
sensors

Article

A Heterogeneous Hardware Accelerator for Image Classification
in Embedded Systems

Ignacio Pérez and Miguel Figueroa *

����������
�������

Citation: Pérez, I.; Figueroa, M. A

Heterogeneous Hardware Accelerator

for Image Classification in Embedded

Systems. Sensors 2021, 21, 2637.

https://doi.org/10.3390/s21082637

Academic Editor: Stefania Perri

Received: 29 January 2021

Accepted: 5 April 2021

Published: 9 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, Universidad de Concepción, Concepción 4070386, Chile; ignperez@udec.cl
* Correspondence: miguel.figueroa@udec.cl

Abstract: Convolutional neural networks (CNN) have been extensively employed for image clas-
sification due to their high accuracy. However, inference is a computationally-intensive process
that often requires hardware acceleration to operate in real time. For mobile devices, the power
consumption of graphics processors (GPUs) is frequently prohibitive, and field-programmable gate
arrays (FPGA) become a solution to perform inference at high speed. Although previous works have
implemented CNN inference on FPGAs, their high utilization of on-chip memory and arithmetic
resources complicate their application on resource-constrained edge devices. In this paper, we present
a scalable, low power, low resource-utilization accelerator architecture for inference on the MobileNet
V2 CNN. The architecture uses a heterogeneous system with an embedded processor as the main
controller, external memory to store network data, and dedicated hardware implemented on recon-
figurable logic with a scalable number of processing elements (PE). Implemented on a XCZU7EV
FPGA running at 200 MHz and using four PEs, the accelerator infers with 87% top-5 accuracy and
processes an image of 224× 224 pixels in 220 ms. It consumes 7.35 W of power and uses less than
30% of the logic and arithmetic resources used by other MobileNet FPGA accelerators.

Keywords: convolutional neural network; MobileNet V2; field-programmable gate array;
power consumption

1. Introduction

Convolutional neural networks (CNNs) [1] have been widely used in object detection,
image classification, and semantic segmentation because of their high accuracy. Compared
to other image-classification techniques such as Local Binary Patterns (LBP), Scale Invari-
ant Feature Transform (SIFT), K-Nearest Neighbor (KNN) or Support Vector Machines
(SVM), CNNs show better robustness when performing classification with large databases,
achieving better accuracy in their results [2–4]. Therefore, CNNs have occupied a funda-
mental role in the development of different applications, such as video surveillance [5],
autonomous and assisted driving [6], assistance navigation for blind and visually impaired
people [7], detection of defects in structures [8], and clinical assistance [9,10]. CNNs per-
form image classification during inference, a process that depends on the architecture
of the network and yields different results depending on the CNN type. In particular,
MobileNet [11,12] is a CNN architecture that features similar accuracy to VGG, GoogLeNet,
and ResNet [13–15], and better accuracy compared to AlexNet and SquezeNet [16,17],
while using fewer parameters than these other networks.

Even with the reduced number of parameters of MobileNet, inference is a computa-
tionally expensive process because it performs a large number of mathematical operations
on the input and intermediate data, and requires fast access to a large number of parame-
ters. In many cases, this inference is performed online on the input data. A notable case
is embedded systems, which frequently operate on images or video acquired from their
environment, and uses inferences to make decisions in real time [18]. Because embed-
ded processing hardware faces severe restrictions in computational resources and power
consumption, performing CNN inference in real time is a challenging task.

Sensors 2021, 21, 2637. https://doi.org/10.3390/s21082637 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3729-6744
https://orcid.org/0000-0002-5033-432X
https://doi.org/10.3390/s21082637
https://doi.org/10.3390/s21082637
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082637
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082637?type=check_update&version=1


Sensors 2021, 21, 2637 2 of 22

Graphics processing units (GPUs) are an attractive platform to implement CNN infer-
ence with high performance because they can exploit the large data parallelism available
in these algorithms to perform more than one order of magnitude faster than traditional
processors [19,20]. However, they reach power consumptions of up to 200 W [21], making
it difficult to use them in portable and mobile devices [22]. Embedded GPUs use custom
acceleration, such as the Nvidia TensorRT environment in the Jetson family, to reduce
power consumption compared to traditional GPUs [23], but their power consumption is
still high compared to dedicated hardware solutions on reconfigurable hardware platforms
such as field-programmable gate arrays (FPGAs) [24]. Dedicated hardware accelerators
for neural networks, such as Google Coral [25], offer very good performance and power
efficiency, but their architecture limits their programmability and the ability to dynamically
retarget the hardware for other tasks in a video-processing pipeline.

FPGAs are hardware platforms that can implement custom architectures for a wide va-
riety of algorithms with a high level of fine-grained data parallelism. Moreover, because an
FPGA can be dynamically reconfigured, its hardware can be shared between different tasks
in an application using time multiplexing. Indeed, recent published work has shown imple-
mentations of MobileNet and other CNN inference algorithms on FPGA [26,27]. However,
these implementations use large devices with relatively high power consumption that
makes it difficult to use them in edge devices for applications that need to achieve a balance
between energy efficiency and inference speed [28]. One such application is object or face
recognition in mobile devices, where a trade-off between video frame rate and power
consumption can be achieved, and often an inference speed of one frame per second (fps)
is sufficient to classify all faces of interest in the input images [29]. Another example is
the semantic segmentation of images in drones and nanosatellites, which favor architec-
tures with high accuracy, a small number of parameters, and compact implementation on
low-power edge devices [30].

In this paper, we describe the architecture of a heterogeneous hardware accelerator for
CNN inference using the MobileNet V2 network. The architecture combines an embedded
processor and reconfigurable hardware to achieve low power and resource utilization,
with an inference speed suitable for most embedded video applications. Our design uses
loop tiling to reuse data, pruning to eliminate parameters in CNN, and quantization to
compress the parameters of the network. These techniques allow us to reduce the effective
size of the CNN and efficiently implement it on an FPGA. As a result, our accelerator
uses fewer on-chip memory and logic/arithmetic resources other MobileNet implemen-
tations in the literature and has lower power consumption compared to other embedded
devices. We designed and implemented the accelerator using high-level synthesis (HLS)
and describe the design space exploration to maximize inference performance. The main
contributions of our work are:

• We designed a heterogeneous architecture on programmable hardware to accelerate
MobileNet V2 inference with lower resource utilization and power consumption than
other published work. This allows our design to be synthesized on edge devices for
applications that favor low resource usage over high inference speed.

• We use loop tiling, loop unrolling, pruning, and quantization techniques to maxi-
mize the inference performance of the MobileNet V2 network and, at the same time,
maintain low power consumption and resource usage on our accelerator.

• Our implementation on a Xilinx XCZU7EV FPGA running at 200 MHz consumes
29 times less power than a desktop processor, and 5 times less than an embedded
GPU. It also uses 30% of the on-chip memory resources and 25% of the arithmetic
resources of other published MobileNet FPGA accelerators.

The rest of this paper is organized as follows: Section 2 shows related work, de-
tailing design techniques and CNN FPGA accelerators. Section 3 details the MobileNet
V2 model, shows the base data for training and inferring, and explains the techniques
used to reduce, accelerate, and implement the CNN in the architecture. Section 4 de-
scribes the architecture and the design space exploration of our custom CNN accelerator.



Sensors 2021, 21, 2637 3 of 22

Section 5 shows experimental results and compares them with other published works.
Finally, Section 6 presents the conclusions and future work.

2. Related Work
2.1. CNN Inference on FPGAs

Inference process in CNNs is done in two stages: convolutional layers, which are
used to extract patterns or features maps of the images, and classification layers, used
to classify the features. In the convolutional stage, each layer applies N convolutions on
the input map, where N is the number of channels or depth of the output map. Then,
an activation function removes the pixels of the output map that are not relevant, and a
reduction function reduces the size of the activation map. The CNN repeats this stage
according to the model it uses. In the classification stage, the CNN linearly associates the
feature maps to obtain C output data elements, where C is the number of categories that
the CNN can recognize. The outputs of the classification layer represent the probability of
classification of the input image in each category.

