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Abstract

Mathematical models of cardiac cells have been established to broaden understanding of

cardiac function. In the process of developing electrophysiological models for cardiac myo-

cytes, precise parameter tuning is a crucial step. The membrane resistance (Rm) is an

essential feature obtained from cardiac myocytes. This feature reflects intercellular coupling

and affects important phenomena, such as conduction velocity, and early after-depolariza-

tions, but it is often overlooked during the phase of parameter fitting. Thus, the traditional

parameter fitting that only includes action potential (AP) waveform may yield incorrect val-

ues for Rm. In this paper, a novel multi-objective parameter fitting formulation is proposed

and tested that includes different regions of the Rm profile as additional objective functions

for optimization. As Rm depends on the transmembrane voltage (Vm) and exhibits singulari-

ties for some specific values of Vm, analyses are conducted to carefully select the regions of

interest for the proper characterization of Rm. Non-dominated sorting genetic algorithm II is

utilized to solve the proposed multi-objective optimization problem. To verify the efficacy of

the proposed problem formulation, case studies and comparisons are carried out using mul-

tiple models of human cardiac ventricular cells. Results demonstrate Rm is correctly repro-

duced by the tuned cell models after considering the curve of Rm obtained from the late

phase of repolarization and Rm value calculated in the rest phase as additional objectives.

However, relative deterioration of the AP fit is observed, demonstrating trade-off among the

objectives. This framework can be useful for a wide range of applications, including the

parameters fitting phase of the cardiac cell model development and investigation of normal

and pathological scenarios in which reproducing both cellular and intercellular properties

are of great importance.
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Introduction

Mathematical models of cardiac electrophysiology are of the utmost importance in solving a

wide range of biomedical and pharmacological problems [1]. Computational models of cardiac

myocytes facilitate the understanding of important properties and phenomena at both cellular

and tissue levels [2]. Cardiac myocyte models are usually represented by non-linear systems of

ordinary differential equations (ODEs), in which a large number of unknown parameters need

to be tuned during the processes of model development and calibration [3, 4].

For tuning the parameters, several optimization methods have been proposed to overcome

the high computational burden and inaccuracy of a trial and error approach [2]. Gradient and

heuristic-based approaches [5–8] are the most common methods for tuning the model param-

eters. In accordance with the literature review, one can notice that the optimization approaches

developed for tuning cardiac cell models are mainly limited to the single objective problems of

fitting action potential (AP) waveforms, ionic channel currents, or a combination thereof, i.e.,

properties of single cardiac cells. These optimization protocols can be inaccurate in reproduc-

ing interconnected cell properties, i.e., tissue behavior [3]. However, intercellular electrical

coupling properties are critical in the context of large-scale modeling [9].

To illustrate the importance of considering intercellular features, it has been demonstrated

that two distinct sets of parameters can generate identical single-cell AP waveforms [10, 11],

while their intercellular characteristics are different [3]. This dissimilarity stems from the

incomplete characterization of current dependencies in source-sink relationships [3]. AP

propagation in the tissue occurs provided that an adequate charge is delivered to local sinks by

active sources [12]. Membrane resistance (Rm) is a useful indicator to characterize this intercel-

lular communication [13, 14].

Weidmann [15] pioneered the measurement of Rm during AP waveform and described a

phenomenon called all-or-nothing repolarization (ANOR) in sheep Purkinje fiber. To demon-

strate all-or-none behavior, current pulses were applied after the absolute refractory period to

perturb the AP trajectory. In response to these pulses, the AP either returned to the diastolic

phase (repolarized) or exhibited regenerative depolarization to follow the AP waveform. This

behavior, in which a perturbation of membrane voltage during the AP leads to repolarization,

is known as auto-regenerative ANOR [16, 17].

To further investigate important dynamic characteristics, including Rm and auto-regenera-

tive ANOR, a three-dimensional (3D) visualization of time, transmembrane voltage, and cur-

rent (t-Vm-Im) was introduced by Zaniboni [17–19]. In these studies, it has been demonstrated

that negative Rm [20] occurs in the late phase of repolarization. The time interval during which

Rm becomes negative is called the ANOR window, and its importance in the occurrence of

early after-depolarizations (EADs) has been clearly shown [17]. The membrane during this

time interval behaves as a source of current, which results in surges in outward currents in

response to any additional hyperpolarizing current. Similarly, depolarizing perturbations in

voltage result in additional depolarizing current, which may cause EADs. Moreover, on the

borders of the ANOR window, high values of Rm and nonlinearity of the Im-Vm curve appear.

In the Rm profiles of similar APs obtained with different sets of parameters in the same model

or Rm profiles of different models with similar cell types, it has been demonstrated that these

high Rm values can occur at different voltages [17]. Furthermore, it has been shown that mea-

suring a high value of Rm at the end of plateau is computationally unfeasible and can be

affected by discontinuities of the Rm profile [21]. However, these observations have not been

directly considered in the cellular fitting approach described in this paper.

