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Background: Many studies have demonstrated that autophagy plays a significant role in regulating tumor growth 

and progression. However, the effect of autophagy-related genes (ARGs) on the prognosis have rarely been ana- 

lyzed in head and neck squamous cell carcinoma (HNSCC). 

Methods: We obtained differentially expressed ARGs from HNSCC mRNA data in The Cancer Genome Atlas 

(TCGA) database. And then we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analyses to explore the autophagy-related biological functions. The overall survival (OS)- 

related and disease specific survival (DSS)-related ARGs were identified by univariate Cox regression analyses. 

With these genes, we established OS-related and DSS-related risk signature by LASSO regression method, respec- 

tively. We validated the reliability of the risk signature with receiver operating characteristic (ROC) analysis, 

Kaplan-Meier survival curves, clinical correlation analysis, and nomogram. Then we analyzed relationships be- 

tween risk signature and immune cell infiltration. 

Results: We established the prognostic signatures based on 14 ARGs for OS and 12 ARGs for DSS. The ROC curves, 

survival analysis, and nomogram validated the predictive accuracy of the models. Clinic correlation analysis 

showed that the risk group was closely related to Stage, pathological T stage, pathological N stage and human 

papilloma virus (HPV) subtype. Cox regression demonstrated that the risk score was an independent predictor for 

the prognosis of HNSCC patients. Furthermore, patients in low-risk score group exhibited higher immunescore 

and distinct immune cell infiltration than high-risk score group. And we further analysis revealed that the copy 

number alterations (CNAs) of ARGs-based signature affected the abundance of tumor-infiltrating immune cells. 

Conclusion: In this study, we identified novel autophagy-related signature for the prediction of OS and DSS in 

patients with HNSCC. Meanwhile, our study provides a novel sight to understand the role of autophagy and 

elucidate the important role of autophagy in tumor immune microenvironment (TIME) of HNSCC. 
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Head and neck squamous cell carcinoma (HNSCC) refer to a hetero-
eneous group of cancers originating from the mouth, pharynx and the
arynx. As one of the most common malignant tumors, HNSCC ranks 6th
n the global cancer burdens, with ~600 000 new cases are diagnosed
nd ~350 000 cancer-related deaths annually worldwide [1] . Poor prog-
osis and lack of accurate and reliable prognostic indicators for moni-
oring HNSCC development results in the high mortality rate of patients.
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Despite the rapid improvement of medical techniques for early diag-
osis of HNSCC, nearly 50% of patients are diagnosed at an advanced
tage. Although the comprehensive treatment of HNSCC (including sur-
ical resection, radiotherapy, and chemotherapy) continues to develop
n the past few decades, but the 5-year survival rate of HNSCC still re-
ains dismal, especially for the advanced patients [2] . Thus, the identi-
cation of disease-related prognostic biomarkers in HNSCC is necessary
o help optimize the level of early diagnosis and develop novel thera-
eutic approach to enhance the survival rate of patients. 
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In recent years, screening for useful genetic and epigenetic biomark-
rs by bioinformatic technologies has been an important means for di-
gnosis and prognosis of cancer [3] , in which the impact of autophagy-
elated genes (ARGs) in the pathogenesis of cancer has received increas-
ng attention. 

Autophagy is a vital catabolic pathway that regulate homeostasis
f the intracellular environment by reducing and recycling components
f aged or damaging organelles, misfolded proteins [ 4 , 5 ]. The upreg-
lation and deregulation of autophagic level have been implicated in
he pathogenesis of several diseases, including immune-related diseases,
eurodegenerative diseases, and tumors. For example, ATG16L2 is an
utophagy-related gene proposed as a systemic lupus erythematosus risk
ocus [6] , and is associated with multiple sclerosis [7] and Crohn’s dis-
ase [8] . Upregulation of autophagy may protect against neurodegen-
ration [9] . Interestingly, autophagy plays a contradictory role in all
tages of tumor. During early stages of tumorigenesis, it can delay or
revent the formation of tumor. However, once tumor has formed, el-
vated autophagy promotes growth of cancer cell, and protect cancer
ells from the damage of chemotherapy drugs [10-12] . Therefore, the
evels of autophagy proteins play a significant role in regulating tumor
ell growth and progression [13] . 