Performing CNN inference on an FPGA is a challenging problem, due to the limited
logic, arithmetic, and memory resources available on the device, and the performance limi-
tations imposed by the reconfigurable hardware [31]. CNN inference requires performing
millions or billions of arithmetic operations in each layer [32]; moreover, a CNN typically
uses millions of parameters making it impossible to store all weights and activations on the
on-chip memory available on most FPGAs [33,34]. Therefore, most accelerators store data
off chip, which increases inference time due to the limited memory bandwidth available
on the device [35].

Recently, research has used different methods to solve these problems. Published
work [32,36–38] proposes using loop tiling and loop unrolling to reuse weights and acti-
vations, reducing the size of data in on-chip memories, removing bubbles in the pipeline
and parallelizing operations. Many approaches [32,39–43] use quantization strategies,
which reduce the number of bits used to represent weights and activations. Other op-
timizations [44–48] apply pruning and fine-tuning techniques to reduce the number of
parameters of the network. Because quantization and pruning reduce the size of the CNN,
these techniques both speed up computation and increase fraction of the parameters that
can be stored in on-chip memory.

CNN accelerators described in the literature have used the techniques listed above
for CNN inference in FPGAs. For example, the architecture described in [32] implements
VGG16 [13] using singular value decomposition (SVD), loop tiling, and loop unrolling,
achieving inference at 4.45 fps. The authors in [39] use a design flow with quantization
and pruning techniques to implement different CNNs on dedicated hardware and reach
2.75 fps in VGG16. The architecture described in [26] uses quantization, pruning, and loop
tiling to store all feature maps and weights in on-chip memories, processing 32 channels in
parallel on each processing element (PE) to speed up MobileNet [11] inference, and achieve
127 fps. The hardware accelerator described in [27] uses MobileNet V2 [12] with 16-
bit quantization. This design stores all the feature maps in on-chip memories using
a large FPGA. The architecture stores the weights in off-chip memories and transfers
them to a buffer in the FPGA using direct memory access (DMA) in Scatter-Gather (SG)
mode. Moreover, the accelerator uses four PEs, where each can process 32 channels in
parallel, and achieves 266 fps. DiracDeltaNet [40] is based on ShuffleNet [49], but replaces
convolutions with shift operations and uses PACT quantization to classify at 58.7 fps
on an FPGA. The architecture described in [50] uses reverse-pruning and peak-pruning
strategies to improve the compression factor in AlexNet [16] without sacrificing accuracy.
The authors of [51] create a design flow to implement CNN inference in FPGA-based SoCs
using high-level synthesis (HLS). The design flow uses Matlab to quantize and binarize
the parameters and the algorithm of CNN. The workflow transforms the algorithm into an
HLS C/C++ implementation to implement it on an FPGA. The authors use the design flow
in SqueezeNet [17] and achieve a throughput of 14.2 fps.



Sensors 2021, 21, 2637 4 of 22

Table 1 summarizes the results of the FPGA-based CNN implementations described
above using the standard ImageNet dataset [52]. It includes the FPGA platform used,
the CNN architecture and techniques used in the designs, the resource utilization, and the
frame rate supported reported by the accelerator. CNN implementations with more
parameters, such as AlexNet and VGG, infer each image in more time than smaller CNNs
such as MobileNet V1 and V2. This is because the AlexNet and VGG implementations need
to store weights and activations in off-chip memory, adding data-access latency. On the
other hand, the reported MobileNet implementations operate at over 100 fps because
they store all the weights and activations in on-chip memory using large FPGAs, which
reduces latency and increases parallelism. However, these implementations are resource-
intensive, particularly using a large number of on-chip memory blocks (BRAMs) and
multiplier/adders (DSP slices), which makes it difficult to implement them on lower-end
devices with limited resources. General-logic (LUT) resource usage is high on both types
of CNN architectures.

Table 1. FPGA-based CNN inference described in the literature (N/A: Not available).

Qiu et al. Guo et al. Su et al. Bai et al. Yang et al. Zhang et al. Panagiotis et al.
[32] [39] [26] [27] [40] [50] [51]

Year 2016 2018 2018 2018 2019 2019 2020
FPGA XC7Z045 XC7Z045 XCZU9EG Arria 10 SX XCZU3EG XCZU7EV XC7Z020

Freq. (MHZ) 150 214 150 133 250 300 100
CNN VGG-16 VGG-16 MobileNet MobileNet V2 DiracDeltaNet AlexNet SqueezeNet

Reduction SVD N/A Pruning N/A N/A Pruning N/A
Quantization 16 bits 8 bits 8–4 bits 16 bits 1–4 bits 8 bits 8 bits

LUT 182,616 29,867 139,000 163,506 24,130 101,953 34,489
BRAM 486 85.5 1729 1844 170 198.5 97.5

FF 127,653 35,489 55,000 N/A 29,867 127,577 25,036
DSP 780 190 1452 1278 37 696 172

Power (W) 9.63 3.5 N/A N/A 5.5 17.67 N/A
Perf. (GOPS) 136.97 84.3 91.2 170.6 47.09 14.11 N/A

fps 4.45 2.75 127 266 58.7 9.73 14.2
Top-1 N/A 67.72% 64.6% 71.8% 70.1% 55.99% 56.94%
Top-5 86.66% 88.06% 84.5% 91.0% 88.2% N/A 79.94%

2.2. Other Image Classification Algorithms on FPGAs

As mentioned in Section 1, algorithms like SIFT or SVM can also be used to classify
images. Like CNNs, these algorithms have been implemented on FPGAs to speed up the
classification. The architecture described in [53] combines SIFT to extract image features and
SVM for classification. The authors implement the architecture on a Virtex 5 FPGA, using
38,000 LUTs, 9000 registers, and 52 DSP blocks. The hardware implementation can infer an
image of the Caltech-256 database in 0.25 ms, 5.72 times faster than an equivalent software
implementation. The hardware accelerator described in [54] uses SVM to detect melanoma
on an FPGA. The authors use HLS to design an SVM classifier and implement it on an
FPGA as a heterogeneous system using a Zynq-7 ZC702 evaluation board. The architecture
uses 17,500 LUTs, 48 BRAMs, and 5 DSPs to classify an image in 11.46 µs, consuming
2 W of power. Although these implementations use fewer resources and are faster than
CNNs, they achieve lower classification accuracy on large databases, thus limiting their
applicability [2,4].

3. Methods

This section shows the MobileNet V2 CNN architecture, the dataset used in our
evaluation, the modifications that we made to the network to implement it on dedicated
hardware, and the architecture of the accelerator.



Sensors 2021, 21, 2637 5 of 22

3.1. MobileNet V2

MobileNet V2 has two types of layers: (1) convolutional layers, grouped into bottle-
neck blocks that combine standard, depthwise, and expansion/projection convolutions
with batch normalization and activation functions, and (2) classification layers, which use
pooling and fully connected layers.

3.1.1. Convolutional Layers

Figure 1 shows the standard, depthwise, and expansion/projection convolutions of
MobileNet V2. Ni and No are the number of input and output channels, respectively, Mi
and Mo are the size of the input and output feature maps, and K is the size of convolutional
masks (K = 3 in MobileNet V2). MobileNet V2 uses standard convolutions only in the first
layer to combine the RGB channels of the input images. To calculate each output channel,
the CNN performs the sum of the Ni convolutions between each input channel and the
corresponding convolutional mask. Depthwise convolutions use K × K = 3× 3 masks
and a single convolution to extract features on each output channel. Expansion/projection
convolutions calculate each output channel by adding the Ni convolutions of each input
channel, but replacing the 3× 3 mask with 1× 1 weights, transforming convolutions into
multiplications. Expansion convolutions increase the number of channels, while projection
convolutions reduce it.

* =
Mi

K
K

Ni

Ni

Mi

Mo

Mo

(a)

* =Mi
K

K

Mi
Mo

Mo

(b)

* =
Mi

1
1

Ni

Ni

Mi

Mi

Mi

(c)

Figure 1. Convolution types in MobileNet V2. (a) standard convolution; (b) depthwise convolution;
(c) expansion/projection convolution.



