly 

controlled through the expression of membrane-bound and 

secreted forms of a phosphodiesterase and a specifi c phospho-

diesterase inhibitor, allowing the signaling cascade to come back 

to basal levels and respond to further stimulation ( Franke and 

Kessin, 1992 ). 

 We previously showed that transmission of chemotactic 

signals to neighboring cells is a spatially regulated process. When 

exposed to an external point source of cAMP, cells lacking ACA 

can migrate directionally but cannot relay the chemotactic signal 

to neighboring cells or align in a head-to-tail fashion to form 

streams. This streaming behavior not only depends on the pres-

ence of ACA but, most remarkably, on its enrichment at the back 

of polarized cells ( Kriebel et al., 2003 ). We proposed that the 

asymmetrical distribution of ACA provides a compartment from 

which cAMP is locally released to attract neighboring cells to the 

back of cells ahead of them. We now report that vesicle traffi ck-

ing on microtubules is required for the enrichment of ACA at the 

back of cells. Remarkably, we also establish that ACA-containing 

vesicles are shed at the back of migrating cells and that de novo 

ACA synthesis is essential to maintain the cellular distribution of 

ACA. Together, these fi ndings showcase the mechanisms regulat-

ing the asymmetrical distribution of proteins in polarized cells 

and the controlled release of chemoattractants. 

 Results 
 Enrichment of ACA at the back of 
migrating cells depends on an intracellular 
pool of the enzyme 
 We used confocal microscopy to better defi ne the partitioning 

of ACA in fully differentiated ACA-YFP/ aca  �    cells.  Fig. 1  A 

shows images of maximum intensity projections from a ran-

domly migrating cell. There is a clear enrichment of ACA at the 

back of cells as well as the uniform staining at the cell periph-

ery. In addition, ACA is seen on intracellular vesicles that move 

very rapidly across the cytoplasm (Video 1, available at http://

www.jcb.org/cgi/content/full/jcb.200808105/DC1). Closer ex-

amination reveals that most vesicles are moving back and forth 

from a perinuclear aggregation center to the back of cells, 

whereas a smaller subset of solitary vesicles reach extending 

pseudopods. The same phenomenon is observed in cells sub-

jected to a point source of chemoattractant ( Fig. 1 B  and Video 1). 

Upon closer examination, we observe that the ACA-enriched 

region at the back of cells corresponds to a dense accumulation 

of labeled vesicles, a phenomenon that is clearly substantiated 

by visualization of 3D reconstructions from confocal z stacks 

( Fig. 1 C  and Video 2). 

 We next used FRAP to defi ne the mechanisms responsi-

ble for establishing the asymmetrical distribution of ACA. In 

these experiments we photobleached part of the cell periphery 

 Figure 1.     ACA is localized on dynamic vesicles that coalesce at the back 
of polarized cells.  (A) Montage of fl uorescent images showing maximum 
intensity projections of a randomly moving ACA-YFP/ aca  �    cell. Also 
see Video 1. (B) Montage of fl uorescent images showing maximum in-
tensity projections of a ACA-YFP/ aca  �    cell chemotaxing toward a micro-
pipette fi lled with 1  μ M cAMP. The asterisk depicts the position of the 
micropipette. Also see Video 1. (C) 3D reconstruction of z-stack slices 
showing accumulation of vesicles at the back of a migrating ACA-YFP/
 aca  �    cell. Also see Video 2. Videos are available at http://www.jcb
.org/cgi/content/full/jcb.200808105/DC1.   
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 F-actin and microtubules control the 
enrichment of ACA at the back of cells 
 The association of ACA with intracellular vesicles ( Fig. 1 ) and its 

rapid, differentiation-dependent replenishment at the cell mem-

brane ( Fig. 2 ) suggest a role for the cytoskeleton in ACA traf-

fi cking. To determine the role of the actin cytoskeleton on these 

processes, we treated differentiated ACA-YFP/ aca  �    cells with 

5  μ M latrunculin A (LatA) and monitored the distribution of the 

ACA-containing vesicles with time. As we previously reported, 

LatA-treated cells rapidly round-up and stop moving, and the dis-

tribution of ACA on the cell periphery concomitantly becomes 

uniform ( Fig. 3 A ;  Kriebel et al., 2003 ). However, within 45 min 

after the addition of LatA, the ACA-positive vesicles disappear 

and cells show a very bright ACA signal at their periphery ( Fig. 3 A ), 

a response that we also readily observe when we treat cells with 

60  μ M LatA for 5 min (not depicted). When LatA-treated cells 

are photobleached as described in  Fig. 2 , recovery of the ACA 

signal now mimics the membrane diffusion pattern of the cAR1 

cells, with the side boxes recovering before the middle box ( Fig. 

3 A ; LatA-treated cAR1-YFP cells showed an identical response 

[not depicted]). This treatment also markedly reduced the ability 

of chemoattractants to stimulate ACA activity (Fig. S1, available 

diffusion, ACA displays a uniform recovery throughout the 

bleached region. Replenishment of ACA at the cell periphery 

thus proceeds from an intracellular location. 

 To gain further insight into the mechanism of fl uorescence 

recovery, FRAP analyses were performed on vegetative cells 

and on cells in various stages of polarization. We observe that 

as ACA-YFP – expressing cells enter development, polarize, and 

become motile, the extent of the fl uorescence recovery dramati-

cally increases ( Fig. 2 C ). In sharp contrast, the recovery of 

cAR1-YFP – expressing cells does not signifi cantly change dur-

ing development and polarization, although we noticed a con-

sistent increase in the extent of recovery in migrating cAR1-YFP 

cells ( Fig. 2 C ). We envision that this is secondary to the highly 

dynamic state of migrating cells. Importantly, when we com-

pare the ACA-YFP recovery pattern at the front and back of dif-

ferentiated polar cells, we observe a dramatic difference, where 

the back recovers earlier and to a greater extent than the front 

( Fig. 2 D ). Together these fi ndings show that the machinery 

controlling the asymmetrical distribution of ACA-YFP is devel-

opmentally regulated. Along with our earlier fi ndings ( Fig. 1 ), 

these observations suggest that vesicle traffi cking plays a key 

role in the enrichment of ACA at the back of polarized cells. 

 Figure 2.    FRAP analyses reveal a role for ves-
icle traffi cking in the asymmetrical distribution 
of ACA.  (A) Cartoon depicting the potential 
effect of intracellular vesicles on the fl uores-
cence recovery pattern after photobleaching. 
(B, inset) Confocal fl uorescent images of cAR1-
YFP/ car1/3  �    cells (left) and ACA-YFP/ aca  �    
cells (right) showing the bleached area (white) 
and the side (blue) and middle (red) boxes 
where the fl uorescence recovery is monitored. 
The graphs depict the recovery of ACA-YFP 
and cAR1-YFP from differentiated nonpolar 
cells. The side fl uorescence recovery values 
are shown in blue and the middle recovery 
values are in red. Each graph is normalized 
by setting initial fl uorescence to 100% and the 
fl uorescence immediately after bleaching to 0. 
Data are presented as a mean of fi ve cells  ±  
SEM. (C, top) Confocal fl uorescent images of 
vegetative, differentiated nonpolar, polar, and 
migrating cAR1-YFP/ car1/3  �    (left) and ACA-
YFP/ aca  �    (right) cells showing the bleached 
area in white and a red box where the fl uores-
cence recovery is monitored. (bottom) Graphs 
depicting the fl uorescence recovery of cAR1-
YFP (left) and ACA-YFP (right) in the middle 
boxes (red) in vegetative, differentiated nonpolar, 
polar, and migrating cells. Data are presented 
as a mean of fi ve cells  ±  SEM. (D, inset) Con-
focal fl uorescent images of a ACA-YFP/ aca  �    
polar cell showing the bleached area as in B. The 
graphs depict the recovery of ACA-YFP at the 
front (left) and back (right) of a polarized cell. 
See B for details. The front versus back graph 
compares the recovery from the middle box 
(red) at the front and the back, respectively.   
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fi ndings indicate that an intact microtubule network is required 

for the asymmetrical enrichment of ACA at the cell periphery. 