The speed of AP waveform propagation is called conduction velocity (θ). Regions of cardiac

tissue with slower θ are at risk of re-entrant propagation, which is associated with arrhythmia
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[22]. Also, the relationship between Rm during the diastolic phase (i.e., rest phase) and θ, in a

human atrial model was studied in [23], which has been demonstrated that decreasing Rm
results in reduced θ. This reduction results from the increase in the electrical load on neighbor-

ing cells. Moreover, the analysis of a human ventricular model suggests that reduction of [K+]o

results in increased Rm during the rest phase, which can be a symptom of hypokalemia [24].

The discussion above emphasizes the benefits and rationale for including Rm as one of the

objective functions during parameter fitting. In [3], Kaur et al. considered Rm values together

with AP as objectives for multi-objective optimization. However, Kaur et al. [3] did not

account for the fact that Rm values as a function of the transmembrane voltage, Vm, increase

steeply to become singular at specific values of Vm. The dependency of the Rm profile on Vm
and discontinuity of this profile pose a computational challenge for the fitting procedure that

must be addressed to ensure a robust procedure.

In this paper, we propose a careful selection of regions of interest for Rm during the AP

waveform. These regions are selected after the analysis of different cardiac myocyte models for

the human left ventricle under different physiological and pathophysiological conditions. Dur-

ing the different phases of the AP, three regions are identified by excluding ranges near the

points which are susceptible to singularity, i.e., when Rm goes to infinity. By specifically consid-

ering Rm in these regions, the parameter fitting process is more robust. Considering the AP,

Rm waveform in the repolarization phase, and Rm value in the rest phase as objectives allows us

to explore the trade-offs of objectives among cellular and intercellular properties within the

framework of multi-objective optimization. Moreover, to reduce the number of optimization

objectives, an interpolation approach is adapted to fit a curve to Rm points, and fitness of this

curve instead of individual Rm points is used as one of the objective functions. This enhances

the computational tractability of optimization and facilitates visualization of the Pareto front.

Materials and methods

Mathematical models and simulation specifications

Two mathematical models of the human ventricular epicardial cell are used in this study for

the optimization: the Ten Tusscher et al. (TNNP) model [25], and the Iyer-Mazhari-Winslow

(IMW) model [26]. All simulations are carried out in Matlab R2018a [27], using codes of the

models available at www.cellml.org. The detailed description of ODEs associated with these

human ventricular cell models can be found in [25, 26]. The built-in ode15s solver in Matlab

for stiff systems of ODEs is utilized. Also, the Parallel Computing Toolbox is used in the simula-

tions to reduce the computational time.

The AP is produced by injecting a 2 ms current pulse with 20 pA/pF amplitude [10]. To

reach the steady-state condition, each model is allowed to run for 20 beats at a 1 s interval (1

Hz), and the 20th AP is selected for analysis. Values of Rm are normalized to a cell capacitance

of 180 pF [17, 18].

The TNNP and different configurations of IMW models are considered as the base and ref-
erence (experimental data)models, respectively. In other words, key parameters of the base
model (TNNP) are adjusted to attempt to reproduce data generated by the reference model
(IMW). The importance of selected parameters is thoroughly discussed in [10]. In addition to

the mentioned models, another state-of-the-art ventricular model [28] is utilized to further

examine the Rm profile for the proper selection of regions of Rm far from singular points.

Rm measurement

The protocol used to measure Rm during the AP waveform at a particular point (voltage) dur-

ing repolarization is illustrated in Fig 1. For each specific Vm value of interest, the ODEs of the
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model are solved in two separate simulations. Both simulations start by simulating an AP until

reaching the point (voltage) of interest during repolarization. At this point, the simulation is

changed to voltage-clamp mode, and the voltage is kept constant at 10 mV higher (Vm+10) or

lower (Vm-10) than the point of interest, respectively. The resulting membrane currents (Im+10
and Im-10) are recorded after 5 ms of voltage-clamp in each simulation. The ratio of difference

in voltage (ΔVm) to change in current (ΔIm) is used to estimate Rm [3, 14].

To avoid ambiguities where the same voltage value occurs more than once during repolari-

zation, the AP waveform is divided into three parts based on global/local minima and maxima

(red marks in Fig 1). In each part, the voltage clamp protocol described above is applied. Fig 1

represents the Rm profile (brown line) calculated from the AP waveform of the TNNP model

as an example. In the Rm profile, the ANOR window (grey rectangle) [17] is bounded by the

sharp increase of positive and negative Rm values. Inside the window, Rm values are negative.

It is worth noting that the Rm profile is constructed as a function of voltage, rather than spe-

cific points in time. This allows a more direct comparison between models even when there

may be a substantial discrepancy between models in the timing of different states of the AP

(i.e., substantial differences in AP shape and duration) [3].