Sensors 2021, 21, 2637 6 of 22

MobileNet V2 uses batch normalization [55] to improve the speed, performance,
and stability of training and inference at convolutional layers. Equation (1) shows the
batch normalization:

ynorm =
yconv − E[yconv]√

Var[yconv] + ε
× γ + β (1)

where yconv and ynorm are the input and output feature maps, E[yconv] and Var[yconv] are the
mean and variance of yconv, γ and β are multiplicative and additive weights, and ε is the
stability coefficient. During inference, E[yconv] and Var[yconv] are constant values, which
are computed during training. As an activation function, MobileNet V2 uses ReLU6(),
which saturates with input values less than zero and greater than six, and helps to maintain
CNN stability.

MobileNet V2 combines convolution, normalization, and activation stages into bot-
tleneck blocks, which are shown in Figure 2. Bottleneck blocks increase the number
of channels with expansion convolutions, extract features with depthwise convolutions,
and reduce the output depth with projection convolutions. Figure 2b shows a variant of a
bottleneck block that uses residual layers [15]. Residuals allow the CNN to increase the
number of layers, improving inference precision. These layers add the input feature map
xconv and the output of projection convolution yproj to compute the output feature map yres.

Input feature map

Expansion
Batch Normalization

ReLU6 

Depthwise
Batch Normalization

ReLU6 

Projection
Batch Normalization 

Output feature map

yexp

yproj

ydepth

xconv

(a)

+

xconv

yproj

xres

yres

Input feature map

Expansion
Batch Normalization

ReLU6 

Depthwise
Batch Normalization

ReLU6 

Projection
Batch Normalization 

yexp

ydepth

Output feature map

(b)

Figure 2. Bottleneck blocks. (a) bottleneck block without residual layer; (b) bottleneck block with
residual layer.

3.1.2. Classification Layers

MobileNet V2 uses an average pooling function to transform three-dimensional feature
maps to a one-dimensional array. The pooling function averages the pixels of each channel
of the feature map to generate a vector of size No, which is the depth of the output feature



Sensors 2021, 21, 2637 7 of 22

map of the last convolution layer. Then, the CNN applies a fully-connected layer to classify
the features in the array. Equation (2) shows the computation of the fully connected layer:

y f c[i] = b f c[j] +
No−1

∑
j=0

W f c[i, j]× yavg[j] with 0 ≤ i ≤ Nclass (2)

The CNN linearly associates each component of the array yavg with each other by
adding the product between each component and weight W f c to the bias b f c. The output
array y f c represents the classification probabilities of the Nclass categories in the input image.

3.1.3. MobileNet V2 Model

Table 2 shows the MobileNet V2 model. It uses a standard convolution in the first
layer to combine the RGB channels, 18 bottleneck blocks to extract features, and an average
pooling and a fully connected layer to classify the features. The neural network has
3.4 million parameters.

Table 2. MobileNet V2 model.

Input Output Layer Repeat Expansion Stride Residual Thousands of
(MxMxNi) (MxMxNo) Time Factor Parameters

224 × 224 × 3 112 × 112 × 32 Standard conv 1 - 2 No 0.8
112 × 112 × 32 112 × 112 × 16 Bottleneck 1 1 1 No 0.7
112 × 112 × 16 56 × 56 × 24 Bottleneck 2 6 2 Yes 12.9

56 × 56 × 24 28 × 28 × 32 Bottleneck 3 6 2 Yes 37.3
28 × 28 × 32 14 × 14 × 64 Bottleneck 4 6 2 Yes 177.9
14 × 14 × 64 14 × 14 × 96 Bottleneck 3 6 1 Yes 296.0
14 × 14 × 96 7 × 7 × 160 Bottleneck 3 6 2 Yes 784.2
7 × 7 × 160 7 × 7 × 320 Bottleneck 1 6 1 No 469.4
7 × 7 × 320 7 × 7 × 1280 Expansion conv 1 - 1 No 409.6

7 × 7 × 1280 1 × 1 × 1280 Avg pooling 1 - - - 0.0
1 × 1 × 1280 1 × 1 × 1000 FC 1 - - - 1280.0

3.2. Imagenet Dataset

To test their performance on object recognition, CNNs typically use the ImageNet
dataset [52]. ImageNet has about 1.3 million high-definition RGB images divided into 1000
categories. The dataset has a training group with 1.3 million images, a validation group
with 50,000 images , and a test group with 100,000 unlabeled images , which are used to
compute the accuracy of the network.

3.3. Complexity-Reduction Techniques

Following the experience published in the literature [36,43,46,56], we applied different
techniques to MobileNet V2 to reduce its complexity before designing the architecture of
the hardware accelerator. We merged batch normalization into convolutions, divided the
activations and weights using loop tiling, and used pruning and quantization techniques
to reduce the size of the network.

3.3.1. Batch Normalization

Batch normalization is complex to implement on FPGA hardware because it requires
computing a division and a square root. These operations are resource-intensive and add
significant latency. To simplify the FPGA implementation, we merged batch normaliza-
tion with convolutions [56], by modifying the convolutional masks and adding a bias.
We factored Equation (1) into the computation of yconv to obtain Equation (3):



Sensors 2021, 21, 2637 8 of 22

ynorm =
γ√

Var[yconv] + ε
× yconv + (β− E[yconv]√

Var[yconv] + ε
× γ) = Wnorm × yconv + bnorm (3)

where Wnorm = γ√
Var[yconv ]+ε

are the weights and bnorm = (β − E[yconv ]√
Var[yconv ]+ε

× γ) is the

bias of the normalization. Then, we combined Equation (3) with the convolution yconv =
xconv ×Wconv to obtain Equation (4):

ynorm = (Wnorm ×Wconv)× xconv + bnorm
ynorm = Wcn × xconv + bnorm

(4)

where xconv and yconv are the input and output maps, respectively, and Wconv are the
convolutional weights. Equation (4) shows the batch normalization process folding into con-
volutions, with Wcn and bnorm being the new convolutional weights and bias, respectively.

3.3.2. Loop Tiling

We used loop tiling to reuse the data stored on the limited on-chip memory in an
FPGA. Figure 3 shows the division used on the maps and parameters to apply the technique.
We separated the activations and weights into blocks of size TM × TM × TN and TN × TN ,
where TM and TN are tiling factors used on the map size and layer depth, respectively. Each
iteration of the inference computes one block at a time, reducing the number of on-chip
memory blocks used in this part of the architecture.

TM

TM

TM TM

TN

TN

M

N

(a)

TN

TN

TN

N

TN

N

(b)

Figure 3. (a) Loop tiling in feature maps; (b) loop tiling in weights.

3.3.3. Pruning

Although pruning allows us to reduce the number of weights and arithmetic oper-
ations, it must be applied carefully so that each PE processes a similar amount of data.
Otherwise, load unbalance will negatively affect the performance of the accelerator. We ap-
plied the bank-balanced pruning technique proposed in [46], which groups data in blocks
and uses pruning to remove the same number of parameters in each block. Figure 4 shows
the bank-balanced pruning that we used on MobileNet V2. We divided the weights into
blocks of size TN , where TN is the tiling factor. Then, we removed the data with the lowest
absolute value and retrained the CNN to improve accuracy. We repeated the process until
we reached an acceptable pruning factor and inference accuracy.

Because the new post-pruning weight matrix is sparse, we used the index system
presented in [44], where each non-zero weight is associated with an index that stores the
distance with the next non-zero weight. Using this technique, we store only non-zero
parameters in on-chip memory.

In our application, we did not apply pruning to depthwise convolution because their
weights only represent 3% of the total number of MobileNet V2 parameters. Moreover,
because depthwise convolution extracts features in the CNN, removing weights from



Sensors 2021, 21, 2637 9 of 22

that layer negatively affects accuracy. Specifically, applying a reduction rate of 0.1 in
depthwise convolution layers only eliminates 0.19% of the total weights of the network,
but top-1 accuracy reduces by 16.67%. Conversely, when we apply the same reduction
rate to expansion/projection the convolution layers, we can eliminate 6.25% of the total
parameters, and top-1 accuracy is reduced only by 0.84%.

Tile factor: 8

9 7 7 5 9
9 4 8 4 7
4 5 6 7 3

9 6 7 6 6

1 0 3
2 3 3

0 2 1

5 4 2

Bank-balanced
pruning

PE 1

PE 2

PE 3

PE n

...

Original dense matrix Bank-balanced sparce matrix

9 7 7 5 9
9 4 8 4 7
4 5 6 7 3

9 6 7 6 6

...