 We next set out to determine if ACA vesicles are associ-

ated with microtubules. We fi xed fully differentiated ACA-YFP/

 aca  �    cells, stained them with an anti –  � -tubulin antibody, and 

performed deconvolution microscopy. As expected, we fi nd that 

the ACA vesicles align on microtubules ( Fig. 3 C  and Video 3, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200808105/DC1). 

Upon further analyses, we discovered that the front of polarized 

cells is virtually devoid of ACA vesicles and microtubules, al-

though ACA is clearly present around the entire cell periphery 

and may appear spotty especially at the leading edge. Indeed, 

quantitative analyses show that in 62% of migrating cells ( n  

= 63) the microtubule organizing center (MTOC) is localized 

behind the nucleus where an intricate microtubule network 

emanates toward the back of every cell. In contrast, 76% of the 

cells have either none or one microtubule fi lament extending to 

their leading edge ( Fig. 3 D ). These fi ndings suggest that the 

microtubule network is organized to promote the traffi cking of 

cargo, including ACA, to and from the back of highly polarized 

cells. In support of this notion, we fi nd that Noco-treated ACA-

YFP/ aca  �    cells exposed to a chemoattractant-containing micro-

pipette polarize and migrate rapidly but show a signifi cant defect 

at http://www.jcb.org/cgi/content/full/jcb.200808105/DC1). 

 Conversely, the chemoattractant-mediated translocation of 

PH CRAC -GFP to the plasma membrane is unaffected under these 

conditions (Fig. S2), indicating that LatA treatment had no gen-

eralized detrimental effects on cAR1-mediated signal transduction 

pathways. These fi ndings show that actin-dependent processes 

are required to maintain the asymmetrical enrichment of ACA at 

the cell periphery. 

 We next studied the role of microtubules on ACA vesicle 

traffi cking using Nocodazole (Noco) treatment. For these ex-

periments, we monitored the effects of Noco using cells ex-

pressing GFP –  � -tubulin ( Neujahr et al., 1998 ) and found that 

treating cells with 60  μ M Noco for 1 h causes a substantial dis-

assembly of the microtubule network ( Fig. 3 B ). Under these 

conditions, differentiated ACA-YFP/ aca  �    change their shape, 

with a majority of cells losing their polarity and appearing round 

or slightly oblong. Simultaneously, the distribution of ACA-

YFP on the cell periphery becomes uniform ( Fig. 3 B ,   inset). 

Most interestingly, the recovery of the ACA-YFP signal after 

photobleaching again mimics the membrane diffusion pattern 

of the cAR1-YFP cells, with the side boxes recovering before 

the middle box ( Fig. 3 B ; Noco treatment had no effect on the 

fl uorescent recovery of cAR1-YFP cells [not depicted]). These 

 Figure 3.    F-actin and microtubules control the 
enrichment of ACA at the back of cells.  (A, left) 
Confocal fl uorescent images of ACA-YFP/ aca  �    
cells treated with 5  μ M LatA for the designated 
lengths of time. (inset) Confocal fl uorescent image 
of an ACA-YFP/ aca  �    cell treated with LatA for 45 
min showing the bleached area (white) and the 
side (blue) and middle (red) boxes where the fl uor-
escence recovery is monitored. The graphs depict 
the recovery of ACA-YFP. Data is presented as a 
mean of fi ve cells  ±  SEM. See  Fig. 2 B  for details. 
(B, left) Fluorescent images of GFP –  � -tubulin/WT 
cells with or without 60  μ M Noco. (inset) Confocal 
fl uorescent image of an ACA-YFP/ aca  �    cell treated 
with Noco showing the bleached area. The graphs 
depict the recovery of ACA-YFP. Data is presented 
as a mean of fi ve cells  ±  SEM. See  Fig. 2 B  for de-
tails. (C) Deconvoluted fl uorescent image showing 
ACA-YFP (green) and  � -tubulin (red) in fi xed ACA-
YFP/ aca  �    cells. Also see Video 3. (D) Fluorescent 
image showing ACA-YFP (green),  � -tubulin (red), 
and DAPI (blue) in fi xed ACA-YFP/ aca  �    cells. The 
position of the MTOC relative to the nucleus was 
quantifi ed in 63 cells. We fi nd that in 62% of mi-
grating cells the MTOC is localized behind the 
nucleus and that 76% of cells have either none or 
one microtubule fi lament extending to the leading 
edge. The position of the MTOC was confi rmed 
by labeling centrosomes with anti –  � -tubulin anti-
bodies (not depicted). (E) Fluorescent maximum 
intensity projections of ACA-YFP/ aca  �    cells (top) 
or GFP –  � -tubulin/WT cells (bottom) chemotaxing 
to a micropipette fi lled with 1  μ M cAMP in the 
presence or absence of Noco. The asterisk shows 
the position of the micropipette. (F) Montage of 
bright fi eld images of ACA-YFP/ aca  �    cells chemo-
taxing to a micropipette fi lled with 1  μ M cAMP 
in the presence or absence of Noco. Also see 
Video 4. Identical results were observed with WT 
cells. Videos are available at http://www.jcb
.org/cgi/content/full/jcb.200808105/DC1.   
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 We then used the impermeable dye FM4-64 to assess the 

role of endocytic traffi cking in the dynamic distribution of ACA. 

This dye fl uoresces only when incorporated in the plasma mem-

brane and, once internalized, it becomes trapped in intracellular 

vesicles, thereby representing a useful tool to visualize endo-

cytosis ( Vida and Emr, 1995 ). Differentiated ACA-YFP/ aca  �    cells 

were incubated with FM4-64 under conditions designed to min-

imize the contractile vacuoles (see Materials and methods) and 

examined at various time points by confocal microscopy. Under 

these conditions, FM4-64 labeling becomes restricted to small 

endosome-like compartments ( Zhu and Clarke, 1992 ;  Aguado-

Velasco and Bretscher, 1999 ). As expected, we observe strong 

plasma membrane labeling 1 min after the addition of FM4-64, 

which readily internalizes to label intracellular compartments 

after 30 min ( Fig. 4 B ). Under these conditions, we consistently 

see colocalization of the dye with ACA-YFP vesicles in a cen-

tral perinuclear area ( Fig. 4 B ). Yet, distinct red (FM4-64) and 

green (ACA-YFP) vesicles are also present throughout the 

 polarized, migrating cells ( Fig. 4 B , Merge and Slice Merge). 

We also observe portions of the ACA-YFP compartment at the 

back of cells that does not colocalize with FM4-64, both at the cell 

in their ability to enrich ACA-YFP at their back and to align in 

a head-to-tail fashion during chemotaxis ( Fig. 3, E and F ; Video 

4; and Table S1). These fi ndings show that microtubules are es-

sential for ACA-containing vesicles to accumulate at the back 

of polarized cells and for streaming during chemotaxis. 