Several previous studies have conclusively illustrated the role of
utophagy in HNSCC. Zhou et al. reported that radiation-induced au-
ophagy enhanced the survival of cancer cell, by autophagy inhibition
nducing cell death [14] . An experiment included 195 oral cancer tis-
ues revealed that increased level of LC3-II in patients was associated
ith poor outcome, supporting an autophagy paradox when autophagy
ysregulation in early stages cancers impedes tumorigenesis [ 15 , 16 ].
urthermore, autophagy inhibition may be beneficial for head and neck
ancer patients [ 17 , 18 ]. However, these studies simply clarified the cor-
elation between a single autophagy gene and the prognosis of HNSCC or
onstructed a model with ARGs to predict the prognosis outcomes, few
tudies investigated the function of ARGs in tumor immune microenvi-
onment (TIME). 

This study aimed to systematically assess the correlations of ARGs
ith prognosis and TIME in HNSCC. The risk models of ARGs were

stablished to facilitate treatment decision-making for HNSCC pa-
ient’s outcome, which may represent a potential prognostic indicator.
ubsequently, the relationships between risk models, immunoscores,
nd immune cell infiltration were thoroughly analyzed based on the
utophagy-related signatures to further explore the effect of ARGs on
IME. This study also contributes to elucidate the regulatory mecha-
isms associated with TIME. 

aterials and methods 

ata collection 

The detailed workflow of our study is shown as a chart ( Fig. 1 ).
he transcriptome profiles (HTSeq-Counts) of 546 HNSCC patients were
ownloaded from the TCGA database ( https://portal.gdc.cancer.gov/ ),
nd the clinical data, including OS and DSS, was identified from the
BioPortal database ( https://www.cbioportal.org/ ).Then, patients with
ollow-up times of less than 30 days were excluded. Finally, we obtained
omplete expression data and OS data from 487 patients and DSS data
rom 470 patients. A list of 233 ARGs were obtained from the Human
utophagy Database (HADb, http://www.autophagy.lu/ ) [19] . 

ifferentially expressed autophagy-related genes and enrichment analysis 

The analysis of differentially expressed ARGs between HNSCC and
orresponding normal samples was identified by edgeR package in R
oftware. The cut-off criterion for differentially expressed ARGs was set
s | log 2 FC | > 1 and false discovery rate (FDR) < 0.05. Then, Gene Ontol-
gy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) anal-
sis were performed to better understand the key roles of differentially
2 
xpressed ARGs using the “clusterProfiler ” package [20] and “GOplot ”
ackage [21] . 

onstruction and validation of ARGs-related risk model 

All patients in TCGA were randomly divided into the training and
esting cohort t a 3:2 ratio using the “caret ” package. Firstly, univariate
ox regression was conducted in the TCGA training cohort to identify
RGs associated with OS and DSS. Then we performed LASSO, the least
bsolute shrinkage and selection operator, based on univariate Cox re-
ult to establish prognostic predictive module in the training cohort. The
ollowing formula is used to predict the risk score of each HNSCC pa-

ient: risk score = 

𝑛 ∑

𝑖 =1 
𝑒𝑥𝑝 × 𝑐𝑜𝑒𝑓 , where the exp was the expression value

f gene, and coef was the coefficient of gene in the LASSO analysis.
he risk score was calculated for each patient in the training, valida-
ion and whole cohorts, respectively. The median risk score was set as
he cut-off value. Kaplan-Meier survival analysis assessed the differences
etween groups. We performed univariate and multivariate Cox regres-
ion to confirm whether the two signatures could be an independent
rognostic factor for patients. Finally, the value of prediction models
as evaluated by the receiver-operator characteristic (ROC) and corre-

ponding areas under the curve (AUC). 