Fig 1. Calculation of Rm during the AP waveform of the TNNP model. The inset illustrates the voltage clamp for a

specific point of voltage (Vm). According to the existence of local/global minima and maxima (red marks), the AP

waveform is separated into three parts. The grey rectangle represents the ANOR region.

https://doi.org/10.1371/journal.pone.0225245.g001
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Discontinuity and voltage dependence of the Rm profile

As illustrated in Fig 1, Rm is positive during the plateau phase of the AP, becomes negative dur-

ing the ANOR window, and returns to positive values during late repolarization. The transi-

tion from positive to negative values (and the reverse) is associated with a discontinuity due to

singular Rm points, i.e., the magnitude of Rm increases, rapidly approaching infinity. Fig 2 pro-

vides further insight into the rapidly changing Rm near this discontinuity. In this figure, the Rm
profile of the TNNP model is calculated by applying voltage clamp using a range of sampling

resolutions (1 mV, 0.5 mV, 0.1 mV). Fig 2 confirms that decreasing the step size to record high

resolution of Rm profiles results in increasing peak values for Rm (red oval). Therefore, depend-

ing on the Rm step size, different peak values of Rm will be calculated (approaching infinity as

the voltage step size decreases). Hence, attempts to match the Rm profile for parameter tuning

near these transition points cannot be expected to yield robust results. However, as can be per-

ceived from the parts of Rm profile highlighted by green ovals in Fig 2, this is not a concern

other than in the immediate vicinity of the discontinuities.

The challenge described above is further compounded by the fact that Rm points, which are

susceptible to be singular, appear at different values of Vm for different cell models, even when

the cell models have similar AP (Fig 3(A)). This can be observed in Fig 3(B), which shows that

the peak values of the Rm profile of the fitted base model (fitting result) are not aligned with the

peak values of the reference model (IMW).

Based on the above discussion, it is important to carefully select the best regions of Rm to

use for parameter fitting. This is performed by examining different cell models in different

states, as described next.

Defining allowed and disallowed regions for capturing Rm in optimization

To establish specific disallowed regions for our models of interest, for each model configuration

of interest, we first find the singular points (see example in Fig 4). We then exclude voltage ranges

containing these points in any model of interest (“Disallowed Regions” in Fig 4) from consider-

ation and focus the fitting of Rm on the voltage ranges with no singularities (“Allowed Regions” in

Fig 4). In the proposed approach, objective functions related to Rm are selected from allowed

regions only, eliminating the discontinuity problem discussed in the previous subsection.

To define the allowed and disallowed regions for this paper, three human cardiac ventricular

cell models (TNNP, different configurations of the IMW, and [28]) are used. The extent of the

disallowed regions is chosen as 5 mV outside the “outermost” singularity (black pentagrams in

Fig 4) of any of the models of interest. The singularity in repolarization phase for one of the con-

sidered ventricular models [28] (not shown in Fig 4) happens around -70 mV; as a result, the

extension ofDisallowed Region 2 is similar to what is seen in Fig 4. The determination of the dis-

allowed regions is specific to the models and AP configurations of interest in a particular fitting

problem and must thus be carried out for the defined fitting scenario of interest.

Problem definition of the multi-objective optimization

The general formulation of the multi-optimization problem (MOP) is as follows:

min
xi
FðxÞ

s:t: xi 2 X; i ¼ 1; . . . ; p

HðxiÞ ¼ 0

GðxiÞ � 0

lbi � xi � ubi

ð1Þ
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Fig 3. Representation of similar AP with dissimilar Rm profile. (a) AP waveform: The base model (TNNP) is fitted to the

reference model (IMW). (b) Rm profile: Rm profile associated with the fitted base model (fitting result) is significantly different

from the Rm profile corresponding to the reference model.

https://doi.org/10.1371/journal.pone.0225245.g003

Fig 2. An illustration of discontinuity. The discontinuity of the Rm profile of the TNNP model is shown by voltage

clamp in different step sizes (1 mV, 0.5 mV, 0.1 mV). Red and green ovals demonstrate the areas with and without

discontinuity, respectively.

https://doi.org/10.1371/journal.pone.0225245.g002
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where F(x) = [f1(x),. . ., fM]T is a vector of objective functions, andM is the number of objec-

tives thereof, that varies by the user preference. xi (i = 1,. . ., p) is a vector of decision variables,

G(xi) andH(xi) are inequality and equality constraint vectors, respectively. ubi and lbi are con-

sidered as vectors of upper and lower bounds of decision variables, respectively. In the follow-

ing paragraphs, firstly, the objective functions defined in this study are introduced. Thereafter,

decision variables utilized in our MOP are demonstrated.

F(x) reflects cellular and intercellular parameters. Amid cellular properties, minimizing the

root-mean-squared-error (RMSE) of AP is considered as the first objective. The RMSE of AP

(RMSEAP) can be calculated as follows:

f1ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

G

XG

i¼1

ðVreference ðiTsÞ � V
fitting result ðiTsÞÞ

2

v
u
u
t ð2Þ

where G and Ts denote the number of sample points and sample time, respectively. V reference

and V fitting result are the AP waveforms of the reference model and fitted base model,
respectively.

