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ARTICLE INFO ABSTRACT

Keywords: Background: Many studies have demonstrated that autophagy plays a significant role in regulating tumor growth

TCGA and progression. However, the effect of autophagy-related genes (ARGs) on the prognosis have rarely been ana-

Autophagy-related genes lyzed in head and neck squamous cell carcinoma (HNSCC).
Overall survival

Disease-specific survival
Prognostic risk signature

Methods: We obtained differentially expressed ARGs from HNSCC mRNA data in The Cancer Genome Atlas
(TCGA) database. And then we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
TIME (KEGG) enrichment analyses to explore the autophagy-related biological functions. The overall survival (OS)-
related and disease specific survival (DSS)-related ARGs were identified by univariate Cox regression analyses.
With these genes, we established OS-related and DSS-related risk signature by LASSO regression method, respec-
tively. We validated the reliability of the risk signature with receiver operating characteristic (ROC) analysis,
Kaplan-Meier survival curves, clinical correlation analysis, and nomogram. Then we analyzed relationships be-
tween risk signature and immune cell infiltration.

Results: We established the prognostic signatures based on 14 ARGs for OS and 12 ARGs for DSS. The ROC curves,
survival analysis, and nomogram validated the predictive accuracy of the models. Clinic correlation analysis
showed that the risk group was closely related to Stage, pathological T stage, pathological N stage and human
papilloma virus (HPV) subtype. Cox regression demonstrated that the risk score was an independent predictor for
the prognosis of HNSCC patients. Furthermore, patients in low-risk score group exhibited higher immunescore
and distinct immune cell infiltration than high-risk score group. And we further analysis revealed that the copy
number alterations (CNAs) of ARGs-based signature affected the abundance of tumor-infiltrating immune cells.

Conclusion: In this study, we identified novel autophagy-related signature for the prediction of OS and DSS in
patients with HNSCC. Meanwhile, our study provides a novel sight to understand the role of autophagy and
elucidate the important role of autophagy in tumor immune microenvironment (TIME) of HNSCC.

Introduction

Head and neck squamous cell carcinoma (HNSCC) refer to a hetero-
geneous group of cancers originating from the mouth, pharynx and the
larynx. As one of the most common malignant tumors, HNSCC ranks 6th
in the global cancer burdens, with ~600 000 new cases are diagnosed
and ~350 000 cancer-related deaths annually worldwide [1]. Poor prog-
nosis and lack of accurate and reliable prognostic indicators for moni-
toring HNSCC development results in the high mortality rate of patients.
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Despite the rapid improvement of medical techniques for early diag-
nosis of HNSCC, nearly 50% of patients are diagnosed at an advanced
stage. Although the comprehensive treatment of HNSCC (including sur-
gical resection, radiotherapy, and chemotherapy) continues to develop
in the past few decades, but the 5-year survival rate of HNSCC still re-
mains dismal, especially for the advanced patients [2]. Thus, the identi-
fication of disease-related prognostic biomarkers in HNSCC is necessary
to help optimize the level of early diagnosis and develop novel thera-
peutic approach to enhance the survival rate of patients.
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In recent years, screening for useful genetic and epigenetic biomark-
ers by bioinformatic technologies has been an important means for di-
agnosis and prognosis of cancer [3], in which the impact of autophagy-
related genes (ARGs) in the pathogenesis of cancer has received increas-
ing attention.

Autophagy is a vital catabolic pathway that regulate homeostasis
of the intracellular environment by reducing and recycling components
of aged or damaging organelles, misfolded proteins [4, 5]. The upreg-
ulation and deregulation of autophagic level have been implicated in
the pathogenesis of several diseases, including immune-related diseases,
neurodegenerative diseases, and tumors. For example, ATG16L2 is an
autophagy-related gene proposed as a systemic lupus erythematosus risk
locus [6], and is associated with multiple sclerosis [7] and Crohn’s dis-
ease [8]. Upregulation of autophagy may protect against neurodegen-
eration [9]. Interestingly, autophagy plays a contradictory role in all
stages of tumor. During early stages of tumorigenesis, it can delay or
prevent the formation of tumor. However, once tumor has formed, el-
evated autophagy promotes growth of cancer cell, and protect cancer
cells from the damage of chemotherapy drugs [10-12]. Therefore, the
levels of autophagy proteins play a significant role in regulating tumor
cell growth and progression [13].