 ACA vesicles are not targeted to 
lysosomes and require proper assembly of 
clathrin for traffi cking 
 To gain more insight into the nature of the ACA-labeled vesi-

cles, we fi rst performed colocalization studies with lysosomal 

markers. Fully differentiated ACA-YFP/ aca  �    cells were in-

cubated with labeled Dextran – Alexa 568 or BSA – Alexa 568 

for 1 h,  extensively washed, and plated on coverslips, and the 

YFP and Alexa signals were visualized by confocal microscopy 

( Hacker et al., 1997 ). We found no colocalization between 

ACA vesicles and the endocytosed Dextran – Alexa 568 or BSA – 

Alexa 568 ( Fig. 4 A  and not depicted), confi rming and extend-

ing previous studies using lysotracker ( Kriebel et al., 2003 ). 

These fi ndings establish that ACA vesicles are not associated 

with lysosomes. 

 Figure 4.    ACA vesicles are not targeted to lysosomes 
and require proper assembly of clathrin for traffi cking. 
 (A) Montage of confocal fl uorescent images depicting 
Dextran – Alexa 568 (red) and ACA-YFP (green) distri-
bution in ACA-YFP/ aca  �    cells. (B) Spinning disk and 
confocal fl uorescent images of ACA-YFP/ aca  �    cells 
labeled with FM4-64 (red) for 1 and 30 min and ACA-
YFP (green). In the top six images, maximum intensity 
projections are presented. The bottom two images 
represent confocal slices taken from the maximum in-
tensity projection of the merge. (C) Images of  clc  �    and 
 chc  �    cells chemotaxing to a micropipette containing 
1  μ M cAMP. (D) Confocal fl uorescent images of ACA-
YFP/ aca  �    and ACA-U-YFP/ clc  �    cells colabeled with 
lysotracker red. The asterisk represents the position of 
the micropipette.   
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reported by others for  chc  �    cells ( Wessels et al., 2000 ; Table S1). 

Interestingly, both cell lines exhibit signifi cant streaming de-

fects ( Fig. 4 C ). We attempted to transfect  chc  �    and  clc  �    cells 

with the ACA-YFP expression plasmid on several occasions but 

were not successful in generating stable cell lines. We reasoned 

that overexpression of a catalytically active ACA might be det-

rimental to these cells. We therefore used a mutant of ACA that 

lost the capacity to be activated by G proteins (ACA-U-YFP) 

but retains a normal cellular distribution pattern ( Kriebel et al., 

2003 ). Although we were unable to obtain  chc  �    cells expressing 

ACA-U-YFP, we successfully generated stable ACA-U-YFP/

 clc  �    cells. We found the distribution of ACA-U-YFP to be aber-

rant in these cells, with a dramatic loss of plasma membrane 

staining and loss of enrichment at the back and a signifi cant ac-

cumulation of ACA-YFP in large intracellular vesicles that 

costain with lysotracker ( Fig. 4 D ) or Dextran – Alexa 568 (not 

depicted). These large compartments were also readily observed 

in untransfected  clc  �    cells (unpublished data). We conclude that 

the loss of CLCs leads to the mislocalization of ACA and aberrant 

streaming. Because we were unable to study ACA distribution 

periphery and as intracellular vesicles. We did however observe 

colocalization of ACA-YFP and FM4-64 at the back of cells 

1 min after the addition of FM4-64. We envision that this colabel-

ing represents accumulated extracellular membrane present at 

the back of cell (see ACA vesicles are distributed within MVBs 

that are shed during migration). Together, these fi ndings suggest 

that endocytic traffi cking is not directly involved in the biogen-

esis of ACA vesicles targeted to the back of migrating cells. 

 We next turned our attention to cells lacking clathrin. 

Clathrin is a triskelion made of three clathrin heavy chains 

(CHCs) and three clathrin light chains (CLCs;  Brodsky et al., 

2001 ).  Dictyostelium chc  �    cells exhibit classical endocytosis 

defects ( O ’ Halloran and Anderson, 1992 ;  Ruscetti et al., 1994 ). 

In contrast,  clc  �    cells show no such defects and have normal 

triskelion structures, but exhibit less clathrin structures at the 

membrane and more in the cytosol. These fi ndings suggest that 

the CLCs are required to optimally assemble clathrin at the 

plasma membrane ( Wang et al., 2003 ). We found that cells lack-

ing either the CHCs or the CLCs are able to properly develop 

and to chemotaxe to a point source of chemoattractant, a fi nding 

 Figure 5.    ACA traffi cking requires de novo ACA 
synthesis.  (A) Western analysis showing the expression of 
ACA-YFP from ACA-YFP/ aca  �    cells or cAR1-YFP from 
cAR1-YFP/ car1/3  �    cells in the presence or absence 
of 400  μ M CHX. Similar fi ndings were observed 
when we monitored endogenous levels of ACA in WT 
cells. See Materials and methods for details. Repre-
sentative data of at least three independent experi-
ments are shown. (B) Fluorescent maximum intensity 
projections of ACA-YFP/ aca  �    cells chemotaxing to 
a micropipette fi lled with 1  μ M cAMP in the pres-
ence or absence of CHX (1-h treatment). The asterisk 
represents the position of the micropipette. (C, inset) 
Confocal fl uorescent images of ACA-YFP/ aca  �    or 
cAR1-YFP/ car1/3  �    cells treated with CHX (1 h) show-
ing the bleached area (white) and the side (blue) and 
middle (red) boxes where the fl uorescence recovery 
is monitored. The graphs depict the recovery of ACA-
YFP and cAR1-YFP. See  Fig. 2 B  for details. (D) Bright 
fi eld images of ACA-YFP/ aca  �    cells chemotaxing to a 
micropipette containing 1  μ M cAMP in the presence 
or absence of CHX (1-h treatment). Also see Video 5. 
Identical results were observed with WT cells. (E, top) 
Confocal fl uorescent images of ACA-YFP/ aca  �    or 
cAR1-YFP/ car1/3  �    migrating cells before and after 
complete bleach. The numbers represent the time 
(in seconds) after the bleach. Also see Video 6. The 
graphs depict the total fl uorescent recovery of ACA-
YFP or cAR1-YFP from the entire cell under various con-
ditions. Data are presented as a mean of fi ve cells  ±  
SEM. It is the short maturation time of YFP that has 
allowed us to visualize the quick recovery of ACA. 
Cells expressing ACA-GFP show no recovery after 
total bleaching (not depicted). (F, right) Radiographs 
depicting the incorporation of  35 S-Translabel into ACA-
YFP or cAR1-YFP at various time points after adding it 
to ACA-YFP/ aca  �    and cAR1-YFP/ car1/3  �    migrating 
cells (see Materials and Methods for details). The input 
lane shows a Western analysis (using an  � -GFP anti-
body) of pulled down ACA-YFP and cAR1-YFP samples 
and depicts the starting amounts of protein for both 
ACA-YFP and cAR1-GFP. The graph shows the optical 
density (OD) values from the radiographs. Represen-
tative data of at least three independent experiments 
are shown. Videos are available at http://www.jcb
.org/cgi/content/full/jcb.200808105/DC1.   
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 We performed [ 35 S]methionine/cysteine labeling experi-

ments to gain insight into the rate of ACA de novo synthesis. 