onstruction and assessment of the nomogram 

To assist clinical decision making, the risk score and other clinico-
athological factors were integrated to construct a nomogram, a quan-
itative tool to evaluate clinical outcome. Calibration curves were used
o study the prognostic performance. 

elationships between risk signature and immune cell infiltration 

The immunoscores of each sample were calculated with R package
STIMATE [22] . To evaluate proportions of 22 immune cells, the cell
ype identification by estimating relative subset of known RNA tran-
cripts (CIBERSORT) method was applied to TCGA cohort [23] . The
nalysis was run with 1000 permutations, and batch adjusted data. Sam-
les whose P value of CIBERSORT results were ≥ 0.05 were eliminated
n the subsequent analysis. Then, we further analyzed the effect of CNAs
f the risk related genes in signature on immune cell infiltration levels
ia the TIMER database( https://cistrome.shinyapps.io/timer/ ) [24] . 

tatistical analysis 

Statistical analysis was performed with R software (version 4.0.2),
raphPad Prism 8 (San Diego, CA) [25] . The volcano plot and heatmaps
ere draw using the “ggplot2 ” package in R. Chi-square test was used

o evaluate the differences of clinicopathological parameters between
he high- and low-risk groups. Survival curves were generated by the
aplan-Meier method [26] . Univariate and LASSO regression analyses
ere performed to explore prognostic risk model. Time-dependent ROC
nalysis was applied to compare the predictive accuracy of the models.

esults 

etection of differentially expressed ARGs in HNSCC and normal human 

issues 

The study procedure is presented in Fig. 1 . The RNA expression and
linical data of 546 HNSCC patients were downloaded from the TCGA
atabase. Then we extract the expression values of 233 ARGs. On the
asis of the screening criteria of DEGs, we obtained 32 differentially
xpressed ARGs (included 12 downregulated ARGs and 20 upregulated
RGs) ( Fig. 2 A and 2 B). Furthermore, the box plot was generated to
isplay the expression pattern of differentially expressed ARGs between
ancers and normal tissues ( Fig. 2 C). 

https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
http://www.autophagy.lu/
https://cistrome.shinyapps.io/timer/
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Fig. 1. The workflow of study process. 
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unctional enrichment analysis of the differentially expressed ARGs 

Functional enrichment analysis was performed according to the 32
ifferentially expressed ARGs. The GO terms and KEGG pathway enrich-
ent results of these genes were summarized in Fig. 3 . GO results show

hat these ARGs were mainly enriched in digestive tract development,
euron death, autophagy ( Fig. 3 A). The relation between ARGs and GO
nrichment results was also displayed in the heatmap ( Fig. 3 B). KEGG
nrichment results revealed that the 32 ARGs were mainly involved in
poptosis, human cytomegalovirus infection, and human papillomavirus
nfection ( Fig. 3 C). 

onstruction and validation of the risk signature based on the 

rognosis-related ARGs for OS 

Next, we explored the prognostic role of ARGs. The 487 patients
ere randomly divided into training cohort and testing cohort accord-

ng to the ratio of 3 to 2. To screen out the genes that significantly
ssociated with OS, we performed univariate Cox regression analysis
sing the data from TCGA training cohort. 27 genes were significantly
ssociated with OS based on univariate Cox regression ( p < 0.05, full
ata are presented in Supplementary Table S1). Then the LASSO re-
ression used above 27 genes to identify prognosis associated genes,
amely GABARAPL2, GOPC, MAPK9, TP73, HSP90AB1, ST13, IKBKB,
FNG, GAPDH, NKX2–3, CCR2, VAMP7, CAPN10, CDKN2A, and estab-
3 
ish the signature of OS for patients. ( Fig. 4 A and Fig. 4 B). The risk scores
f the TCGA training, testing and whole cohorts were calculated. After-
ard, patients were classified into high-/low-risk groups based on the