Several previous studies have conclusively illustrated the role of
autophagy in HNSCC. Zhou et al. reported that radiation-induced au-
tophagy enhanced the survival of cancer cell, by autophagy inhibition
inducing cell death [14]. An experiment included 195 oral cancer tis-
sues revealed that increased level of LC3-II in patients was associated
with poor outcome, supporting an autophagy paradox when autophagy
dysregulation in early stages cancers impedes tumorigenesis [15, 16].
Furthermore, autophagy inhibition may be beneficial for head and neck
cancer patients [17, 18]. However, these studies simply clarified the cor-
relation between a single autophagy gene and the prognosis of HNSCC or
constructed a model with ARGs to predict the prognosis outcomes, few
studies investigated the function of ARGs in tumor immune microenvi-
ronment (TIME).

This study aimed to systematically assess the correlations of ARGs
with prognosis and TIME in HNSCC. The risk models of ARGs were
established to facilitate treatment decision-making for HNSCC pa-
tient’s outcome, which may represent a potential prognostic indicator.
Subsequently, the relationships between risk models, immunoscores,
and immune cell infiltration were thoroughly analyzed based on the
autophagy-related signatures to further explore the effect of ARGs on
TIME. This study also contributes to elucidate the regulatory mecha-
nisms associated with TIME.

Materials and methods
Data collection

The detailed workflow of our study is shown as a chart (Fig. 1).
The transcriptome profiles (HTSeq-Counts) of 546 HNSCC patients were
downloaded from the TCGA database (https://portal.gdc.cancer.gov/),
and the clinical data, including OS and DSS, was identified from the
cBioPortal database (https://www.cbioportal.org/).Then, patients with
follow-up times of less than 30 days were excluded. Finally, we obtained
complete expression data and OS data from 487 patients and DSS data
from 470 patients. A list of 233 ARGs were obtained from the Human
Autophagy Database (HADDb, http://www.autophagy.lu/) [19].

Differentially expressed autophagy-related genes and enrichment analysis

The analysis of differentially expressed ARGs between HNSCC and
corresponding normal samples was identified by edgeR package in R
software. The cut-off criterion for differentially expressed ARGs was set
as | log,FC |> 1 and false discovery rate (FDR) < 0.05. Then, Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) anal-
ysis were performed to better understand the key roles of differentially

Translational Oncology 14 (2021) 101094

expressed ARGs using the “clusterProfiler” package [20] and “GOplot”
package [21].

Construction and validation of ARGs-related risk model

All patients in TCGA were randomly divided into the training and
testing cohort t a 3:2 ratio using the “caret” package. Firstly, univariate
Cox regression was conducted in the TCGA training cohort to identify
ARGs associated with OS and DSS. Then we performed LASSO, the least
absolute shrinkage and selection operator, based on univariate Cox re-
sult to establish prognostic predictive module in the training cohort. The
following formula is used to predict the risk score of each HNSCC pa-

n

tient: risk score =)’ exp X coef, where the exp was the expression value

of gene, and coelf \lNas the coefficient of gene in the LASSO analysis.
The risk score was calculated for each patient in the training, valida-
tion and whole cohorts, respectively. The median risk score was set as
the cut-off value. Kaplan-Meier survival analysis assessed the differences
between groups. We performed univariate and multivariate Cox regres-
sion to confirm whether the two signatures could be an independent
prognostic factor for patients. Finally, the value of prediction models
was evaluated by the receiver-operator characteristic (ROC) and corre-
sponding areas under the curve (AUC).

Construction and assessment of the nomogram

To assist clinical decision making, the risk score and other clinico-
pathological factors were integrated to construct a nomogram, a quan-
titative tool to evaluate clinical outcome. Calibration curves were used
to study the prognostic performance.

Relationships between risk signature and immune cell infiltration

The immunoscores of each sample were calculated with R package
ESTIMATE [22]. To evaluate proportions of 22 immune cells, the cell
type identification by estimating relative subset of known RNA tran-
scripts (CIBERSORT) method was applied to TCGA cohort [23]. The
analysis was run with 1000 permutations, and batch adjusted data. Sam-
ples whose P value of CIBERSORT results were > 0.05 were eliminated
in the subsequent analysis. Then, we further analyzed the effect of CNAs
of the risk related genes in signature on immune cell infiltration levels
via the TIMER database(https://cistrome.shinyapps.io/timer/) [24].

Statistical analysis

Statistical analysis was performed with R software (version 4.0.2),
GraphPad Prism 8 (San Diego, CA) [25]. The volcano plot and heatmaps
were draw using the “ggplot2” package in R. Chi-square test was used
to evaluate the differences of clinicopathological parameters between
the high- and low-risk groups. Survival curves were generated by the
Kaplan-Meier method [26]. Univariate and LASSO regression analyses
were performed to explore prognostic risk model. Time-dependent ROC
analysis was applied to compare the predictive accuracy of the models.