We added [ 35 S]methionine/cysteine to fully differentiated ACA-

YFP cells and at specifi c time points assessed the  35 S content in 

ACA immunoprecipitates. We measured [ 35 S]methionine/cys-

teine incorporation in a specifi c band of 170 kD ( Fig. 5 F ), which 

comigrates with pulled down ACA-YFP and is missing in wild-

type (WT) cells (not depicted). Under these conditions, incor-

poration of [ 35 S]methionine/cysteine in ACA-YFP is rapid and 

robust. It is detected at the earliest time point collected (3.75 

min) and peaks at 30 – 60 min. In contrast, cAR1-YFP cells show 

trace levels of [ 35 S]methionine/cysteine incorporation ( Fig. 5 F ) 

in spite of a higher methionine and cysteine content, compared 

with ACA-YFP. 

 ACA vesicles are distributed within 
multivesicular bodies (MVBs) that are shed 
during migration 
 Upon closer examination of ACA-YFP/ aca  �   , we found that 

 actively migrating cells leave behind membranous structures 

rich in ACA ( Fig. 6, A and B;  and Videos 7 and 8, available at 

http://www.jcb.org/cgi/content/full/jcb.200808105/DC1).  Uchida 

and Yumura (1999)  originally coined the term  “ cellular tracks ”  

in  chc  �    cells, it is impossible to for us to defi nitively address the 

role of clathrin-mediated endocytosis in ACA vesicle traffi ck-

ing. In any case, our fi ndings using  clc  �    cells clearly establish 

that proper clathrin assembly is required for normal cellular dis-

tribution of ACA. 

 ACA traffi cking requires de novo ACA 
synthesis 
 To assess the role of protein synthesis in the cellular distribution 

of ACA, we treated ACA-YFP/ aca  �    cells with cycloheximide 

(CHX) and subjected them to FRAP analyses. It has previously 

been shown that CHX treatment does not alter the ability of 

 Dictyostelium  cells to sense chemoattractant gradients or to 

 uptake membrane by endocytosis; yet it does inhibit the ability 

of  Dictyostelium  cells to migrate directionally ( Clotworthy 

and Traynor, 2006 ). We therefore closely observed the effect 

of CHX over time. We fi rst monitored the expression level of 

ACA-YFP using Western analysis and found that it is signifi cantly 

decreased after CHX treatment ( Fig. 5 A ). An identical treat-

ment did not alter the expression level of cAR1-YFP ( Fig. 5 A ). 

We observed that ACA-YFP cells treated with CHX for 1 h, 

which shows a mild decrease in ACA-YFP expression, ex-

hibit a signifi cant and specifi c defect in their ability to enrich 

ACA-YFP at their back, the expression of ACA-YFP at the front 

of cells remains unchanged ( Fig. 5 B , Table S1, and not de-

picted). Under these same conditions, the fl uorescence recovery 

of the ACA-YFP signal after photobleaching is also altered and 

mimics the membrane diffusion pattern of the cAR1-YFP cells, 

with the side boxes recovering before the middle box ( Fig. 5 C ). 

CHX-treated cells were then exposed to a chemoattractant gra-

dient. We fi nd that CHX treatment does not affect the ability of 

cells to polarize and migrate toward the micropipette, although 

they consistently move more slowly (Table S1). However, as 

expected, CHX-treated cells display severe streaming defects 

( Fig. 5 D  and Video 5, similar fi ndings were obtained after a 

30-min CHX treatment, available at http://www.jcb.org/cgi/

content/full/jcb.200808105/DC1). Together, these fi ndings es-

tablish that ACA synthesis is required to maintain its enrichment 

at the back of cells and for streaming. Although we certainly 

cannot rule out that the expression of other proteins is also af-

fected by CHX treatment, the fact that we observe dramatic ef-

fects on ACA with short-term CHX treatment underscores the 

importance of ACA synthesis during streaming. 

 The extent of ACA synthesis was also observed in real time 

after total bleaching, a process in which the entire cell is bleached. 

When differentiated and polarized ACA-YFP/ aca  �    cells are sub-

jected to such a treatment, the fl uorescent signal quickly and sig-

nifi cantly recovers ( Fig. 5 E  and Video 6, available at http://www

.jcb.org/cgi/content/full/jcb.200808105/DC1). To assess the 

 contribution of fl uorophore photoconversion in this response 

( Giepmans et al., 2006 ), we subjected fi xed ACA-YFP cells to a 

total bleach and found that the extent of fl uorescence recovery in 

the live migrating cells far exceeds the innate ability of YFP to 

spontaneously fl uoresce ( Fig. 5 E ). As expected from our fi nd-

ings, we observed that CHX treatment abolishes the recovery of 

ACA-YFP and that cAR1-YFP/ car 1/3 �    cells show no signifi cant 

fl uorescence recovery under all conditions tested ( Fig. 5 E ). 

 Figure 6.    Migrating cells leave behind ACA-containing vesicles.  (A) Se-
quential fl uorescent maximum intensity projections of an ACA-YFP/ aca  �    
cell leaving tracks containing ACA-YFP. Arrows indicate tracks. Also see 
Videos 7 and 8. (B) Fluorescent maximum intensity projections of ACA-
YFP/ aca  �    cells leaving tracks containing ACA-YFP. (C) Graph depicting 
the fl uorescence intensity of tracks/cell in ACA-YFP/ aca  �    cells treated with 
60  μ M Noco or 200  μ M CHX for 1 h and migrating to a micropipette fi lled 
with 10  μ M cAMP (see Materials and Methods and Fig. S3 for details). 
Data represent means  ±  SEM of four independent experiments totaling 
 � 165 cells. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200808105/DC1.   
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tures proximal to it.  Fig. 7  A depicts a typical cell with a clearly 

polarized ultrastructure, a centrally located nucleus, and vari-

ous types of vesicles concentrated toward one end of the cell, 

which we presume is the back. We used immunogold EM to 

 visualize the distribution of ACA. As presented in  Fig. 7 (B – I) , 

we found gold labeling to be particularly dense at the plasma 

membrane and in extracellular as well as intracellular vesicles. 

Quantifi cation of gold particles revealed a sevenfold enrich-

ment at the plasma membrane relative to the nuclear membrane 

(4.1  ±  0.38 vs. 0.73  ±  0.13 gold particles/ μ m, respectively). 

 Intracellularly, the gold labeling was particularly dense in three 

specifi c locations: on highly tubular, membranous structures 

that cluster around the centriole ( Fig. 7 B ), on densely packed 

structures ( Fig. 7 C ), and on MVBs ( Fig. 7, D and E ). Although, 

we do not know the exact nature of the highly tubular struc-

tures, we envision that they are part of the biosynthetic path-

way that feeds into the vesicular pool of ACA. The extent of 

MVBs labeling was striking as it occurred on 24% of identifi ed 

MVBs. We did not observe labeling of lysosomal compartments, 

which confi rmed our colocalization studies with ACA-YFP 

when they observed that  Dictyostelium  cells leave tracks fl uores-

cently labeled with concavalin A. They observed that chemotaxis-

competent cells often migrate on these tracks and proposed that 

they help cells migrate directionally. To gain more insight into 

this, we measured the amount of ACA-containing tracks in 

WT and Noco- or CHX-treated cells. As both treatments ham-

per the asymmetrical delivery of ACA at the back of cells and 

the ability of cells to stream, we reason that they would also 

lead to the generation of fewer tracks. We monitored  > 160 ac-

tively migrating cells for each condition and fi nd that either 

treatment signifi cantly reduces the amount of ACA-positive 

trails by  > 50% compared with control ( Fig. 6 C  and see Fig. S3 

for details). The expression level of ACA-YFP in control and 

Noco- or CHX-treated cells was identical as monitored by Western 

and FACS analyses (unpublished data). Together, these fi ndings 

suggest that the ACA-containing tracks act as directional cues 

during chemotaxis. 