ut-off of the risk scores, respectively. Survival curve was used to com-
are the OS outcomes in patient groups. The patients in the low-risk
roup had poorer OS than those in high-risk group in training and test-
ng cohorts ( p < 0.001, Fig. 4 C and Fig. 4 E). To assess the efficiency of
he model, we conducted 1-, 2- and 3-year ROC curve analyses by com-
aring the respective AUC values. In the training cohort, the1-, 2- and
-year AUC values for the risk signatures were 0.724, 0.696 and 0.722,
espectively ( Fig. 4 D). In the testing cohort, the 1-, 2- and 3-year AUC
alues for the risk signatures were 0.653, 0.704 and 0.676, respectively
 Fig. 4 F). Results show that the prognostic signature based on ARGs had
ertain prediction abilities in predicting survival outcome. 

he correlation between the OS-related prediction model and prognosis of 

NSCC patients 

According to the same formula mentioned above, we calculate the
isk score for patients, and divided them into high-risk group and low-
isk group in the whole set. The Kaplan-Meier survival plot, the distri-
ution of the risk scores, vital status, and corresponding 14 ARGs ex-
ression level of patients in TCGA whole cohort is displayed in Fig. 5 . 

Furthermore, we evaluated the clinical significance of the signa-
ure by analyzing the correlation among clinical parameters. Univariate
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Fig. 2. Differentially expressed autophagy-related genes (ARGs) between HNSCC and normal head and neck tissues. (A) The volcano plot for the 233 ARGs in HNSCC. 

Red indicates high expression and blue indicates low expression. Gray shows those genes showed no difference. (B) Heatmap of the 32 differentially expressed ARGs 

in head and neck cancer. (C) Boxplot showing the expression pattern of differentially expressed ARGs in HNSCC. 
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ox regression revealed that the Stage, Gender, pathological T stage,
athological N stage, HPV subtype and risk score were correlated with
S in HNSCC patients ( P < 0.05) ( Fig. 6 A). Multivariate Cox analysis

howed that pathological T stage, pathological N stage, Radiation ther-
py and risk score were correlated with OS in HNSCC patients ( P < 0.05)
 Fig. 6 B). 

And then the survival analyses were performed based on the OS-
elated genes and the results were exhibited in Fig. S1. The low expres-
ion level of GABARAPL2, GOPC, MAPK9, HSP90AB1, ST13, GAPDH
n HNSCC were significantly associated with better OS rate. However,
his association did not hold true among these genes-VAMP7, CAPN10,
KBKB, CDKN2A (Supplementary Fig.S1). 

he OS-related risk scores correlated with clinicopathological 

haracteristics, immunoscore 

Further evaluation of the correlation between risk scores and clinico-
athological characteristics was conducted. The expression of 14 ARGs
n the low- and high-risk groups in the TCGA whole cohort was also
emonstrated in the heatmap ( Fig. 7 A). The expression of HSP90AB1,
T13, GOPC, MAPK9, VAMP7, GABARAPL2, GAPDH in the low-risk
roup were lower than those of the high-risk group. The expression of
P73, NKX2–3, IKBKB, CAPN10, CDKN2A, IFNG, CCR2 were high in the
4 
ow-risk group. We further found high risk score is closely related to HPV
ubtype ( p < 0.001), stage ( p < 0.001), pathological stage T ( p < 0.001),
athological stage N ( p < 0.05), immunescore ( p < 0.05), but it had
o correlation with gender, age, grade and radiation therapy ( Fig. 7 A).
e also investigated a possible relationship between risk score, and
PV subtype, stage, pathological T stage, pathological N stage, and im-
unescore. 