Results

Detection of differentially expressed ARGs in HNSCC and normal human
tissues

The study procedure is presented in Fig. 1. The RNA expression and
clinical data of 546 HNSCC patients were downloaded from the TCGA
database. Then we extract the expression values of 233 ARGs. On the
basis of the screening criteria of DEGs, we obtained 32 differentially
expressed ARGs (included 12 downregulated ARGs and 20 upregulated
ARGs) (Fig. 2A and 2B). Furthermore, the box plot was generated to
display the expression pattern of differentially expressed ARGs between
cancers and normal tissues (Fig. 2C).
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Functional enrichment analysis of the differentially expressed ARGs

Functional enrichment analysis was performed according to the 32
differentially expressed ARGs. The GO terms and KEGG pathway enrich-
ment results of these genes were summarized in Fig. 3. GO results show
that these ARGs were mainly enriched in digestive tract development,
neuron death, autophagy (Fig. 3A). The relation between ARGs and GO
enrichment results was also displayed in the heatmap (Fig. 3B). KEGG
enrichment results revealed that the 32 ARGs were mainly involved in
apoptosis, human cytomegalovirus infection, and human papillomavirus
infection (Fig. 3C).

Construction and validation of the risk signature based on the
prognosis-related ARGs for OS

Next, we explored the prognostic role of ARGs. The 487 patients
were randomly divided into training cohort and testing cohort accord-
ing to the ratio of 3 to 2. To screen out the genes that significantly
associated with OS, we performed univariate Cox regression analysis
using the data from TCGA training cohort. 27 genes were significantly
associated with OS based on univariate Cox regression (p < 0.05, full
data are presented in Supplementary Table S1). Then the LASSO re-
gression used above 27 genes to identify prognosis associated genes,
namely GABARAPL2, GOPC, MAPK9, TP73, HSP90AB1, ST13, IKBKB,
IFNG, GAPDH, NKX2-3, CCR2, VAMP7, CAPN10, CDKN2A, and estab-

lish the signature of OS for patients. (Fig. 4A and Fig. 4B). The risk scores
of the TCGA training, testing and whole cohorts were calculated. After-
ward, patients were classified into high-/low-risk groups based on the
cut-off of the risk scores, respectively. Survival curve was used to com-
pare the OS outcomes in patient groups. The patients in the low-risk
group had poorer OS than those in high-risk group in training and test-
ing cohorts (p < 0.001, Fig. 4C and Fig. 4E). To assess the efficiency of
the model, we conducted 1-, 2- and 3-year ROC curve analyses by com-
paring the respective AUC values. In the training cohort, thel-, 2- and
3-year AUC values for the risk signatures were 0.724, 0.696 and 0.722,
respectively (Fig. 4D). In the testing cohort, the 1-, 2- and 3-year AUC
values for the risk signatures were 0.653, 0.704 and 0.676, respectively
(Fig. 4F). Results show that the prognostic signature based on ARGs had
certain prediction abilities in predicting survival outcome.

The correlation between the OS-related prediction model and prognosis of
HNSCC patients

According to the same formula mentioned above, we calculate the
risk score for patients, and divided them into high-risk group and low-
risk group in the whole set. The Kaplan-Meier survival plot, the distri-
bution of the risk scores, vital status, and corresponding 14 ARGs ex-
pression level of patients in TCGA whole cohort is displayed in Fig. 5.

Furthermore, we evaluated the clinical significance of the signa-
ture by analyzing the correlation among clinical parameters. Univariate
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Fig. 2. Differentially expressed autophagy-related genes (ARGs) between HNSCC and normal head and neck tissues. (A) The volcano plot for the 233 ARGs in HNSCC.
Red indicates high expression and blue indicates low expression. Gray shows those genes showed no difference. (B) Heatmap of the 32 differentially expressed ARGs
in head and neck cancer. (C) Boxplot showing the expression pattern of differentially expressed ARGs in HNSCC.

Cox regression revealed that the Stage, Gender, pathological T stage,
pathological N stage, HPV subtype and risk score were correlated with
OS in HNSCC patients (P < 0.05) (Fig. 6A). Multivariate Cox analysis
showed that pathological T stage, pathological N stage, Radiation ther-
apy and risk score were correlated with OS in HNSCC patients (P < 0.05)
(Fig. 6B).