 We used hyperbaric freeze EM to obtain high quality ul-

trastructural information on the back of polarized migrating 

cells and on the nature of the extracellular, ACA-positive struc-

 Figure 7.    Ultrastructural analysis of the distribu-
tion of ACA in migrating cells.  (A) Mosaic of hy-
perbaric freeze EM images displaying an entire 
migrating ACA-YFP/ aca  �    cell. (B – I) Immunogold 
EM images depicting the distribution of ACA-YFP 
in various cellular compartments. m, mitochondria; 
n, nucleus; c, centriole; PM, plasma membrane. 
See text for details.   
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As the YFP is linked to the C-terminal, cytosolic side of ACA, 

where the catalytic loops reside, these fi ndings suggest that the 

cells are releasing vesicles that contain cAMP. We propose that 

the vesicles are secreted as exosomes, where vesicles are re-

leased by the fusion of the MVBs external membrane with the 

plasma membrane ( Thery et al., 2002 ). We do not know how 

cAMP is released from the vesicles. The vesicles possibly ex-

press a pump that actively releases the cAMP, a process that 

could be regulated. Alternatively, the vesicles may just burst in 

response to osmotic pressure, thereby releasing their content 

nonspecifi cally. In any case, this vesicular transport of cAMP 

provides an attractive mechanism for sustained chemoattractant 

release. Indeed, when exposed to a chemoattractant, many cells 

respond by making more chemoattractant, thereby amplifying 

the original signal. Yet, as most chemoattractants are small, highly 

diffusible molecules, the extent by which they can  persist and 

reach neighboring cells has presented a challenge. The packaging 

of chemoattractants within secreted vesicles could allow the 

signal to persist and reach long distances. 

 We show that the chemoattractant-mediated activation of 

ACA in LatA-treated cells, which are devoid of ACA-contain-

ing vesicles, is dramatically inhibited compared with untreated 

cells. It has been proposed that polymerized actin amplifi es 

phosphatidylinositol-3-kinase (PI3K) activity after chemo-

attractant stimulation ( Weiner et al., 2002 ;  Sasaki et al., 2004 ). 

As ACA activity is PI3K-dependent, this raises the possibility 

that the effect of LatA on ACA activity could be mediated 

through reduced PI3K activity. However, we fi nd signifi cant 

phosphatidylinositol (3,4,5)-trisphosphate generation in LatA-

treated cells ( Parent et al., 1998 ; this study). We therefore con-

clude that the strong inhibition of ACA activity in LatA-treated 

cells is not related to effects on PI3K. Indeed, we have previously 

shown that PI3K activity regulates ACA activation, but not its 

cellular distribution ( Comer and Parent, 2006 ). Rather, our fi nd-

ings suggest that the activatable pool of ACA is restricted to the 

vesicular pool of the enzyme. Interestingly, we reported that a 

constitutively active mutant of ACA is aberrantly distributed in 

cells, showing a dramatically reduced enrichment of ACA at the 

back of cells and a higher number of internal vesicles, ultimately 

giving rise to streaming defects when expressed in  aca  �    cells 

( Kriebel et al., 2003 ). These fi ndings suggest that there is a 

relationship between the cellular distribution of ACA and its 

catalytic activity. It has previously been shown that the highest 

peak of  Dictyostelium  ACA activity resides in a sedimentable 

light membrane fraction mainly composed of small vesicles 

( Hintermann and Parish, 1979 ). In addition,  Maeda and Gerisch 

(1977)  have shown that intracellular vesicles and vacuoles 

change in numbers in response to cAMP pulses and extensively 

fuse with the plasma membrane. This led them to propose that 

exocytosis is responsible for the secretion of cAMP in  Dictyo-
stelium . However,  Dinauer et al. (1980)  showed that cAMP is 

immediately secreted after its synthesis and proposed that cAMP 

is not stored in vesicles. Our fi ndings clearly show the existence 

of an asymmetrically distributed vesicular pool of ACA in po-

larized cells that is responsible for the alignment of cells into 

streams, presumably through the release of cAMP at the back of 

the cell. Whether or not cAMP is stored in vesicles for release 

and Dextran – Alexa 568 ( Fig. 4 A ). Remarkably, we observed 

labeling on an extensive network of extracellular vesicles both 

at the back of cells, proximal to the plasma membrane ( Fig. 7, 

F and G ), and as trails ( Fig. 7, H and I ), presumably corre-

sponding to the ACA-positive trails we observe in our live im-

aging of migrating ACA-YFP cells ( Fig. 6  and Videos 7 and 8). 

Interestingly, we also routinely observed FM4-64 labeling at 

the back of cells that colocalized with ACA-YFP ( Fig. 4 B ). 

As this occurred very early after FM4-64 addition, we reason 

that the FM4-64 is actually labeling accumulated extracellular 

membrane present at the back of cells. Together, these fi ndings 

establish that ACA is present at the plasma membrane and on 

complex intracellular vesicles, which appear to be specifi cally 

released at the back of cells. 

 Discussion 
 Our fi ndings show that vesicle traffi cking is required for the 

asymmetrical distribution of ACA in polarized  Dictyostelium  

cells. We show that the distribution of ACA at the back of cells 

results from an accumulation of vesicles that mainly arise from 

a biosynthetic pathway and that intact microtubule and actin 

networks are required to maintain this enrichment. Interestingly, 

EM analyses reveal that ACA is found on MVBs that accumu-

late at the back of cells where they are poised to release their 

contents as exosomes and propagate chemotactic signals. Al-

though we do not know the exact mechanism by which ACA is 

traffi cked to MVBs, our fi ndings clearly bring forward a path-

way that is distinct from the canonical pathway where sorting 

into MVBs destines proteins to lysosomal degradation. We ob-

served no colocalization of ACA vesicles with lysotracker. Fur-

thermore, FM4-64 colabeling with ACA vesicles is restricted to 

a pool of perinuclear vesicles, and large portions of the ACA-

enriched compartment at the back of cells are devoid of FM4-64, 

suggesting that endocytosis plays, at best, an indirect role 

in the biogenesis of ACA-labeled vesicles targeted to the back 

of migrating cells. Rather, the observation that the enrichment 

of ACA at the back of cells is abrogated with CHX treatment 

implies that this ACA compartment involves a biosynthetic 

pathway. Intriguingly, we also found that clathrin assembly is 

essential for proper ACA localization and streaming. Studies 

in  Dictyostelium  have established that, in addition to regulating 

endocytosis, clathrin controls cytokinesis, osmoregulation, lyso-

some traffi cking, and cell polarity ( Niswonger and O ’ Halloran, 

1997 ;  Wessels et al., 2000 ;  Gerald et al., 2001 ). Moreover, it has 

been shown that a signifi cant amount of CHC is transiently con-

centrated at the back of migrating cells ( Damer and O ’ Halloran, 

2000 ). It remains to be determined if this specifi c pool of clath-

rin colocalizes with or regulates ACA. 

 Our studies show that migrating cells secrete vesicles that 

are rich in ACA, generating extensive extracellular tracks. 