Figure 4. Bank-balanced pruning in MobileNet V2.

3.3.4. Quantization

We used dynamic quantization [43] to reduce the number of bits in the activations
and weights. Equation (5) shows the quantization strategy that we applied to MobileNet
V2. We divided the floating-point data y f loat by a scaling factor ∆ and rounded the result
to obtain the quantized fixed-point value yquant. The scaling factor ∆ is computed as the
difference between the maximum and minimum floating-point data divided by number of
values that can be represented by yquant:

yquant = round(
y f loat

∆
) with ∆ =

max(y f loat)−min(y f loat)

2bits (5)

4. Hardware Architecture
4.1. MobileNet V2 Accelerator Architecture
4.1.1. General Architecture

Figure 5 shows the architecture of our MobileNet V2 accelerator. The heterogeneous
architecture is divided into a processing system (PS) and programmable logic (PL). The PS
integrates a programmable processor (CPU) that acts as a controller and off-chip memory
that stores the activations and weights of the CNN. The PL uses reconfigurable logic to
implement the PEs that compute each layer of the network. In our current implementation,
the PL has four PEs that operate in parallel. Inference in the architecture operates as follows:
(1) the CPU writes the off-chip memory address of weights and control data onto the PL
using an AXI Master protocol, (2) the CPU sends feature and residual maps from external
memory to each PE as a data stream, using a direct-memory access (DMA) controller,
(3) each PE stores the blocks of weights and control data in on-chip buffers, and (4) the
PEs compute each layer, reading and writing the input and output activations from/to
off-chip memory as a data streams using DMA. The accelerator iterates over the data until
it completes the inference.



Sensors 2021, 21, 2637 10 of 22

CPU

External
memory

PL

...

PE 1

PS

PE n

PS
Feature map
Residual map
Weights
Control

Core

DMA

AXI
Master

Figure 5. Architecture of the MobileNet V2 accelerator.

4.1.2. Processing Elements

Each PE contains functional units (FUs) that are custom-designed to compute each type
of MobileNet V2 layer. A multiplexer selects the correct FU at each point in the computation.

Standard and depthwise FUs: Figure 6 shows the FUs that computes the standard
and depthwise convolutions. The input maps are stored in line buffers. The standard and
depthwise FUs implement Equation (4) to compute the convolutions. The FUs also use a
multiplexer to implement ReLU6 function. The PEs write out each output map as a data
stream onto external memory.

Σ +Σx

TM

TM x TM

0

6

Bias ReLU6ConvolutionLine buffers

9 9

9

xconv

Wcn

bnorm

ystan

9

<0

>6

else

Feat. map
Weight

(a)

+Σx

TM

Bias ReLU6ConvolutionLine buffers

9 9

9

xconv

Wcn

bnorm

ydepth

Feat. map
Weight

9

0

6

<0

>6

else

(b)

Figure 6. (a) Standard convolution FU; (b) depthwise convolution FU.



Sensors 2021, 21, 2637 11 of 22

Standard and depthwise convolutions use values in a 3× 3 neighborhood to compute
their results. Because the PEs receive the pixels as a data stream that traverses consecutive
rows of the tiling map, the FUs use two line buffers and a 9-register array to compute
the 3× 3 window of the input map xconv, and nine registers to store the 3× 3 window of
weights Wcn. The accelerator implements each line buffer as a First-In-First-Out (FIFO)
queue using on-chip memory. Each line buffer has a size of TM words to store a row of the
tiling map.

The second stage of the standard and depthwise FUs computes the multiplications
of convolutions using nine parallel multipliers and a pipelined adder tree. The standard
convolution uses an additional stage to add the convolution of the current input chan-
nel with the partial sum of the previous input channels to compute the output channel.
The architecture stores the partial sum in a buffer of size TM × TM.

The final two stages add the batch normalization bias bnorm of Equation (4) and com-
pute the activation function. A multiplexer implements the ReLU6 function by saturating
the output to zero or six. The PEs send their outputs to external memory as a data stream.

Expansion/projection FU: Figure 7 shows the expansion/projection FU. Because
expansion/projection convolutions reuse the input maps and use pruning to compute
Equation (4), and because the CPU sends the activations only once, the FU must store the
inputs. For this reason, the input stage of the FU uses buffers of size TNi × TM × TM and
TNi × TNo to store an input map block xconv and a weight block Wcn, respectively.

Σ +x

ConvolutionBuffers

xconv

Wcn

bnorm

ReLU6

proj

exp

res

no res

+

Mux
expansion
projection

Mux
residual Residual

Feat. map
Weights

yres

yproj

yexp

xres

TNi x TM x TM

TNo x TM x TM

Bias

Residual

TNi x TNo 

0

6

<0

>6

else

Figure 7. Expansion/projection FU.

The second stage of the FU computes the convolution using the weights Wcn and
the input maps xconv read from the buffer. A single scalar multiplier compute the 1× 1
convolutions used by these layers. Then, the FU adds the convolution of the current
input channel to the partial sum of the previous channel to compute the output channel.
The accelerator uses a buffer of size TNo × TM × TM to store the partial sum.

The third stage adds the batch normalization bias bnorm of Equation (4). If the layer
is a projection convolution, the PE computes the ReLU6 activation function and adds the
residual map xres if the layer uses it. Finally, the expansion/projection accelerator sends
the output map ylayer to external memory as a data stream.

Average pooling FU: Figure 8 shows the average pooling FU. The PE receives the
input map block as a data stream. Because the CPU sends each input channel consecutively,
the accelerator does not need to store the activations in buffers. The PE adds all input pixels
of the current channel and stores the intermediate results in a register. Then, the accelerator
divides the sum by the number of pixels of the channel to compute the average value.
Because the last convolutional map is of size 7× 7, the accelerator divides the sum by the



Sensors 2021, 21, 2637 12 of 22

constant value 49. To simplify the design, we used a lookup table (LUT) to implement the
division. Finally, the FU streams out the output yavg to external memory.

Fully-connected layer FU: Figure 9 shows the architecture of the fully-connected
layer FU. An input stage stores the input array and weights in buffers. The PE computes
Equation (2) and streams the output array to the CPU using DMA.

Like the average pooling FU, the fully-connected layer reuses the input array block
read from the CPU No times to compute Equation (2). Therefore, each PE stores a full tile
of the input in a buffer of size TNi. Similarly, the accelerator stores the weight blocks W f c in
a buffer of size TNi × TNo to apply the pruning indices.

+

last

add

xconv

yavg

Feat. map
Average pooling

÷

49

Figure 8. Average pooling FU.

+ +x

MultiplicationBuffer

Wfc

bfc

yfc
TNi

TNo

Bias

yavg

Feat. map
Weight

TNi x TNo

Figure 9. Fully-connected layer FU.

The second stage computes Equation (2) using the input array yavg, the weights W f c,
and the bias b f c. The PE multiplies the input yavg by the weight W f c and adds the output
to the partial sum of the previous results of the current component of the output array y f c.
The architecture uses a buffer of size TNo to store the partial results. Finally, when the FU
has added the No products, it adds the bias b f c and streams the output to the CPU, which
writes it out as the inference result.

4.1.3. Parallel Map Processing

Our architecture uses n = 4 PEs in parallel to speed up the inference. Figure 10 shows
the spatial division of feature maps, where each partition is computed in a separate PE. We
partition the maps across the channels to keep the bank-balanced pruning intact. Each PE
processes N/n channels, subdivided into blocks of size TN for each iteration of the layer.



Sensors 2021, 21, 2637 13 of 22

TM

TN

M

N

PE0
PE1

PEn
...

Figure 10. Partition of feature maps for parallel PE processing.

4.2. Design Space Exploration

In this section, we show how we applied loop tiling, pipelining, loop unrolling,
and array partitioning to improve the performance of the accelerator.

4.2.1. Loop Tiling Factor

As discussed in Section 3.3.2, we used loop tiling to the depth and size of the data.
We considered different loop tiling factors TN and TM to reduce inference time. Table 3
shows the inference time for different loop tiling factors applied to activations and weights.
The times were measured on the implementation of the accelerator described in Section 5.
As the table shows, inference time decreases with the size of the loop tiling factor be-
cause the accelerator reuses more data, decreasing access to off-chip memory. However,
larger tiling factors require more on-chip memory. We used loop tiling factors of 32 and
28 for the depth and size, respectively, which provide and adequate trade-off between
performance and memory usage adequate for limited-resource devices.