Fitting selected points of the Rm profile in the allowed regions, discussed in the previous

subsection, could be taken into consideration as a key intercellular property. In this study,

errors in fitting several points within Allowed Region 2 are considered as potential objectives of

the optimization problem. However, considering multiple resistance points increases the

dimension of the optimization problem, thereby increasing the computational complexity.

Hence, we instead settle on the curve of Rm profile obtained in Allowed Region 2 as the second

objective. To calculate this curve, first, the voltage clamp protocol described in Rm measure-

ment subsection is applied to the AP waveform within Allowed Region 2 for each 5 mV. Then,

the calculated discrete points of Rm are connected by interpolation to produce a more densely

Fig 4. Defining allowed and disallowed regions. Rm profiles of human ventricular cell models (IMW, TNNP,

Shortened APD (IMW), Prolonged APD (IMW), Hyperkalemia (IMW), and Hypokalemia (IMW) models) are

demonstrated to define allowed (green regions) and disallowed (red regions) regions. Disallowed regions are defined

based on the location of black pentagrams where singularities occur.

https://doi.org/10.1371/journal.pone.0225245.g004
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sampled Rc curve. The RMSE of Rc (RMSERc) as a second objective is then obtained as follows:

f2ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

D

XD

j¼1

ðRreferencec ðjÞ � Rfitting resultc ðjÞÞ
2

v
u
u
t ð3Þ

where D is the number of discrete points obtained by interpolation. Rcreference and Rcfitting result

are the reconstructed Rm points in Allowed region 2, for the reference model and fitted base
model, respectively.

The value of Rm in the diastolic (resting) phase (Rd) in Allowed Region 3 is another intercel-

lular property derived from the Rm profile. The absolute error (AE) of Rd (AERd) is utilized as a

third objective:

f3ðxÞ ¼ absðR
reference
d � Rfitting resultd Þ ð4Þ

where Rdreference and Rdfitting result are the Rm values in Allowed Region 3 of the reference model
and fitted base model, respectively.

Based on the above description, three objective functions are introduced, in whichM varies

regarding the scenarios defined in the description of optimization scenarios subsection.

The xi (i = 1,. . .,16) are GNa, GCaL, GbNa, GbCa, GKr, Gto, GK1, GKs, Gpk, PNaK, kNaCa, GpCa,
Vmaxup, crel, arel, and Vleak for the results presented in this paper. These parameters are maxi-

mum conductances and maximum rates for transporters, pumps, and intercellular Ca2+ han-

dling mechanisms in the model. The ubi and lbi are defined within the physiological ranges

and obtained by trial and error search [6]. More explanations of parameters and boundaries

are provided in Table A1 in the S1 Appendix. Our formulation does not require equality and

inequality constraints described in Eq 1.

The solution to the multi-objective problem

The outcome of the optimization is a set of optimal solutions, in which there is a trade-off

among different conflicting objectives. In other words, there are contradictions among objec-

tives, and some of them can only be optimized while others are not at their optimum value.

The basic terminologies regarding MOP solutions are represented as follows and are further

explored in Fig 5.

Definition 1- Dominant solution: A solution set x2 dominates x
�

, if fi (x2)� fi (x
�

), i = 1,

2,. . .,M (where M is the number of objectives) and among the different inequalities, at least

one of them is strict.

Fig 5. The basic concept of the MOP solution on a convex Pareto front.

https://doi.org/10.1371/journal.pone.0225245.g005
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Definition 2- Pareto front: A solution that is not dominated by other solutions is a Pareto-

optimal solution. The set of all Pareto solutions constitute the Pareto front.

In Fig 5, x1, x2, and x3 are Pareto optimal solutions; and therefore, they are among the solu-

tion sets which held the trade-off among objectives. As can be seen in this figure, Pareto opti-

mal solutions from the Pareto front (black curve), which consisting of the solutions of the

Pareto front set, are not dominated by other solutions. In the case that the Pareto front is

obtained precisely, no feasible solution below the Pareto front can be attained. Therefore, the

solution point, marked with yellow, is infeasible. The green point called utopia is the minimum

solution for all the objectives; however, reaching this solution is infeasible. It is worth noting

that the multi-objective optimization aims at attaining solution sets, forming the Pareto front

approximation with minimum deviation from the true Pareto front.

Multi-objective evolutionary algorithms background

The most general and simplest approach to solve the MOPs is the weighted-sum approach, in

which the user defines the values of weights. The choice of weight values highly depends on

the problems and the level of priority of each objective. In this method, the MOP is transferred

to a single objective by defining a new objective function, which is the summation of each nor-

malized weighted objective [29]. Being dependent on the weight vector, selected by trial and

error in a time-consuming procedure, is amid the major drawbacks of this approach. This

problem can be addressed by multi-objective evolutionary algorithms (MOEAs) in which the

simultaneous search of algorithm results in finding the trade-off among objectives. A wide

range of MOEAs has been proposed in the last decade to solve complex optimization problems

heuristically [30, 31] in various fields of study, including biological engineering [32–34].