We propose that the spatial enrichment of ACA vesicles at the 

back of cells and their subsequent release in the form of tracks 

are important components of the streaming process, where cells 

align in a head-to-tail fashion during chemotaxis. Remarkably, 

our EM analyses show that the gold particles specifi cally label 

the cytosolic face of the vesicles, both inside and outside the cell. 
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observed in a wide variety of tumor cells ( Dolo et al., 1998 ; 

 Taverna et al., 2003 ). In particular, invasive melanoma cells re-

lease cell fragments in a migration-dependent manner, and the 

tracks left behind have been proposed to represent zones of fa-

cilitated invasion of neighboring cells, allowing the migration of 

cells in chains or streaming ( Mayer et al., 2004 ). In this context, 

it will be interesting to determine if the release of chemoattrac-

tant in vesicles also plays a role in the paracrine loop regulating 

the comigration of macrophages and carcinoma cells during 

metastasis ( Yamaguchi et al., 2005 ). The fi ndings reported here 

suggest that this fascinating mode of cell – cell communication 

appeared early during evolution. 

 Materials and methods 
 Materials 
 The GFP –  � -tubulin constructs were provided by A. Muller-Taubenberger 
(Ludwig Maximilians University Munich, Munich, Germany) and G. Gerisch 
(Max Planck Institute of Biochemistry, Martinsried, Germany). T. Jin (National 
Institute of Allergy and Infectious Diseases, National Institutes of Health, 
Rockville, MD) provided the cAR1-YFP construct, R. Graf (University of 
Potsdam, Postdam-Golm, Germany) provided the  � -tubulin antibody, J. Hammer 
(National Heart, Lung, and Blood Institute, National Institutes of Health, 
Bethesda, MD) provided the  myoIb/c  � / �    and  myoJ  �    cells, and T. O ’ Halloran 
(University of Texas at Austin, Austin, TX) provided the  clc  �    and  chc  �    cells. 
The  � -tubulin antibody, developed by J. Frankel and E.M. Nelsen, was ob-
tained form the Developmental Studies Hybridoma Bank developed under 
the auspices of the National Institute of Child Health and Human Develop-
ment and maintained by the University of Iowa. 

 Cell culture and differentiation 
 WT (AX 3 ), ACA-YFP/ aca  �   , and cAR1-YFP/ car1/3  �    cells were grown in 
shaking cultures to  � 4  ×  10 6  cells/ml in HL5 media ( Kriebel et al., 2003 ). 
They were harvested by centrifugation, washed once in developmental 
buffer (DB; 5 mM Na 2 HPO 4 , 5 mM NaH 2 PO 4 , pH 6.2, 2 mM MgSO 4 , 
and 200  μ M CaCl 2 ), and fi nally resuspended in DB at 2  ×  10 7  cells/ml. 
To allow differentiation, the cells were shaken at 100 rpm for 4 – 7 h 
with repeated pulses of 75 nM cAMP ( Devreotes et al., 1987 ;  Parent 
and Devreotes, 1996a ). The cells were then processed according to the 
assay performed. 

 Confocal fl uorescence microscopy 
 Cell preparation.   Cells were differentiated as described in the previous 
paragraph. A 200- μ l sample of cells was removed, centrifuged, resus-
pended in 200  μ l of phosphate buffer (PB; 5 mM Na 2 HPO 4  and 5 mM 
NaH 2 PO 4 , pH 6.2), diluted 1:10 in PB, spotted on 2-well chamber slides 
(Laboratory-Tek; Thermo Fisher Scientifi c), and allowed to adhere for 5 min 
before adding 1 ml PB to fi ll the chamber. 

 Confocal microscopy detailing ACA-YFP distribution in cells.   ACA-YFP/
 aca  �    cells were prepared for microscopy and observed with a microscope 
(Axiovert 200; Carl Zeiss, Inc.) equipped with a confocal system (Ultra-
view ERS; PerkinElmer) with a spinning disk head (Yokogawa) and a cam-
era (Orca ER; Hamamatsu). Single plane images and z stacks were taken 
using 63 and 100 ×  plan neofl uor objectives (Carl Zeiss, Inc.) and z stacks 
were arranged in maximum intensity projections. 

 Confocal microscopy with dextran-Alexa and lysotracker.   Cells were in-
cubated with 10 mM dextran – Alexa 568 at 10,000 MW (Invitrogen) for 
1 h or with 4  μ M lysotracker red DND 99 (Invitrogen) for 30 min. The cells 
were washed and plated on chambered slides. Confocal images were 
taken with a microscope (510 LSCM; Carl Zeiss, Inc.) using a 63 ×  plan 
neofl uor objective. 

 Confocal microscopy with FM4-64.   Cells were pretreated with 0.1 M 
sorbitol in PB before the addition of FM4-64 to reduce the formation of 
contractile vacuoles, a specialized organelle designed to expel water from 
 Dictyostelium  cells that is extensively labeled with FM4-64. 2  μ M FM4-64 
was added to cells for 30 min. Both 0.1 M sorbitol and FM4-64 were pres-
ent with the cells while imaging. Z stacks encompassing the entire cells 
were taken using the confocal system equipped with a spinning disk head 
and a camera. FM4-64 and ACA-YFP were visualized in red and green 
channels, respectively. 

at a later time or is synthesized in vesicles and then immediately 

released cannot be discerned by our data. However, our results 

are compatible with both options. 

 Microtubule cortical capture plays a key role in control-

ling vesicle traffi cking, although the underlying mechanistic 

basis for this is not yet defi ned ( Gundersen et al., 2004 ). In this 

context, the actin-based motor myosin V has been shown to 

be involved in mediating the movement of cargo from micro-

tubules to actin fi laments at the cell cortex ( Wu et al., 2006 ). 

We studied  Dictyostelium  cells lacking myosin J (MyoJ), 

which shares homology with class V and IX myosins ( Hammer 

and Jung, 1996 ;  Peterson et al., 1996 ). Cells lacking MyoJ showed 

signifi cant streaming defects and mislocalization of ACA after 

5 h of development. However, these defects were completely 

reversible by 7 h of development (unpublished data), suggest-

ing that the MyoJ-null cells exhibit a developmental delay or 

that redundant components expressed later can foster the de-

livery of ACA vesicles to the back of cells. We also fi nd that 

polarized  Dictyostelium  cells have an extensive microtubule 

network at their back, which originates from a MTOC that 

is positioned behind the nucleus. Remarkably, the leading 

edge of these cells is virtually devoid of microtubule fi bers. 

We envision that this architecture, which is also observed in 

neutrophils and migrating lymphocytes, is present to preferen-

tially accommodate cargo delivery to the back of cells ( Ratner 

et al., 1997 ;  Eddy et al., 2002 ). In contrast, in slow moving 

fi broblasts, the MTOC is positioned in front of the nucleus 

and microtubules primarily extend to the front of these cells 

during scratch wounding – mediated migration ( Kupfer et al., 

1982 ;  Gundersen and Bulinski, 1988 ). We predict that this 

fundamental difference between cell types underlies distinct 

requirements for cargo delivery to the front and back of cells 

in amoeboid ( Dictyostelium , neutrophils, and lymphocytes) 

versus mesenchymal (fi broblasts) migration. Interestingly, 

as previously observed in neutrophils, we found that a fully 

functional microtubule network is not required for chemotac-

tic migration in  Dictyostelium  cells ( Niggli, 2003 ;  Xu et al., 

2005 ). In neutrophils, it does, however, enhance the activity 

of Rho kinase, which is involved in controlling actomyosin-

dependent back contractility. It therefore appears that in 

both  Dictyostelium  and neutrophils, microtubules regulate 

 “ backness ”  events. 

 Our fi ndings have general implications for chemoattrac-

tant delivery and group migration. Secreted vesicles could act 

as tracks, allowing cells to follow a path left by a leading cell. 