Table 3. Inference time with different loop tiling factors.

Loop Tiling Factor Inference Time (ms)Activations Weights

14 16 252.8
14 32 239.7
14 64 241.6
28 16 230.2
28 32 220.5

4.2.2. Pipelining

The accelerator combines the spatial parallelism of multiple PEs with deep pipelining
within the architecture of each PE. A pipelined architecture executes multiple stages of the
computation in parallel on different data, using synchronized registers to decouple the
stages. Although latency is not decreased and can even increase in a pipelined architecture,
throughput and clock rate increase, boosting performance. We use pipelining in the design
of every FU in the PEs.

4.2.3. Loop Unrolling Factor

The loop unrolling technique eliminates bubbles caused by control dependencies in
the pipeline and exposes additional parallelism in the algorithm. Although the data stream
provided by the DMA controller restricts parallelism because the PEs can only access
one data element at a time, in the expansion/projection accelerator, we can parallelize
its operation when the PE reads the data from the activation buffer. For this reason,
we used loop unrolling on the inner loop that traverses the feature map block. Table 4



Sensors 2021, 21, 2637 14 of 22

shows the number of clock cycles needed by the accelerator to execute the inner loop of
the expansion/projection convolution, for different loop unrolling factors. As the table
shows, processing time decreases with the unrolling factor because it increases the data
parallelism available to the PE. We used a loop unrolling factor of 28 in the inner loop
of expansion/projection convolution FU. Larger unrolling factors have no effect because
performance is limited by the loop tiling factor.

Table 4. Processing time on expansion/projection FU with different loop unrolling factors.

Loop Unrolling Factor Processing Cycles
Min Max

Without unrolling 53 788
Unrolling ×7 30 114
Unrolling ×14 15 57
Unrolling ×28 8 29

4.2.4. Array Partitioning

HLS allows using an array partitioning pragma to divide an array into blocks and
synthesize it in independent on-chip memories. Using this feature, the architecture can
access more data at the same time, increasing parallelism. We used a partitioning factor
of 28 in the map-size component of the activation buffer of the expansion/projection
accelerator to access 28 pixels in parallel, which are then processed by the parallel units
created through loop unrolling.

5. Results
5.1. Classification Performance

As discussed in Section 3.3, we used pruning and quantization to obtain a reduced
version of MobileNet V2, and retrained the network after applying these techniques using
the original parameters as initial values. Table 5 shows the MobileNet V2 hyperparameter
values used for retraining and inference. We configured the network for input images of
224× 224 pixels with a width multiplier of 1, which preserves the number of channels in
the default configuration. The CNN has 21 layers, composed of one standard convolution
layer and 18 bottleneck blocks to extract features, plus one average pooling and one fully
connected layer to classify the features. For bank-balanced pruning, we used a reduction
rate of 0.3 for the expansion/projection convolutions and 0.7 for the fully-connected
layer, and retrained the CNN with a learning rate of 0.001, a momentum of 0.9 and
30 epochs. In dynamic quantization, we used 12 and 10 bits for maps and parameters in
the convolutional layers, respectively, and 12 and 6 bits for activations and weights in the
fully-connected layer. With these modifications, our reduced version of MobileNet V2
achieves top-1 and top-5 accuracy of 65.62% and 87.03% on ImageNet. Compared to the
unmodified network, top-1 and top-5 accuracy is reduced by 6.26% and 3.26%, respectively.
Table 6 shows examples of inference results in our reduced CNN. Columns 2 and 3 of
the table show images that the network correct classifies in the top and within the top 5
probabilities, respectively, while column 4 shows an incorrectly classified image.



Sensors 2021, 21, 2637 15 of 22

Table 5. MobileNet V2 hyperparameters used for retraining and inference (N/A: not applicable).

Hyper Parameter Retraining Inference

Batch size 32 1
Input image size 224× 224 224× 224
Width multiplier 1 1
Number of layers 21 21

Learning rate 0.001 N/A
Momentum 0.9 N/A

Number of epochs 30 N/A

Table 6. Inference results in our reduced MobileNet V2 network (Images taken from the ImageNet
2012 validation dataset [52]).

Image id 00041633 00031834 00023151

Correct label mink walker hound combination lock

Results

mink: 71.63% beagle: 28.18% syringe: 7.65%
weasel: 11.72% walker hound: 14.47% reel: 6.17%
polecat: 6.79% basset: 6.34% fountain pen: 6.00%
hamster: 2.12% basenji: 5.90% corkscrew: 3.91%
wombat: 1.91% pembroke: 4.81% wine bottle: 3.34%

5.2. Performance and Resource Utilization

We designed the accelerator architecture using the Xilinx HLS environment. We used
Xilinx Vivado HLS 2019.2 to compile the HLS code to a register transfer level (RTL) descrip-
tion, and Xilinx Vitis IDE 2019.2 to manage the CPU and processor-logic communication.
We synthesized the design and analyzed its performance using the Xilinx Vivado 2019.2
design suite. We implemented the accelerator on the reconfigurable logic of a Xilinx Zynq
UltraScale+ XCZU7EV FPGA, which also has an ARM Cortex-A53 processor. Our architec-
ture uses four parallel PEs implemented on the FPGA, which communicates with the ARM
processor using a direct memory access (DMA) block.

Table 7 shows the resource utilization of each PE in our implementation. The table
separates the resources used for standard convolutions, depthwise convolutions, expan-
sion/projection convolution, average pooling, and fully-connected FUs, the read-control
information section, and the communication protocols of input and output signals on
the PE. As the table shows, each PE uses 125 BRAMs and 85 DSP slices. The expan-
sion/projection architecture uses most of the BRAMs because these layers store a full input
map block. In addition, standard convolution and fully-connected FUs use BRAMs to store
their partial sums. The control information section uses the rest of the BRAMs as a buffer
to store the PE control signals. Because each map block is of size 28× 28, standard and
depthwise architectures use LUTs and registers to implement the line buffers. The expan-
sion/projection and fully-connected FUs use 72-bit wide URAM memory blocks to store
the prune weights.

Table 8 shows the resource utilization of the complete accelerator on the FPGA, using
four PEs in parallel. As the table shows, this implementation of our architecture uses
532 BRAMs, 24 URAMs, and 340 DSP slices. The PEs use the URAM and DSP slices to
compute the inference, while the DMA block uses 32 BRAMs as buffers to store the input
and output data.



Sensors 2021, 21, 2637 16 of 22

Table 7. Resource utilization of each PE.

Module Slice Slice BRAM URAM DSPLUT Registers

Standard FU 2378 1737 6 0 21
Depthwise FU 1904 1747 0 0 18

Expansion/projection FU 3668 1335 112 3 40
Average pooling FU 363 209 0 0 1
Fully-connected FU 775 578 1 3 4

Read control information 3215 2211 6 0 1
Communication protocols 3069 5514 0 0 0

Total 15,372 13,331 125 6 85
Percent 7.36% 3.06% 19.71% 6.25% 4.92%

Table 8. Resource utilization of the accelerator.

Module Slice Slice BRAM URAM DSPLUT Registers

DMA 57,072 75,322 32 0 0
PEs 61,161 53,292 500 24 340

Total 118,233 128,614 532 24 340
Percent 51.32% 27.91% 85.26% 25.00% 19.68%

Our implementation runs at a maximum clock frequency of 200 MHz. The critical
path that limits the clock frequency runs from the output of a DSP slice that computes
the multiplication between the input maps and the weights, to the input of a register that
stores the result in the standard convolution FU.

At the maximum clock frequency, Xilinx Vivado estimates the power consumption of
the accelerator as 7.35 W, with 0.73 W and 6.62 W of static and dynamic power respectively.
The AMR processor consumes 2.79 W (0.12 W of static power and 2.67 W of dynamic
power), while the FPGA logic section consumes 4.56 W (0.62 W of static power and 3.94 W
of dynamic power). Each PE consumes 0.56 W, while the DMA block and the clock
distribution network consume the remaining 2.32 W.