NSGA-II

Amongst MOEAs, NSGA-II (non-dominated sorting genetic algorithm II) [35] is a powerful

optimization tool. Some properties of this algorithm for utilizing in our problem are as

follows:

1) Utilizing the elitism principle maintains the best solutions for the next generation, 2)

crowding distance technique provides a diversity of the solutions, and 3) it has been demon-

strated to be a successful algorithm in many engineering problems.

The definitions required to understand the procedure of NSGA-II are given as follows:

Definition 3- Crossover: The crossover is an operator to mix the genetic information of the

parents and produce the Offspring. In NSGA-II, simulated binary crossover (SBX) is used,

which creates pairs of offspring from parents based on the crossover index.

Definition 4- Mutation: The genetic diversity of the population from one generation to

another is controlled by the operator known as mutation. In NSGA-II, the polynomial muta-

tion is utilized, which controls the probability distribution of solutions using an external

parameter. This parameter adjusts the diversity of solution sets.

Definition 5- Crowding distance: Crowding distance is determined by the cube enclosing

each solution and measures the diversity of a solution from its neighbor. The solution with the

largest crowding distance wins the tournament selection and is kept for the next iteration.

A brief description of NSGA-II procedure is as follows:

Step 1- Initialization: at the initial iteration, t = 0, the parent population of size N (Pt) is ran-

domly generated by assigning random values to the parameters within the upper and lower

bounds as described in the problem definition of the multi-objective optimization subsection.

Crossover and mutation operations are utilized to generate the offspring population (Qt) of

the first iteration.
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Step 2- Pareto fronts construction: to extract the Pareto fronts (Fi, i = 1, . . .), firstly, the

combined population (Rt) consisting of Pt and Qt is generated at each iteration. Then, non-

dominated sorting is applied to each solution of the population to categorize the Rt into fronts.

Individuals who are not dominated by others are chosen for the 1st front. Such individuals that

are dominated by individuals in the 1st front, while they are not dominated by any other indi-

viduals, are classified as front 2. This procedure is repeated recursively to form all possible

Pareto fronts.

Step 3- Elitist set construction: the individuals participate in the competition to be selected.

The criteria to choose the elitist sets of parameters (problem definition of the multi-objective

optimization subsection) are based on the rank of domination and crowding distance. For

individuals in different fronts, those in the lower front win the tournament (non-dominated

rank). If individuals have the same rank (same front), the individuals with larger crowding dis-

tance are selected. The elitist set is used as the parent population of the t+1th iteration (Pt+1).
Step 4- Satisfying the stopping criterion: mutation, crossover, and steps 2–3 are repeated

until the stopping criterion is met. Here, a maximum number of iterations is set as the stop-

ping criterion.

Finally, the 1st Pareto front of Rt obtained from the last iteration is attained as the solution sets.

As population size and the number of evaluations greatly impact the execution time of the

optimization, by performing a sensitivity analysis using a grid search and comparing the

Pareto sets of various runs, 100, 10000, 20, and 20 are opted for population size, the number of

evaluations, the distribution index of simulated binary crossover, and distribution index of

polynomial mutation, respectively. Therefore, the results of runs pertain to this set of hyper-

parameters are reported in this paper.

Selection of optimal solution

Once the Pareto front for a multi-objective optimization problem has been found, the selection

of a single optimal solution as a preferred solution is essential in the decision-making process.

In this work, the following equation is defined to choose a desirable solution:

min
j

XM

i¼1

f i
min
� f ij

f i
min
� f i

max

� � !

j

XN

j¼1

XM

i¼1

f i
min
� f ij

f i
min
� f i

max

� � !

j

ð5Þ

where N andM are the population size and number of objectives, respectively. fji is ith objective

for the jth solution sets. f imin, and f imax represent the minimum and maximum values of ith

objective, respectively [36].

Results

Description of considered AP configurations

In this paper, three scenarios consisting of different combinations of objectives (see next sub-

section) are utilized to examine the efficacy of the proposed optimization problem in fitting

the characteristics of the base model to the reference one. In each scenario, characteristics of

five distinct configurations of the IMW model (Fig 6) are considered as references to verify the

robustness of the approach. In Configuration 1, the baseline IMW model is used as a reference.
Configurations 2 and 3 explore parameter sets that produce shortened and prolonged action
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potential duration (APD) of the IMW model, respectively. These configurations are defined

based on the crucial role of potassium (K+) channels in arrhythmia disease. Increased K+ cur-

rent amplitude results in APD shortening and can induce re-entry, while decreased K+ current

amplitude prolongs APD. EAD and a form of abnormal heart rhythm called torsades de

pointes can occur due to excessive prolongation of the APD [37]. To simulate these conditions,

the availability of delayed rectifier K+ currents (Ikr and Iks) are changed by manipulating the

maximum conductances associated with these currents. Configurations 4 and 5 are devised to

represent conditions of hyperkalemia and hypokalemia, respectively. In hyperkalemia [K+]o is

increased to above 6 mM, and in hypokalemia [K+]o is decreased to below 3.5 mM [24]. Thus,

in Configurations 4 and 5, [K+]o are set to 6.5 mM and 3 mM, respectively.