Many cells have been shown to secrete vesicular components, 

including exosomes. For instance, B cells and dendritic cells 

secrete exosomes that carry major histocompatibility complex 

class I and II ( Raposo et al., 1996 ;  Zitvogel et al., 1998 ). Acti-

vated platelets secrete exosomes by fusion of  � -granules and 

endothelial cells release TNFR1 from exosome-like vesicles to 

modulate TNF bioactivity ( Heijnen et al., 1999 ;  Hawari et al., 

2004 ). Interestingly, it has recently been shown that T cells store 

the chemokine RANTES in small vesicles that are distinct from 

lysosomal secretory granules and release it after T cell receptor 

stimulation ( Catalfamo et al., 2004 ); this situation is analogous 

to what we report here. Finally, vesicle shedding has been 
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vent) at room temp for 1 h. Cells were harvested using a cell scraper, pel-
leted and resuspended in 500  μ l PB containing the appropriate drug 
conditions, spotted on chamber slides, allowed to attach, and covered 
with 1.5 ml PB containing the appropriate drug or control. The cells were 
allowed to migrate toward a micropipette fi lled with 10  μ M cAMP for 
 � 20 min. A 1- μ m confocal slice focused on the tracks at the bottom of the 
chamber was taken every 10 s using a microscope with a 488-nm laser 
and a 63 ×  plan neofl uor objective. These images were taken in conjunc-
tion with differential interference contrast images. Track fl uorescence was 
obtained using iVision-Mac version 4.0.10 software (BioVision Technolo-
gies). Background fl uorescence values were taken from starting images 
and subtracted from all images in a series. Segments were drawn around 
fl uorescent debris in the initial image and transferred to the fi nal image 
of the series (see Fig. S3 for details). New segments were drawn on the 
fi nal image of the series around fl uorescent tracks excluding debris de-
noted by segments from the initial image. Cell track fl uorescence was de-
termined by measuring the fl uorescence in segments around tracks. Cells 
were counted manually as they entered the fi eld of view. Fluorescent 1- μ m 
confocal images and corresponding differential interference contrast im-
ages were merged using the color join command in iVision to create im-
ages of cells in Fig. S3. Fluorescent intensity in segments marking debris 
was set to 0 debris in the merged images to emphasize only the tracks 
left behind by migrating cells (Fig. S3). 

 Chemotaxis assay 
 The chemotaxis assays were performed as previously described ( Kriebel 
et al., 2003 ). In brief, 5 – 7-h differentiated cells were plated on chambered 
cover slides as described previously ( Kriebel et al., 2003 ). Chemoattrac-
tant gradients were generated using a microinjector (Eppendorf) using 
micropipettes fi lled with 1  μ M cAMP. The micropipette was placed into 
chambered cover slides and images were captured at specifi ed times. 

 ACA activity and cytosolic regulator of ACA (CRAC) translocation assays 
 ACA and CRAC translocation assays were performed as previously de-
scribed ( Kriebel et al., 2003 ;  Comer et al., 2005 ). 

  35 S metabolic labeling 
 5-h developed cells were placed directly into 35-mm Petri dishes (10  ×  10 6  
cells/dish). After the cells had adhered for 5 min, 420  μ Ci of TRAN 35 S-
Label (MP Biomedicals) was added to each plate. One plate was harvested 
for each designated time point, the cells were spun, resuspended in IP buf-
fer (40 mM Tris-HCl, ph 8.0, 2 mM EDTA, 50 mM NaCl, and 1% CHAPS) 
and Complete protease inhibitor cocktail (Roche), and solubilized for 1 h 
on ice. After solubilization, 100  μ l of a 50/50 protein A sepharose CL-4B 
(GE Healthcare)/IP buffer slurry was added to each sample and incubated 
using a rotator for 1 h at 4 – 8 ° C to preclear the lysate. The protein A sep-
harose was removed by centrifugation and 7  μ l of anti-GFP rabbit poly-
clonal (BD) was added per milliliter of lysate and incubated on a rotator 
overnight at 4 – 8 ° C. 100  μ l of a 50/50 protein A sepharose slurry was 
added and incubated for 2 h at 4 – 8 ° C to precipitate ACA-YFP or cAR1-
YFP. Samples were washed four times with 1 ml IP buffer. The precipitated 
proteins were released from sepharose beads by adding Laemmli buffer 
and boiling for 10 min ( Laemmli, 1970 ). The resulting samples were run 
using the Criterion gel system (Bio-Rad Laboratories) using a 4 – 20% Tris-
HCl gel; the gel was dried and the bands were visualized with Biomax MR 
fi lm (Kodak). 

 Immunoblotting 
 CHX was added to 5-h differentiated cells in shaking fl asks containing 
2  ×  10 7  cells/ml and pulsed for an additional 2 h. 2.7  ×  10 6  cells were 
harvested at 0, 30, 60, and 120 min and resuspended in Laemmli buffer 
( Laemmli, 1970 ). Whole cell lysates were subjected to a 4 – 20% Tris-HCl 
SDS-PAGE analysis using the Criterion gel system and transferred to 
Immobilon-P (Millipore). The Immobilon-P was blotted with anti-GFP mono-
clonal antibody (1:5,000; Babco) and detection was performed by chemi-
luminescence using a donkey anti-mouse horseradish peroxidase – coupled 
antibody (1:5,000; GE Healthcare) and the ECL Western blotting detection 
reagents (GE Healthcare). 

 EM 
 For immunogold EM staining, cells were differentiated and prepared for 
microscopy as described. Samples were immunostained for EM using a 
modifi cation of the method used in  Polishchuk et al. (2000 ). Cells were 
fi xed at room temperature for 15 min in 1% formaldehyde, 0.1% glutar-
aldehyde, and 0.01% digitonin in 15 mM Pipes/1 mM EGTA, followed 

 FRAP 
 Vegetative, 5-h differentiated nonpolar, 5-h differentiated polar nonmi-
grating, and polar-migrating ACA-YFP/ aca  �    or cAR1-YFP/ car1/3  �    cells 
were spotted onto chamber slides and allowed to adhere for 5 min. 5-h 
differentiated nonpolar cells were obtained by diluting (1:100 – 1:500) 
pulsed cells before spotting them on a chamber slide as previously de-
scribed ( Kriebel et al., 2003 ). Polar, nonmigrating cells were obtained 
by allowing the diluted cells to slowly polarize on the chamber slide. This 
occurs secondary to the buildup of cAMP, which is spontaneously re-
leased. Polar-migrating cells were obtained by spotting 5-h differentiated 
cells 10-fold more concentrated. To visualize the entire cell on the micro-
scope, cells were fl attened with a 4-mm thick slice of agarose gel so that 
the entire cell body was within a height that could be visualized and 
bleached by a wide-open pinhole of  � 5  μ M. The bleach box was ex-
panded to include a portion of the top and the bottom membrane to mini-
mize the contribution of diffusion from above and below the bleach box. 
A section of the cell periphery in zoom 3 was exposed to two iterations 
of saturating 488-nm laser light inducing a partial bleach. A series of sin-
gle plane (5  μ m) time-lapse images were taken using a 63 ×  plan neofl uor 
objective. The microscope ’ s pinhole was opened as wide as possible (5  μ m) 
so that the images depicted the status of the entire cell ’ s periphery from 
top to bottom before, during, and after bleaching. From these images, 
fl uorescent intensity was measured in three regions of interests (ROIs). 
Two ROIs included areas on either side of the bleached membrane, just 
inside the bleached area. One ROI encompassed a middle portion of 
the bleached cell periphery. Starting fl uorescence intensity for each ROI 
was calculated by averaging two images taken 5 s apart before the 
bleach. A single image taken just after the bleach was used to determine 
the bleach level. Each subsequent image was taken every 45 s after 
bleaching and used to determine the recovery of fl uorescence over time. 
All image processing was done using the LSM 5.0 software (Carl Zeiss, 
Inc.). The fl uorescent intensity values of each ROI over time was normal-
ized so that the starting value was 100% and the value after bleaching 
was 0%. The normalized fl uorescent intensity values of all ROIs were ob-
tained from fi ve independent cells, averaged and plotted over time. FRAP 
was measured in migrating cells using the same conditions. However, 
we only monitored the fl uorescence recovery at a single ROI located at 
the center of the bleached box. The side bleach ROIs were left out be-
cause the dynamic nature of the cell periphery in migrating cells made 
the location of these areas diffi cult to discern from frame to frame. How-
ever, the center area was easily identifi able because it was always at the 
apex of the curve of the plasma membrane at the back of the cell. This 
center ROI was redrawn on the corresponding position of each image as 
the cell moved. The data were processed as described. FRAP with com-
plete bleaching was achieved by performing three bleaches of four iter-
ations of saturating 488-nm wavelength, 45 s apart. Only one ROI was 
used to monitor fl uorescence and it encompassed the entire cell. Fluores-
cent intensity values were obtained, normalized, averaged, and graphed 
as described. 