The risk score of the stage Stage III-IV was higher than that of the
tage I-II ( p < 0.001, Fig. 7 B). The risk score was positively correlated
o the pathological T stage ( p < 0.001) and pathological N stage ( p <
.05) ( Fig. 7 C and Fig. 7 D). The patients whose HPV are negative had
igher risk than the patients whose HPV are positive ( p < 0.001, Fig. 7 E).
here were significant differences between the high-risk and low-risk
atients in terms of immunescore ( p < 0.001, Fig. 7 F). These findings
ndicated that the risk score was positively associated with higher stage,
athological T stage, pathological N stage and immunescore level. 

he OS-related signature associated with immune cell infiltration 

In addition, the different risk socres between low-immunescore and
igh-immunescore groups prompt us to investigate which type of im-
une cell has association with t high-risk and low-risk patients ( Fig. 8

nd Supplementary Fig. S2). The two groups revealed a significant dif-
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Fig. 3. Functional enrichment of the ARGs. (A) 

Circos plot of the GO enrichment results. (B) 

Heatmap of the GO enrichment results. The depth 

of the bar depends on the logFC values. (C) 

KEGG shows the potential pathway involved in 

differential ARGs. The size of the circle indicates 

the counts of enriched genes. GO, Gene Ontol- 

ogy; KEGG, Kyoto Encyclopedia of Genes and 

Genomes; FC, fold change. 
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erence in immunescore ( Fig. 8 A). Subsequently, we analyzed the frac-
ion of 22 immune cells in the low/high risk groups. High-risk group
howed higher infiltration levels of T cell CD4 naïve, T cell CD4 mem-
ry resting, NK cell resting, Macrophage M0, Mast cell resting ( Fig. 8 B
nd Supplementary Fig. S2), whereas low-risk group was more corre-
ated with B cell naïve, B cell memory, T cell CD8, T cell CD4 memory
ctivated, T cell follicular helper, T cell regulatory Tregs, NK cell ac-
5 
ivated, Monocyte, Macrophage M1, Mast cell activated ( Fig. 8 B and
upplementary Fig. S2). 

enetic alterations of the OS-related signature on immune cell 

Furthermore, the correlation between risk score and infiltration
bundances of six types of immune cells was calculated to estimate the
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Fig. 4. Construction and validation of the prognostic risk signature for OS. (A-B) The Lasso regression analyses of ARGs using the OS model. The Lasso regression 

was performed using prognosis-significant ARGs in the training cohort of HNSCC. Survival curve of OS in the training cohort (C), and testing cohort (E). ROC curves 

in the training cohort (D), and the testing cohort (F). 

6 
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Fig. 5. The correlation between the ARGs prognostic 

signature and the prognosis. (A) Kaplan-Meier curves of 

the high-risk and low-risk groups. (B) The ROC of OS 

for the ARGs-based prognostic signature. (C) Distribu- 

tion of the risk scores. (D) Survival status of patients in 

different groups. (E) Expression of 14 autophagy-related 

genes in the high-risk and low-risk groups. 
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ffect of the OS-related signature on the TIME. Correlation analysis re-
ealed negative correlation between the risk score and infiltration of
he Macrophage ( p < 0.001), Neutrophil ( p < 0.001), B Cell ( p < 0.001),
endritic Cell ( p < 0.001), CD4 + T Cell ( p < 0.001), and CD8 + T Cell ( p
 0.001, Fig. 9 ). 
7 
To explore the mechanisms underlying of ARGs on immune cell in-
ltration, we detect somatic copy-number alterations (CNAs) in TIMER.
he infiltration levels of immune cells in risk-related genes were signif-

cantly affected by the CNAs mainly because of arm-level deletion/gain
Supplementary Fig. S3). These results demonstrated that ARGs may be
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Fig. 6. Univariate and multivariate Cox regression analyses of OS. Forest plots showing the univariate (A) and multivariate cox regression results (B) of OS in HNSCC. 
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ivotal regulators in the tumor immune microenvironment for HNSCC
atients. 