As described in the problem definition of the multi-objective optimization, the RMSE and

AE, well-defined evaluation criteria in the literature (e.g., in [5]), are used to assess the accu-

racy of the fitting.

Description of optimization scenarios

Three distinct optimization scenarios are considered in this paper to assess the contributions

of different fitting objective functions to the outcome of the optimization.

Scenario 1 involves single-objective optimization considering only AP fitness. The optimi-

zation is defined and solved using GA. In this scenario, RMSEAP obtained by Eq 2 is the only

objective function.

Scenario 2 is a bi-objective optimization problem with two objective functions, namely

RMSEAP (Eq 2) and RMSERc (Eq 3). The optimization is solved by NSGA-II.

In Scenario 3, minimizing the AERd (Eq 4) is considered as an additional objective in addition

to reducing the RMSEAP and RMSERc. The multi-objective optimization is solved by NSGA-II.

The relative percentage of improvement or deterioration in fit for the different scenarios is

calculated as follows:

C ¼
jE1 � E2j

E1

� 100 ð6Þ

Fig 6. Representation of Configurations 1–5 and fitting results. In the optimization process, only AP is considered

as an objective. Solid and dash lines show the references and fitting results, respectively.

https://doi.org/10.1371/journal.pone.0225245.g006
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where E1 and E2 are evaluation metrics (e.g., RMSEAP) for the benchmark model and the

model of interest for two scenarios.

For the purpose of comparing the accuracy of various scenarios in fitting RMSERc and

AERd, a posteriori calculations of RMSERc and AERd are conducted for Scenario 1, while a pos-

teriori calculation of AERd is performed for Scenario 2.

Numerical results

The average (Ave.) and standard deviation (Std.) of RMSEAP (mV), RMSERc (GΩ), and AERd
(GΩ) in 10 trials are calculated for all scenarios and configurations, and the results are pre-

sented in Table 1. In Scenario 1, the range of Ave. and Std. of RMSEAP are changed within

[1.05, 1.88] mV and [0.15, 0.28] mV, respectively. Although, the AP fit in this scenario is rela-

tively good (Fig 6), RMSERc is quite high. As an example, this poor-fitting Rc in Scenario 1 is

demonstrated for one of the configurations in Fig 7. This figure illustrates the difference

between Rc of the optimization result and the reference for one of the trials of Scenario 1, Con-
figuration 3 (RMSEAP = 1.53 mV, RMSERc = 0.35 GΩ). This observation demonstrates that

considering the AP only as an objective may not necessarily result in a good fit for intercellular

properties (i.e., Rc) to those of the reference (model or experimental data). As can be clearly

seen from Table 1, in Scenario 2, the Ave. of RMSERc in Configurations 1–5 are considerably

improved by 89.89%, 95.05%, 88.34%, 95.52%, and 96.14%, respectively in comparison to cor-

responding configurations in Scenario 1. Fig 7 confirms this significant improvement in

RMSERc compared to Scenario 1. Moreover, Std. of RMSERc in Scenario 1 are notably larger

than the corresponding values in Scenario 2 (Table 1). This observation shows that fitting AP

only (Scenario 1) does not guarantee the consistent fitting of Rm, and generally results in high

variability in Rm fitting. Scenario 2 results in a robust fitting of Rm, as evidenced by a significant

improvement in the Ave. and Std. of RMSERc compared to Scenario 1. However, this comes at

the expense of relatively worse results for the AP fit. Specifically, the Ave of RMSEAP increases

by 25.93%, 33.07%, 22.76%, 20.49%, and 30.40% in Configurations 1–5, respectively, compared

to the corresponding values for Scenario 1.

Table 1. Performance evaluation of different scenarios for Configurations 1–5.

Scenarios-Configurations RMSEAP (mV) RMSERc (GΩ) AERd (GΩ)

Ave. Std. Ave. Std. Ave. Std.

Scenario 1-Configuration 1 1.2561 0.1641 0.5619 0.3457 0.0335 0.0105

Scenario 1-Configuration 2 1.0508 0.1933 0.1092 0.0429 0.0224 0.0095

Scenario 1-Configuration 3 1.3843 0.1510 0.4134 0.2032 0.0350 0.0060

Scenario 1-Configuration 4 1.4397 0.2846 0.2498 0.1227 0.0266 0.0106

Scenario 1-Configuration 5 1.8784 0.2261 0.6654 0.3160 0.0917 0.0943

Scenario 2-Configuration 1 1.5818 0.2793 0.0568 0.0562 0.0363 0.0016

Scenario 2-Configuration 2 1.3983 0.0590 0.0054 0.0013 0.0368 8.48e-04

Scenario 2-Configuration 3 1.6993 0.2280 0.0482 0.0319 0.0359 0.0021

Scenario 2-Configuration 4 1.7347 0.2274 0.0112 0.0026 0.0221 0.0078

Scenario 2-Configuration 5 2.4494 0.1697 0.0257 0.0173 0.0249 0.0205

Scenario 3-Configuration 1 2.5363 0.4904 0.0954 0.1059 0.0020 0.0014

Scenario 3-Configuration 2 2.3708 0.3673 0.0160 0.0111 0.0011 7.15e-04

Scenario 3-Configuration 3 2.5978 0.4780 0.0928 0.0906 0.0015 0.0011

Scenario 3-Configuration 4 2.4428 0.2372 0.0216 0.0069 0.0019 0.0023

Scenario 3-Configuration 5 2.7903 0.4101 0.0549 0.0662 0.0013 0.0013

https://doi.org/10.1371/journal.pone.0225245.t001
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As shown in Table 1, in Scenario 3, minimization of the third objective (AERd) is realized at