Our implementation processes an image of 224× 224 pixels at 4.54 fps (220.5 ms),
performing 2.76 GOPS. The processor uses 57.4 ms to manage and send the data to the
accelerator, which computes the inference in 163.1 ms. Table 9 shows the execution time
of each layer of the MobileNet V2 network. As the table shows, the PS processing time is
larger in the first layers of the CNN because the processor must manage and send more
blocks to the accelerator when the size of the feature maps is larger than 28. The accelerator
processing time increases with the size (in the first layers) or depth (in the last layers) of
the activation because the number of blocks that each PE processes per iteration increases.



Sensors 2021, 21, 2637 17 of 22

Table 9. Execution time of each layer of MobileNet V2 on the accelerator.

Input (MxMxNi) Output (MxMxNo) Layer Processor [ms] Accelerator [ms] Total [ms]

224 × 224 × 3 112 × 112 × 32 Standard conv 1.5 18.1 19.6
112 × 112 × 32 112 × 112 × 16 Bottleneck 5.7 7.2 12.9
112 × 112 × 16 56 × 56 × 24 Bottleneck 29.0 29.9 58.9
56 × 56 × 24 28 × 28 × 32 Bottleneck 9.2 12.7 21.9
28 × 28 × 32 14 × 14 × 64 Bottleneck 4.0 12.9 16.9
14 × 14 × 64 14 × 14 × 96 Bottleneck 3.4 18.7 22.1
14 × 14 × 96 7 × 7 × 160 Bottleneck 3.3 30.1 33.4
7 × 7 × 160 7 × 7 × 320 Bottleneck 0.7 14.6 15.3
7 × 7 × 320 7 × 7 × 1280 E × pansion conv 0.2 12.9 13.1

7 × 7 × 1280 1 × 1 × 1280 Avg pooling 0.2 0.3 0.5
1 × 1 × 1280 1 × 1 × 1000 Fc 0.2 5.7 5.9

MobileNet V2 57.4 163.1 220.5

5.3. Scalability

When we synthesize the architecture onto a larger device, we can increase the number
of PEs and the amount of activation and weight data that can be stored on chip. This
allows the architecture to scale its performance at the cost of increased resource utilization.
Table 10 shows resource utilization, inference time, and maximum fps achieved by multiple
versions of the accelerator configured with 4, 8, and 12 PEs. We obtained these results
by synthesizing the accelerator onto a XCZU19EG FPGA, which features with 2.26 times
more LUTs and registers, 3.15 times more BRAMs, 1.33 times more URAMs and 1.14 times
more DSP than our XCZU7EV FPGA. As the table shows, LUTs and BRAMs limit the
number of PEs that can be implemented on the chip because the architecture requires more
finite-state machines to control the inference, and stores more data in on-chip memories,
respectively. With 12 PEs, the accelerator computes inference on an image in 40.65 ms,
reaching a throughput of 24.6 fps.

Table 10. Resource utilization and inference time on an XCZU19EG FPGA for different numbers
of PEs.

Number Slice Slice BRAM URAM DSP Time fpsof PEs LUT Registers [ms]

4 121,689 127,020 524 24 340 126.91 7.87
8 240,660 250,278 1047 48 680 63.45 15.76
12 368,936 391,517 1572 72 1020 40.65 24.60

5.4. Discussion

Table 11 summarizes the key parameters of the FPGA accelerators of Table 1 and
compares them to the accelerator presented in this paper. As the table shows, our design is
closest to [26,27], which implement versions 1 and 2 of MobileNet, respectively. Compared
to our implementation, these designs achieve significantly higher throughput, mainly
because they use large FPGA devices that allow them to store all the map data in on-chip
memory. This has several benefits: it allows them to increase parallelism through more
PEs, it eliminates the need to access comparatively slow off-chip memory, and it eliminates
the computation and communication latency introduced by the processor. The cost is
increased resource utilization: indeed, our design uses 23–30% of the arithmetic and
memory resources used by these solutions, allowing us to map the accelerator onto a
wider range of devices. Even when using 12 PEs in parallel, our accelerator exhibits lower
resource usage because we process only one channel at a time in each PE to save hardware
resources and power, while the other solutions process 32 simultaneous channels per PE.



Sensors 2021, 21, 2637 18 of 22

Compared to the VGG [32,39] accelerators, our implementation achieves similar
inference time and top-5 accuracy, but lower resource utilization. The accelerator in [40]
uses the CNN DiracDeltaNet architecture, which has been custom-designed for FPGAs,
replacing multiplications with shift operations and using aggressive quantization. They
report better resource utilization than our implementation, with slightly better accuracy.
The AlexNet accelerator [50] computes inference 2.14 times faster than our accelerator
but uses a clock frequency 1.5 times faster. In comparison, our accelerator achieves better
accuracy, uses less resources, and consumes 2.4 times less power. The SqueezeNet [51]
CNN has fewer parameters and layers than MobileNet V2, and their accelerator is faster
than our design, but with lower top-1 and top-5 accuracy.

Table 11. Comparison to other CNN accelerators (N/A: Not available).

Implementation CNN Top-1 (%) Top-5 (%) Power (W) fps LUT BRAM FF DSP

Qiu et al. [32] VGG-16 N/A 86.7 9.63 4.45 182,616 486 127,653 780
Guo et al. [39] VGG-16 67.7 88.1 3.5 2.75 29,867 85.5 35,489 190
Su et al. [26] MobileNet 64.6 84.5 N/A 127 139,000 1729 550,00 1452
Bai et al. [27] MobileNet V2 71.8 91.0 N/A 266 163,506 1844 N/A 1278

Yang et al. [40] DiracDeltaNet 70.1 88.2 5.5 58.7 24,130 170 29,867 37
Zhang et al. [50] AlexNet 56.0 N/A 17.67 9.73 101,953 198.5 127,577 696

Panagiotis et al. [51] SqueezeNet 56.9 79.9 N/A 14.2 34,489 97.5 25,036 172
This work MobileNet V2 65.6 87.0 7.35 4.54 118,233 532 128,614 340

We also compared the performance of our accelerator to the Nvidia Jetson AGX Xavier
benchmarks [57] and the Google Coral Dev Board [25], which are commercially avail-
able platforms. In the case of the Nvidia Jetson platform, the processor and GPU cores
on this device run at a clock frequency 2.27 GHz and 1.38 GHz, respectively. Using the
ResNet-50 [15] and VGG19 CNN architectures, the GPU performs an inference between
6.8–11.3 times faster than our accelerator. However, its power consumption is 4.2–5.2 times
higher, limiting its use in power-constrained edge devices. The Coral Dev Board uses a
Tensor Processing Unit (TPU), a custom-built accelerator for the TensorFlow framework.
Implementing MobileNet V2, the Coral hardware performs inference at 385 fps and con-
sumes 5.4 W. Indeed, Coral achieves better performance and power than our accelerator,
but its special-purpose architecture limits its application to neural-network computation.
In comparison, our accelerator was designed for programmable hardware platforms, which
can easily assign their logic resources to other tasks, such as image processing and machine
vision algorithms, through dynamic reconfiguration.

We also compared the performance of the accelerator to desktop-class hardware.
We computed MobileNet V2 inference in software using the PyTorch framework with
CUDA 10.2 and tested the software on an Nvidia RTX 2080 GPU and an Intel i9-9900K CPU.
The desktop GPU is one order of magnitude faster than our accelerator (21.7 ms inference),
but with 30 times the power consumption (215 W). The CPU achieves approximately the
same inference time (222 ms) with more than one order of magnitude higher power (95 W).

Although other accelerator architectures achieve faster inference than our design, our
accelerator achieves a good balance between accuracy, performance, and power consump-
tion. This makes our architecture attractive for embedded and portable devices that process
video with limited hardware resources and power budget. For example, our accelerator
could be embedded on a smart camera architecture, allowing it to classify objects at a frame
rate of 4 to 25 fps, depending on the device used in the implementation. For applications
such as face recognition in video analytics, this performance can be sufficient in most
scenarios [29].