onstruction and validation of prognostic signature for DSS 

Further evaluations of the prognostic signature based on ARGs for
isease-specific survival (DSS) were analyzed. 470 patients were ran-
omly divided into a training set ( n = 282) and a testing set ( n = 188).
mong 233 ARGs, a total of 19 DSS-related ARGs were found in the uni-
ariate Cox regression analysis using the training set ( p < 0.05, details
re given in Supplementary Table S2). Subsequently, these DSS-related
enes were subjected to a LASSO regression analysis using the training
et. Finally, 12 prognostic ARGs were obtained and the prognostic sig-
ature composed of these genes was established ( Fig. 10 A and Fig. 10 B).
ased on the median value of risk score, the patients were stratified into
igh-risk and low-risk groups. According to the Kaplan-Meier curve, pa-
ients in the high-risk groups had significantly poorer DSS outcomes
han those in the low-risk group ( p < 0.05, Fig. 10 C and Fig. 10 E). In
he training cohort, the AUC for predicting DSS were 0.845, 0.757, and
.759, respectively ( Fig. 10 D). In the testing cohort, the AUC for pre-
icting DSS were 0.581, 0.651, and 0.637, respectively ( Fig. 10 F). 

Consistent with the results obtained from the training and testing
ohorts, patients in the high-risk group in the whole dataset ( p < 0.01,
ig. 11 A) had shorter DSS times than the low-risk groups. In the whole
ohort, the AUC for predicting DSS were 0.744, 0.713, and 0.712, re-
pectively ( Fig. 11 B). Fig. 11 C-D showed the DSS-related distribution of
isk scores and the relation between risk scores and DSS outcomes. The
xpression of 12 genes in high risk or low risk group was shown in the
eatmap ( Fig. 11 E). 

By combining the results of univariate (HR = 3.131, 95% CI = 2.165–
.529, P < 0.001) ( Fig. 11 F) and multivariate Cox regression
HR = 3.189, 95% CI = 2.176–4.676, P < 0.001) ( Fig. 11 G) analysis,
e proved that the risk signature of DSS can be an independent prog-
ostic factor. 

In the DSS-related prediction model, high expression of GAPDH,
AK1, FKBP1A, GABARAPL2, and MAPK9 genes were associated with
orse DSS rate (Supplementary Fig. S4). In addition, high expression
f TP73 and CCR2 was associated with better DSS rate (Supplementary
ig. S4). Furthermore, no associations between the expression level of
AMP7, ATGA4A, ATGA16L2, ATF4 and DSS rate were found (Supple-
entary Fig. S4). 

In order to further clarify what type of regulation of autophagy (up-
egulation or downregulation) could have a positive impact on HNSCC
atient’s survival, we comprehensively analyzed the expression level of
SS-related and OS-related ARGs. Based on the screening criteria of |

og2FC | > 1 and false discovery rate (FDR) < 0.05, we found that the
xpression level of HSP90AB1 and IFNG genes were highly expressed
n tumor tissues compared to adjacent normal tissues, while the expres-
8 
ion level of NKX2–3 in tumor tissues was lower than that in adjacent
ormal tissues. The expression of other genes had no significant differ-
nce ( Fig. 2 C). In the results of survival analysis, the high expression
evel of HSP90AB1 in HNSCC were significantly associated with poorer
urvival rate. The high expression level of IFNG and NKX2–3 in HNSCC
ere significantly associated with better survival rate (Supplementary
ig.S1 and S4). These results indicated that the upregulation of some
RGs could have a positive impact on HNSCC patient’s survival, and

he downregulation of other ARGs might have the similar positive im-
act on HNSCC patient’s survival. 

omogram 

By combining risk signature and other clinicopathological parame-
ers, we performed nomogram to provide a risk prediction of 1-year,
-years, 3-years OS and 1-year, 2-years, 3-years DSS for an individual
atient (Supplementary Fig.S5). The calibration curves showed that the
omogram we established showed good performance for predicting the
-year OS, 2-year OS, 3-year OS (Supplementary Fig. S5) and the 1-year
SS, 2-year DSS, 3-year DSS (Supplementary Fig. S5) of HNSCC. 