the expense of increasing Ave. of RMSEAP by 60.34%, 69.55%, 52.87%, 40.82%, and 13.92% in

Configurations 1–5, respectively, compared to Scenario 2. In this scenario, the Ave. of RMSERc
is better than in Scenario 1, and the Std. of RMSERc is slightly worse than in Scenario 2. Impor-

tantly, depending on the specific configuration, Scenario 3 can result in up to 98.58% improve-

ment (Configuration 5) in Ave. of AERd compared to two other scenarios. Compared to

Scenario 1 and 2, Scenario 3 yields slightly lower Std. of AERd for all configurations.

Three trials of Scenario 1 for Configuration 1 regarding AP with similar RMSE are shown in

Table 2 to compare their RMSERc. As can be discerned from Table 2, the fitting results in terms

of RMSEAP are comparable for all three trials; however, there is significant variability in

RMSERc. Hence, this table further demonstrates that different sets of parameters can yield sim-

ilar cellular property (i.e., AP), while their Rm values—indicators of intercellular property—are

quite different.

To further examine the performance of the proposed approach, the Pareto fronts of all con-

figurations for Scenario 2 are shown in Fig 8. Fig 8A–8E represents examples of the convex

Pareto fronts attained from solving Scenario 2 for different configurations. It is clear from

these figures that there is a trade-off between minimizing the RMSEAP and RMSERc. The selec-

tion of the optimal solution from the Pareto front is highly dependent on the application and

whether AP or Rc improvement is considered more important. In this general study, relying

on existing literature on the applications of multi-objective optimization, we select one

Fig 7. An example of a comparison between Scenarios 1 and 2. The results of fitting Rc curve (zoomed area) and

referencemodel (Configuration 3) in Scenarios 1 and 2 are compared.

https://doi.org/10.1371/journal.pone.0225245.g007

Table 2. Comparison of three trials with similar RMSEAP and various RMSERc in Scenario 1 and Configuration 1.

# Trials RMSEAP (mV) RMSERc (GΩ)

1 1.2952 1.1102

2 1.2830 0.7590

3 1.2801 2.1144

https://doi.org/10.1371/journal.pone.0225245.t002
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preferable solution as described in the selection of optimal solution subsection. It can be seen

from Fig 8 that, in all configurations, the selected points yield a lower error in comparison to

Ave. of RMSERc in Scenario 1. Hence, these results also demonstrate that RMSERc can be

improved only by sacrificing AP fitness.

Fig 8. Examples of convex Pareto front in Scenario 2. Different configurations of the IMW model are considered as the target

of optimization. a) Configuration 1 (Baseline), b) Configuration 2 (Shortened APD), c) Configuration 3 (Prolonged APD), d)

Configuration 4 (Hyperkalemia condition), e) Configuration 5 (Hypokalemia condition). In each configuration, the desired

solution is demonstrated by the red arrow.

https://doi.org/10.1371/journal.pone.0225245.g008

Fig 9. Demonstration of Pareto front in Scenario 3, Configuration 2 (Shortened APD). (a) 3D representation: The arrow

demonstrates the preferred solution. The color bar shows the range of change of AERd. (b) Heatmap: The solutions are ordered

according to the low to the high value of f1 (RMSEAP).

https://doi.org/10.1371/journal.pone.0225245.g009
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Fig 9 shows one trial of Configuration 2 in Scenario 3, illustrating the trade-off among objec-

tives. The Pareto front obtained for this configuration is shown in Fig 9(A). In this figure, the

selected solution set is indicated by an arrow (RMSEAP = 2.45 mV, RMSERc = 0.018 GΩ, and

AERd = 0.0005 GΩ) and the color scale is associated with the third objective (AERd). To further

elaborate on trade-offs among objectives, the heatmap of Pareto front is demonstrated in Fig 9

(B). Solutions are ordered based on the low value to the high value of the first objective

(RMSEAP). The color of each cell shows the normalized error for the corresponding objective.

The confliction of objectives can be vividly interpreted in this figure.