6. Conclusions

In this paper, we proposed the architecture of a hardware accelerator for MobileNet
V2 inference. Our architecture was designed for reconfigurable logic devices, and features



Sensors 2021, 21, 2637 19 of 22

good scalability, as well as lower resource utilization and power consumption compared to
other published and commercial accelerators that run on reconfigurable or programmable
hardware. This allows our architecture to be implemented on edge devices for real-time
image classification that are resource- and power-constrained. The accelerator uses loop
tiling, bank-balanced pruning, dynamic quantization, and off-chip storage to increase
performance and reduce hardware resource utilization and power consumption. Our im-
plementation uses an embedded processor and external memory to control the execution of
the algorithm and to store parameters, respectively. The accelerator exploits the parallelism
available in the various MobileNet V2 layers using pipelining and multiple processing
elements implemented on reconfigurable hardware. By configuring the number of pro-
cessing elements, our architecture can trade off inference speed for power and resource
utilization. This allows us to target the implementation to a wide range of devices, or to
share hardware resources with other algorithms on the same device.

We implemented a prototype of the architecture on a Xilinx Zynq Ultrascale+ XCZU7EV
FPGA with 2 GB of DDR4 external memory. Our accelerator performs inference on
224 × 224-pixel images at 4.53 fps, consumes 7.35 W, and achieves a top-1 and top-5
accuracy of 65.62% and 87.03%, respectively. Our implementation uses 20% and 85% of the
DSP slices and on-chip memory blocks available on the FPGA. Implemented on a larger
XCZU19EG FPGA, our design reaches 24.6 fps with 12 PEs.

We are currently working on improving the communication between the processor
and the accelerator using a faster DMA-SG interface, which stores transfer instructions in
on-chip memory instead of the CPU cache. We are also working on quantizing MobileNet
V2 with PACT functions to further reduce the number of bits used to represent weights
and activations, allowing us to store more data in the same amount of on-chip memory.

Author Contributions: Conceptualization, I.P. and M.F.; Methodology, I.P. and M.F.; Software, I.P.;
Supervision, M.F.; Writing—original draft, I.P. and M.F. Both authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Agency for Research and Development (ANID)
through graduate scholarship folio 22180733 and FONDECYT Regular Grant No. 1180995.

Data Availability Statement: The experiments presented in this paper were performed using im-
ages from the ImageNet database available at http://www.image-net.org/index accessed on 28
December 2020.

Acknowledgments: The authors would like to thank Gonzalo Carvajal for his help with providing
information on the performance of dedicated hardware for CNN inference.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BRAM Block Random Access Memory
CNN Convolutional Neural Network
CPU Central Processing Unit
DMA Direct Memory Access
DSP Digital Signal Processor
FIFO First In First Out
FPGA Field-Programmable Gate Array
fps frames per second
FU Functional Unit
GOPS Giga Operations per Second
GPU Graphics Processing Unit
HLS High-Level Synthesis
KNN K-Nearest Neighbor

http://www.image-net.org/index


Sensors 2021, 21, 2637 20 of 22

LBP Local Binary Patterns
LUT Lookup Table
PE Processing Element
PL Programmable Logic
PS Processing System
SG Scatter Gather
SIFT Scale Invariant Feature Transform
SVD Singular Value Decomposition
SVM Support Vector Machines
RTL Register Transfer Level
TPU Tensor Processing Unit
URAM Ultra Random Access Memory

References
1. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
2. Shaha, M.; Pawar, M. Transfer Learning for Image Classification. In Proceedings of the 2018 Second International Conference on

Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 656–660.
3. Makkar, T.; Kumar, Y.; Dubey, A.K.; Rocha, A.; Goyal, A. Analogizing time complexity of KNN and CNN in recognizing

handwritten digits. In Proceedings of the 2017 Fourth International Conference on Image Information Processing (ICIIP), Shimla,
India, 21–23 December 2017; pp. 1–6.

4. Chaganti, S.Y.; Nanda, I.; Pandi, K.R.; Prudhvith, T.G.N.R.S.N.; Kumar, N. Image Classification using SVM and CNN. In Proceed-
ings of the 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), Sydney, Australia,
19–20 December 2020; pp. 1–5.

5. Pérez-Hernández, F.; Tabik, S.; Lamas, A.; Olmos, R.; Fujita, H.; Herrera, F. Object Detection Binary Classifiers methodology
based on deep learning to identify small objects handled similarly: Application in video surveillance. Knowl.-Based Syst. 2020,
194, 105590. [CrossRef]

6. Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Gläser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep Multi-Modal
Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges. IEEE Trans. Intell.
Transp. Syst. 2021, 22, 1341–1360. [CrossRef]

7. Afif, M.; Ayachi, R.; Said, Y.; Pissaloux, E.; Atri, M. An evaluation of retinanet on indoor object detection for blind and visually
impaired persons assistance navigation. Neural Process. Lett. 2020, 51, 2265–2279. [CrossRef]

8. Jiang, Q.; Tan, D.; Li, Y.; Ji, S.; Cai, C.; Zheng, Q. Object detection and classification of metal polishing shaft surface defects based
on convolutional neural network deep learning. Appl. Sci. 2020, 10, 87. [CrossRef]

9. Lyra, S.; Mayer, L.; Ou, L.; Chen, D.; Timms, P.; Tay, A.; Chan, P.Y.; Ganse, B.; Leonhardt, S.; Hoog Antink, C. A Deep Learning-
Based Camera Approach for Vital Sign Monitoring Using Thermography Images for ICU Patients. Sensors 2021, 21, 1495.
[CrossRef] [PubMed]

10. Shibata, T.; Teramoto, A.; Yamada, H.; Ohmiya, N.; Saito, K.; Fujita, H. Automated Detection and Segmentation of Early Gastric
Cancer from Endoscopic Images Using Mask R-CNN. Appl. Sci. 2020, 10, 3842. [CrossRef]

11. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

12. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23
June 2018.

13. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

14. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper With
Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7–12 June 2015.

15. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems 25; Curran Associates, Inc.: Red Hook, NY, USA 2012; pp. 1097–1105.

17. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <1 MB model size. arXiv 2016, arXiv:1602.07360.

18. Teichmann, M.; Weber, M.; Zöllner, M.; Cipolla, R.; Urtasun, R. MultiNet: Real-time Joint Semantic Reasoning for Autonomous
Driving. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Suzhou, China, 26 June–1 July 2018; pp. 1013–1020.

http://doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.knosys.2020.105590
http://dx.doi.org/10.1109/TITS.2020.2972974
http://dx.doi.org/10.1007/s11063-020-10197-9
http://dx.doi.org/10.3390/app10010087
http://dx.doi.org/10.3390/s21041495
http://www.ncbi.nlm.nih.gov/pubmed/33670066
http://dx.doi.org/10.3390/app10113842


Sensors 2021, 21, 2637 21 of 22

19. Strigl, D.; Kofler, K.; Podlipnig, S. Performance and Scalability of GPU-Based Convolutional Neural Networks. In Proceedings of
the 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, Pisa, Italy, 17–19 February 2010;
pp. 317–324.

20. Kim, H.; Nam, H.; Jung, W.; Lee, J. Performance analysis of CNN frameworks for GPUs. In Proceedings of the 2017 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS), Santa Rosa, CA , USA, 24–25 April 2017;
pp. 55–64.

21. Li, D.; Chen, X.; Becchi, M.; Zong, Z. Evaluating the Energy Efficiency of Deep Convolutional Neural Networks on CPUs
and GPUs. In Proceedings of the 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social
Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-
SustainCom), Atlanta, GA, USA, 8–10 October 2016; pp. 477–484.

22. Zhu, Y.; Samajdar, A.; Mattina, M.; Whatmough, P.N. Euphrates: Algorithm-SoC Co-Design for Low-Power Mobile Continuous
Vision. arXiv 2018, arXiv:1803.11232.

23. Haut, J.M.; Bernabé, S.; Paoletti, M.E.; Fernandez-Beltran, R.; Plaza, A.; Plaza, J. Low–High-Power Consumption Architectures
for Deep-Learning Models Applied to Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 776–780.
[CrossRef]

24. Caba, J.; Díaz, M.; Barba, J.; Guerra, R.; López, J.A. Fpga-based on-board hyperspectral imaging compression: Benchmarking
performance and energy efficiency against gpu implementations. Remote Sens. 2020, 12, 3741. [CrossRef]

25. Kang, P.; Jo, J. Benchmarking Modern Edge Devices for AI Applications. IEICE Trans. Inf. Syst. 2021, 104, 394–403. [CrossRef]
26. Su, J.; Faraone, J.; Liu, J.; Zhao, Y.; Thomas, D.B.; Leong, P.H.; Cheung, P.Y. Redundancy-reduced mobilenet acceleration on

reconfigurable logic for ImageNet classification. In Proceedings of the Applied Reconfigurable Computing. Architectures, Tools,
and Applications: 14th International Symposium, ARC 2018, Santorini, Greece, 2–4 May 2018; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 16–28.