iscussion 

HNSCC carries a poor prognosis and has a high invasive tendency,
ith a low 5-year survival rate in advanced stages. Although the spe-

ific causes of HNSCC are unclear, various factors and clinical features,
ncluding smoking, alcohol as well as human papillomavirus status, are
nown to be associated with the disease [27-29] . Despite significant ad-
ances in the understanding of cancer, the prognosis of patients with
NSCC has not improved much vary from person-to-person because of

heir genetic conditions. Therefore, finding novel molecular biomark-
rs can improve the effectiveness of diagnosis and treatment strategies
n the early stages of HNSCC. Thus, it is urgent to investigate effective
iagnostic and therapeutic biomarkers for HNSCC patients. An increas-
ng number of studies have shown that defects in autophagy is signif-
cantly related to the occurrence and progression of HNSCC, but most
esearchers focused on the role of single gene related to autophagy and
ts potential effects. And few explored the role of ARGs in tumor im-
une microenvironment. Feng et al. [30] constructed a model of ARGs

nd showed the interface between risk signature and OS. However, a
omprehensive exploration of ARGs in the TIME, the value of HPV
tatus in risk signature, the analysis of DSS, is lacking. Based on the
ranscriptome expression profiles of patients, we screened autophagy-
elated genes and identified 32 differentially expressed ARGs in HNSCC
atient tumor samples. Considering the potential molecular mechanisms
nd biological pathways of these genes may contribute to the occurrence
nd development of HNSCC, we further carried out biological enrich-
ent analyses, including GO and KEGG pathway analyses, to outline
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Fig. 7. Risk Scores Correlated with Clinicopathological Char- 

acteristics and Immunoscore. (A) Clinicopathologic charac- 

teristics of low- and high-risk groups were generated in the 

heatmap (B-F) Distribution of risk scores stratified by stage 

(B), pathological stage T (C), pathological stage N (A), HPV 

subtype (E) and immunescore (F). ∗ p < 0.05, ∗∗ p < 0.01, and 

∗∗∗ p < 0.001. 
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he potential functions of ARGs. The GO and KEGG analyses revealed
hat the majority of these differentially expressed ARGs are involved in
utophagy, process utilizing autophagic mechanism, apoptosis and HPV
nfection. Autophagy is deeply associated with proliferation of HNSCC
nd poor prognosis, so it is worthwhile to research useful prognostic
ignature to assist clinician. We used the TCGA training cohort to con-
tructed OS-related model and DSS-related model, respectively. Firstly,
9 
e identified some OS-related ARGs in univariate Cox regression anal-
sis. Then, we constructed a prognostic model using LASSO regression.
ur OS-related risk signature included 14 genes (GABARAPL2, GOPC,
APK9, TP73, HSP90AB1, ST13, IKBKB, IFNG, GAPDH, NKX2–3, CCR2,
AMP7, CAPN10, CDKN2A). Our DSS-related risk signature included 12
enes (BAK1, GABARAPL2, MAPK9, TP73, FKBP1A, ATG4A, GAPDH,
TK11, CCR2, VAMP7, ATF4, and ATG16L2). 
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Fig. 8. Immune Cell Infiltration in TCGA Cohort. (A) Immunescore in the low/high risk groups. (B) The infiltrating levels of 22 immune cells. ∗ p < 0.05 and ∗∗ p < 
0.01. 