Discussion

Comparison with previous work

In this paper, a novel problem formulation for fitting human ventricular cellular models is pro-

posed. The work presented in [3] was an important starting point and inspiration for our

work. In [3], 9 parameters were optimized, and a small number of arbitrarily selected Rm
points considered in a model-to-model fit. To obtain more accuracy, we have explored a wider

range of search space by considering 16 parameters, defined in the problem definition of the

multi-objective optimization, for fitting similar models to those used in [3]. The study in [3]

found that AP only fitting did not produce accurate AP fits, and that also considering Rm
resulted in improvement of the AP fit. However, with more investigation in this study, it is

observed that acceptable AP fitting can be achieved using the error in the AP waveform as the

only objective function with higher search space dimensions (Fig 6). Here, the proposed

approach is also evaluated using four other configurations of the IMW model, including short-

ened APD, prolonged APD, hyperkalemia, and hypokalemia conditions.

It is important to note that in Scenario 2, an arbitrary selection of Rm values as fitness func-

tions may be susceptible to choosing the discontinuous Rm points. As an improvement to the

cellular model tuning proposed in [3], we define allowed regions within which Rm values can

be used as objective functions and avoid regions near the singularities of Rm. Thus, the Rm
points are selected from regions that are less vulnerable to producing errors in model fitting.

Moreover, in this work, the number of objectives is reduced by curve fitting instead of fitting

the distinct points of Rm. This reduction simplifies the optimization and yields enhanced deci-

sion-making ability on the final solution.

Trade-offs among objectives

In this work, we have fitted up to three different objective functions, RMSEAP (mV), RMSERc
(GΩ), and AERd (GΩ). The RMS error in matching the resultant curve is considered as a sec-

ond fitting objective function. The main reason to select the Rm curve in Allowed Region 2

(RMSERc) as one of the objective functions is that negative values of Rm and ANOR phenome-

non emerge in this voltage range [17–19]. The convex Pareto-front in the bi-objective optimi-

zation problem solved by NSGA-II is demonstrated (Fig 8) to select a preferred solution based

on the application. Constraining the fitting problem by increasing the number of objective

functions (i.e., RMSERc) results in a substantial reduction of average Std. of RMSERc fitting

(Table 1). This reduction demonstrates the repeatability of the algorithm across trials. The

importance of Rd in determining the conduction velocity θ–one of the intercellular proper-

ties–and its relationship with [K+]o is discussed in [23, 24]. This is a justification for the impor-

tance of Rd and consideration of AERd as an objective in the proposed problem formulation.

Our observations reveal that there tends to be a trade-off between this property and the two

other features considered, i.e., RMSEAP and RMSERc. Fig 9 shows that improvements in terms
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of minimizing Rd are feasible by sacrificing the accuracy in fitting AP and/or Rc. However, the

Ave. and Std. of RMSERc in this scenario is still improved in comparison with Scenario 1.

Further investigation is required to clarify the best decision-making scheme for selecting

the final solution from the Pareto front. The careful selection of additional voltage-dependent

parameters and their consideration in the optimization may result in further improvement in

the fitting results as it may provide an opportunity to better align the voltage-dependence of

the Rm profile with the reference data. However, additional experiments that are beyond the

scope of this study would be required to determine whether this would indeed improve overall

fitting results.

Future work

A key limitation of the current work is the requirement for the selection of allowed and disal-

lowed regions, which depend on the specific models and configurations used. As a future

development, it would be desirable to develop a generalized algorithm to eliminate the depen-

dency on the designers’ somewhat subjective decisions in this regard.

The model fitting can involve some degree of uncertainty due to the variability of observa-

tions. Populations of models (POMs) are used to model the inherent variability of experimen-

tal data [38]. As a further study, the proposed framework for Rm could be extended to POM

calibration. Considering Rm features might reduce the degree of uncertainty in POM as it can

provide intercellular information.

Conclusion

In this study, the benefits of including Rm values in cardiac cellular fitting are clearly demon-

strated. We have also identified important technical challenges related to the occurrence of dis-

continuities in Rm and the voltage dependence of the Rm profile. These need to be addressed in

the formulation of the optimization problem, or significant errors may result. This work pres-

ents and evaluates a new problem formulation for tuning specified parameters of cell models.

Importantly, we provide information about the trade-offs among fitting objectives and demon-

strate that it is possible to achieve a good balance among key cellular and intercellular proper-

ties. In conclusion, this paper contributes toward making mathematical models of human

ventricular cells (and cardiac cells in general) more reliable by developing a robust optimiza-

tion formulation for cardiac cellular fitting.
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28. O’Hara T, Virág L, Varró A, Rudy Y. Simulation of the undiseased human cardiac ventricular action

potential: model formulation and experimental validation. PLoS Computational Biology. 2011 May 26; 7

(5):e1002061. https://doi.org/10.1371/journal.pcbi.1002061 PMID: 21637795

29. Deb K. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons; 2001 Jul

30. Cheshmehgaz HR, Haron H, Sharifi A. The review of multiple evolutionary searches and multi-objective

evolutionary algorithms. Artificial Intelligence Review. 2015 Mar 1; 43(3):311–43.

31. Tian Y, Cheng R, Zhang X, Jin Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimi-

zation [educational forum]. IEEE Computational Intelligence Magazine. 2017 Oct 11; 12(4):73–87.
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