 FRAP with cytoskeletal disruption and protein synthesis inhibitors.   5  μ M 
LatA (for 45 – 60 min; Invitrogen), 30 – 60  μ M Noco (for 60 min; EMD), or 
200 – 400  μ M CHX (for 60 min; Sigma-Aldrich) was added to cells spotted 
on a chamber slide. Gel slabs soaked in double the designated concentra-
tion of drug for 2 h were carefully layered on top of the treated cells. FRAP 
analyses were performed as described. 

 Deconvolution microscopy 
 ACA-YFP/ aca  �    cells were differentiated, plated, and allowed to polarize 
as described. They were quickly fi xed at room temperature for 10 min 
in 1% formaldehyde, 0.1% glutaraldehyde, and 0.01% Triton X-100 in 
15 mM Pipes/1 mM EGTA. After blocking in 10% FBS in PBS, the cells 
were incubated with an anti –  � -tubulin antibody (1:200; Developmental 
Studies Hybridoma Bank) followed by an anti – mouse IgG1 antibody con-
jugated to Alexa 568 (Invitrogen). YFP and Alexa 568 images were 
taken with a DeltaVision system (Applied Precision, LLC) using a 63 ×  ob-
jective. Deconvolution was performed with DeltaVision software and 3D 
reconstructions were made with Imaris software (Bitplane AG). The quan-
tifi cation studies were done with the same fi xative and staining protocol. 
Cells were scored for location of the MTOC with respect to the nucleus 
(stained with DAPI) and the presence of microtubules going to the leading 
edge of the cell. 

 Quantifi cation of the cell track fl uorescence 
 Starved and pulsed cells were plated on 3-mm plates in 1 ml PB in the 
presence of 200  μ M CHX or 60  μ M Noco (or appropriate control sol-
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by 15 min in 1% formaldehyde. After blocking in 50 mM NH 4 Cl, 0.1% 
digitonin, and 1% BSA in PBS, the cells were incubated with an anti-GFP 
antibody (1:500; Abcam) in block solution overnight at 4 ° C followed by 
anti-rabbit Fab fragments conjugated to Nanogold particles (1.4-nm 
particle; Nanoprobes). Staining was enhanced for 7 min with Gold-
Enhance (Nanoprobes) made with one part component A, one part com-
ponent B, one part component C, and three parts PBS. Afterward, the 
samples were stained with osmium and embedded in epon. Images 
were taken with a transmission microscope (H-7000; Hitachi High Tech-
nologies America, Inc.). 

 Hyperbaric freeze EM 
 Differentiated cells were spotted on 50- μ m-thick sapphire discs (3 mm in di-
ameter; BAL-TEC) and allowed to adhere. The cells were fi xed with 2% 
formaldehyde and 2% glutaraldehyde in PB for 15 min (just before they 
started to stream). After three rinses in PB, the discs were dipped into either 
5% Ficoll (MW: 70,000) or 10% FCS in PB and sandwiched between two 
fl at aluminum specimen carriers with a Chien slot grid (Ted Pella) as a spacer 
for high pressure freezing ( Reipert et al., 2004 ). The samples were frozen 
in a high-pressure freezer (HPM10; BAL-TEC) at a pressure of  � 2,000 bar. 
The frozen samples were transferred to an AFS freeze-substitution system 
(Leica) and subjected to freeze substitution in 1.0% osmium tetroxide in 
acetone at  – 90 ° C for 3 d and then slowly warmed up (5 ° C per hour) to 
20 ° C. After several rinses in acetone, the samples were infi ltrated with mix-
tures of epon-aradite (Ted Pella) resin and acetone as follows: 1:2 for 2 h, 1:1 
for 4 h, 2:1 overnight, and in pure resin for 24 h with two changes. Finally, 
the discs were placed into the fl at-bottomed BEEM capsules for polymeriza-
tion at 60 ° C for 1 d. After polymerization, the sapphire discs were sepa-
rated from the resin blocks with the aid of liquid nitrogen vapor. Ultra thin 
sections ( � 80 nm) were cut on Reichert Ultracut E Microtome (American 
Optical) and collected on copper slot grids. Sections were counter-stained 
with uranyl acetate and lead citrate and examined under a transmission 
electron microscope (CM120; FEI; equipped with an image fi lter [GIF100; 
Gatan]) operating at 120 keV. Images were acquired using a cooled 
charge coupled device camera (Gatan). 

 Online supplemental material 
 Fig. S1 shows that ACA activity is inhibited in LatA-treated cells. Fig. S2 
shows that CRAC translocation is normal in LatA-treated cells. Fig. S3 
shows a mosaic of images displaying the steps used to measure the cell 
tracks fl uorescence. Table S1 is a quantifi cation of streaming parameters 
during chemotaxis. Video 1 shows maximum intensity projections of differ-
entiated ACA-YFP/ aca  �    cells randomly moving or subjected to a micro-
pipette fi lled with 1  μ M cAMP. Video 2 shows a 3D reconstruction of confocal 
sections of differentiated ACA-YFP/ aca  �    cells. Video 3 shows a 3D re-
construction of deconvoluted ACA-YFP/ aca  �    cells fi xed and stained with 
an  � -tubulin antibody. Video 4 shows differentiated ACA-YFP/ aca  �    cells 
migrating to a micropipette fi lled with 1  μ M cAMP in the absence or pres-
ence of 60  μ M Noco. Video 5 shows differentiated ACA-YFP/ aca  �    cells 
migrating to a micropipette fi lled with 1  μ M cAMP in the presence of 
400  μ M CHX. Video 6 shows migrating differentiated ACA-YFP/ aca  �    cells 
just before and after a complete cell bleach. Video 7 shows differentiated 
ACA-YFP/ aca  �    cells leaving tracks of ACA-YFP visualized using refl ection 
interference microscopy. Video 8 shows maximum intensity projections of 
migrating differentiated ACA-YFP/ aca  �    cells leaving tracks containing 
ACA-YFP. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200808105/DC1. 
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