Fig. 9. The Relationships between the Risk Score and Tumor-Infiltrating Immune Cells. (A-F) Macrophage (A), Neutrophil (B), B Cell (C), Dendritic Cell (D), CD4 + 
T Cell (E), and CD8 + T Cell (F). 
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The TP53 family member gene TP73 is a crucial tumor suppres-
or inducing cell cycle arrest and apoptosis [31] . Ge et al. [32] found
hat a chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)-
ihydrofuran-2(3H)-one, that activated mTOR by targeting FKBP1A.In
olorectal cancer, ST13 suppressed cell growth and migration in vitro
nd tumorigenic ability in vivo [33] . Wang et al. observed that the
umor-associated macrophages infiltration and CCR2 expression was as-
10 
ociated with the tumor metastasis in human lung cancer [34] . VAMP7
s a core functional gene in the vesicular fusion machinery of primary.
nd VAMP7 knock-down sharply reduced the killing effects of T cells,
ithout suppressing T-cell mediated immunity [35] . MAPK9 is upregu-

ated in non-small-cell lung carcinoma, which is closely linked to T stage
n NSCLC patients. Furthermore, circRNF20 stimulates NSCLC prolifer-
tion by activating MAPK9 [36] . 
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Fig. 10. Construction and validation of the prognostic signature for DSS. (A-B) Lasso regression analyses of ARGs using the DSS model. The Lasso regression was 

performed using prognosis-significant ARGs in the training cohort of HNSCC. Kaplan-Meier survival curve for DSS in the training cohort (C), and testing cohort (E). 

ROC curves in the training cohort (D), and the testing cohort (F). 
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Fig. 11. Characteristics of DSS-related signatures. (A) Kaplan-Meier curves for the high-/low-risk groups. (B) The ROC of DSS for the ARGs-based prognostic signature 

(C-D) Distribution of risk score and patient survival time, and status of HNSCC. (E) Heatmap of DSS-related ARGs expressions in the HNSCC. Forest plots showing 

the univariate (F) and multivariate cox regression results (G) of DSS in HNSCC. 
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Univariate Cox regression analysis was performed to find genes sig-
ificantly associated with OS and DSS of HNSCC. And then, the LASSO
egression was used to build up risk signatures. According to the risk
ormula, we calculated risk score of each patient and divided patients
nto high/low-risk groups according to the median risk score. The re-
ult of KM survival analysis revealed that the OS for patients in the
igh-risk group was significantly poorer than that of low-risk group,
nd ROC analysis reflected the predictive signature performed well. The
ext finding implied that the ARGs-related signature for OS could be a
atisfactory independent predictor of poor prognosis in HNSCC. The in-
ernal testing set was used to assess the predictive performance of the
ignature, revealing that the autophagy-related signature for OS we con-
tructed had good prospect for application. The clinic correlation analy-
is confirmed that the risk score was closely related to Stage, patholog-
cal T stage, pathological N stage and HPV subtype. Notably, the prog-
ostic evaluation model for DSS we also established and underwent val-
dation. The ARGs-related signature for DSS can predict 1-year, 2-year,
nd 3-year survival rate accurately for HNSCC patients. Furthermore,
e built nomogram model by incorporating clinical risk factors and risk

core. The nomogram developed in our study accurately predicts the
S and DSS for HNSCC and calibration graphs added strong confirma-

ion. Meanwhile, we illustrated the association between the OS-related
isk score and immune cell infiltration level via CIBERSORT method
nd TIMMER database, which showed that the tumor microenvironment
ay affect the growth and metastasis in tumor development. Analysis of

ur study also demonstrated that the CNAs of risk-related genes had an
mpact on the immune cell infiltration. However, undeniably, our study
till have some limitations. First, the two signatures we established were
nly obtained and processed from TCGA data. Although we have per-
ormed internal verification, the reliability and robustness of the model
till needs to be further assessed using external datasets. Secondly, the
pecific and detailed of the genes underlying the prognostic signature in
NSCC are still unclear. Additionally, further investigations regarding

he regulatory mechanism of risk-related genes in TIME is warranted. 
In conclusion, our study established the ARGs-related signature for

S and DSS that were all independent prognostic indicators for HNSCC
atients. And then, we firstly present a deep understanding of ARGs in
he TIME, but further large scale studies and experiments are needed
o verify our hypothesis. Meanwhile, our study may provide promising
argets that can enhance the efficacy of cancer immunotherapy. 
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