27. Bai, L.; Zhao, Y.; Huang, X. A CNN Accelerator on FPGA Using Depthwise Separable Convolution. IEEE Trans. Circuits Syst. II
Express Briefs 2018, 65, 1415–1419. [CrossRef]

28. Hareth, S.; Mostafa, H.; Shehata, K.A. Low power CNN hardware FPGA implementation. In Proceedings of the 2019 31st
International Conference on Microelectronics (ICM), Cairo, Egypt, 15–18 December 2019; pp. 162–165.

29. Kim, S.; Lee, J.; Kang, S.; Lee, J.; Yoo, H. A Power-Efficient CNN Accelerator With Similar Feature Skipping for Face Recognition
in Mobile Devices. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1181–1193. [CrossRef]

30. Bahl, G.; Daniel, L.; Moretti, M.; Lafarge, F. Low-Power Neural Networks for Semantic Segmentation of Satellite Images.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Seoul, Korea, 27 October–3
November 2019.

31. Yih, M.; Ota, J.M.; Owens, J.D.; Muyan-Özçelik, P. FPGA versus GPU for Speed-Limit-Sign Recognition. In Proceedings of the
2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 843–850.

32. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S.; et al. Going Deeper with Embedded
FPGA Platform for Convolutional Neural Network. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 26–35.

33. Fowers, J.; Ovtcharov, K.; Strauss, K.; Chung, E.S.; Stitt, G. A High Memory Bandwidth FPGA Accelerator for Sparse Matrix-
Vector Multiplication. In Proceedings of the 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom
Computing Machines, Boston, MA, USA, 11–13 May 2014; pp. 36–43.

34. Colleman, S.; Verhelst, M. High-Utilization, High-Flexibility Depth-First CNN Coprocessor for Image Pixel Processing on FPGA.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 2021, 29, 461–471. [CrossRef]

35. Jin, Z.; Finkel, H. Population Count on Intel® CPU, GPU and FPGA. In Proceedings of the 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), New Orleans, LA, USA, 18–22 May 2020; pp. 432–439.

36. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural
Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, 22–24 February 2015; pp. 161–170.

37. Ni, Y.; Chen, W.; Cui, W.; Zhou, Y.; Qiu, K. Power optimization through peripheral circuit reusing integrated with loop tiling
for RRAM crossbar-based CNN. In Proceedings of the 2018 Design, Automation Test in Europe Conference Exhibition (DATE),
Dresden, Germany, 19–23 March 2018; pp. 1183–1186.

38. Abdelouahab, K.; Pelcat, M.; Sérot, J.; Berry, F. Accelerating CNN inference on FPGAs: A Survey. arXiv 2018, arXiv:1806.01683.
39. Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-Eye: A Complete Design Flow for Mapping

CNN Onto Embedded FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 35–47. [CrossRef]
40. Yang, Y.; Huang, Q.; Wu, B.; Zhang, T.; Ma, L.; Gambardella, G.; Blott, M.; Lavagno, L.; Vissers, K.; Wawrzynek, J.; et al.

Synetgy: Algorithm-hardware co-design for convnet accelerators on embedded fpgas. In Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26 February 2019; ACM: New York, NY,
USA, 2019; pp. 23–32.

41. Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental Network Quantization: Towards Lossless CNNs with Low-Precision
Weights. arXiv 2017, arXiv:1702.03044.

http://dx.doi.org/10.1109/LGRS.2018.2881045
http://dx.doi.org/10.3390/rs12223741
http://dx.doi.org/10.1587/transinf.2020EDP7160
http://dx.doi.org/10.1109/TCSII.2018.2865896
http://dx.doi.org/10.1109/TCSI.2020.2966243
http://dx.doi.org/10.1109/TVLSI.2020.3046125
http://dx.doi.org/10.1109/TCAD.2017.2705069


Sensors 2021, 21, 2637 22 of 22

42. Banner, R.; Nahshan, Y.; Soudry, D. Post training 4-bit quantization of convolutional networks for rapid-deployment. In Advances
in Neural Information Processing Systems 32; Curran Associates, Inc.: Red Hook, NY, USA 2019; pp. 7950–7958.

43. Mathew, M.; Desappan, K.; Kumar Swami, P.; Nagori, S. Sparse, Quantized, Full Frame CNN for Low Power Embedded Devices.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, HI, USA,
22–25 July 2017.

44. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. Presented at the 4th International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4
May 2016.

45. Narang, S.; Undersander, E.; Diamos, G. Block-sparse recurrent neural networks. arXiv 2017, arXiv:1711.02782.
46. Cao, S.; Zhang, C.; Yao, Z.; Xiao, W.; Nie, L.; Zhan, D.; Liu, Y.; Wu, M.; Zhang, L. Efficient and effective sparse LSTM on FPGA

with Bank-Balanced Sparsity. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Seaside, CA, USA, 24–26 February 2019; ACM: New York, NY, USA, 2019; pp. 63–72.

47. Lin, S.; Ji, R.; Yan, C.; Zhang, B.; Cao, L.; Ye, Q.; Huang, F.; Doermann, D. Towards Optimal Structured CNN Pruning via
Generative Adversarial Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 15–21 June 2019.

48. Luo, J.; Wu, J. An Entropy-based Pruning Method for CNN Compression. arXiv 2017, arXiv:1706.05791.
49. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23
June 2018.

50. Zhang, M.; Li, L.; Wang, H.; Liu, Y.; Qin, H.; Zhao, W. Optimized Compression for Implementing Convolutional Neural Networks
on FPGA. Electronics 2019, 8, 295. [CrossRef]

51. Mousouliotis, P.G.; Petrou, L.P. CNN-Grinder: From Algorithmic to High-Level Synthesis descriptions of CNNs for Low-end-
low-cost FPGA SoCs. Microprocess. Microsyst. 2020, 73, 102990. [CrossRef]

52. Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

53. Qasaimeh, M.; Sagahyroon, A.; Shanableh, T. FPGA-Based Parallel Hardware Architecture for Real-Time Image Classification.
IEEE Trans. Comput. Imaging 2015, 1, 56–70. [CrossRef]

54. Afifi, S.; GholamHosseini, H.; Sinha, R. SVM classifier on chip for melanoma detection. In Proceedings of the 2017 39th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017;
pp. 270–274.

55. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Pro-
ceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456.

56. Krishnamoorthi, R. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv 2018, arXiv:1806.08342.
57. Nvidia Corporation. Jetson AGX Xavier: Deep Learning Inference Benchmarks. Available online: https://developer.nvidia.com/

embedded/jetson-agx-xavier-dl-inference-benchmarks (accessed on 28 December 2020).

http://dx.doi.org/10.3390/electronics8030295
http://dx.doi.org/10.1016/j.micpro.2020.102990
http://dx.doi.org/10.1109/TCI.2015.2424077
https://developer.nvidia.com/embedded/jetson-agx-xavier-dl-inference-benchmarks
https://developer.nvidia.com/embedded/jetson-agx-xavier-dl-inference-benchmarks

	Introduction
	Related Work
	CNN Inference on FPGAs
	Other Image Classification Algorithms on FPGAs

	Methods
	MobileNet V2
	Convolutional Layers
	Classification Layers
	MobileNet V2 Model

	Imagenet Dataset
	Complexity-Reduction Techniques
	Batch Normalization
	Loop Tiling
	Pruning
	Quantization


	Hardware Architecture
	MobileNet V2 Accelerator Architecture
	General Architecture
	Processing Elements
	Parallel Map Processing

	Design Space Exploration
	Loop Tiling Factor
	Pipelining
	Loop Unrolling Factor
	Array Partitioning


	Results
	Classification Performance
	Performance and Resource Utilization
	Scalability
	Discussion

	Conclusions
	References