And then the survival analyses were performed based on the OS-
related genes and the results were exhibited in Fig. S1. The low expres-
sion level of GABARAPL2, GOPC, MAPK9, HSP90AB1, ST13, GAPDH
in HNSCC were significantly associated with better OS rate. However,
this association did not hold true among these genes-VAMP7, CAPN10,
IKBKB, CDKN2A (Supplementary Fig.S1).

The OS-related risk scores correlated with clinicopathological
characteristics, immunoscore

Further evaluation of the correlation between risk scores and clinico-
pathological characteristics was conducted. The expression of 14 ARGs
in the low- and high-risk groups in the TCGA whole cohort was also
demonstrated in the heatmap (Fig. 7A). The expression of HSP90ABI,
ST13, GOPC, MAPK9, VAMP7, GABARAPL2, GAPDH in the low-risk
group were lower than those of the high-risk group. The expression of
TP73, NKX2-3, IKBKB, CAPN10, CDKN2A, IFNG, CCR2 were high in the

low-risk group. We further found high risk score is closely related to HPV
subtype (p < 0.001), stage (p < 0.001), pathological stage T (p < 0.001),
pathological stage N (p < 0.05), immunescore (p < 0.05), but it had
no correlation with gender, age, grade and radiation therapy (Fig. 7A).
We also investigated a possible relationship between risk score, and
HPV subtype, stage, pathological T stage, pathological N stage, and im-
munescore.

The risk score of the stage Stage III-IV was higher than that of the
Stage I-II (p < 0.001, Fig. 7B). The risk score was positively correlated
to the pathological T stage (p < 0.001) and pathological N stage (p <
0.05) (Fig. 7C and Fig. 7D). The patients whose HPV are negative had
higher risk than the patients whose HPV are positive (p < 0.001, Fig. 7E).
There were significant differences between the high-risk and low-risk
patients in terms of immunescore (p < 0.001, Fig. 7F). These findings
indicated that the risk score was positively associated with higher stage,
pathological T stage, pathological N stage and immunescore level.

The OS-related signature associated with immune cell infiltration

In addition, the different risk socres between low-immunescore and
high-immunescore groups prompt us to investigate which type of im-
mune cell has association with t high-risk and low-risk patients (Fig. 8
and Supplementary Fig. S2). The two groups revealed a significant dif-
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ference in immunescore (Fig. 8A). Subsequently, we analyzed the frac-
tion of 22 immune cells in the low/high risk groups. High-risk group
showed higher infiltration levels of T cell CD4 naive, T cell CD4 mem-
ory resting, NK cell resting, Macrophage M0, Mast cell resting (Fig. 8B
and Supplementary Fig. S2), whereas low-risk group was more corre-
lated with B cell naive, B cell memory, T cell CD8, T cell CD4 memory
activated, T cell follicular helper, T cell regulatory Tregs, NK cell ac-

tivated, Monocyte, Macrophage M1, Mast cell activated (Fig. 8B and
Supplementary Fig. S2).

Genetic alterations of the OS-related signature on immune cell

Furthermore, the correlation between risk score and infiltration
abundances of six types of immune cells was calculated to estimate the
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the Macrophage (p < 0.001), Neutrophil (p < 0.001), B Cell (p < 0.001), The infiltration levels of immune cells in risk-related genes were signif-
Dendritic Cell (p < 0.001), CD4+ T Cell (p < 0.001), and CD8+ T Cell (p icantly affected by the CNAs mainly because of arm-level deletion/gain
< 0.001, Fig. 9). (Supplementary Fig. S3). These results demonstrated that ARGs may be
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pivotal regulators in the tumor immune microenvironment for HNSCC
patients.

Construction and validation of prognostic signature for DSS

Further evaluations of the prognostic signature based on ARGs for
disease-specific survival (DSS) were analyzed. 470 patients were ran-
domly divided into a training set (n = 282) and a testing set (n = 188).
Among 233 ARGs, a total of 19 DSS-related ARGs were found in the uni-
variate Cox regression analysis using the training set (p < 0.05, details
are given in Supplementary Table S2). Subsequently, these DSS-related
genes were subjected to a LASSO regression analysis using the training
set. Finally, 12 prognostic ARGs were obtained and the prognostic sig-
nature composed of these genes was established (Fig. 10A and Fig. 10B).
Based on the median value of risk score, the patients were stratified into
high-risk and low-risk groups. According to the Kaplan-Meier curve, pa-
tients in the high-risk groups had significantly poorer DSS outcomes
than those in the low-risk group (p < 0.05, Fig. 10C and Fig. 10E). In
the training cohort, the AUC for predicting DSS were 0.845, 0.757, and
0.759, respectively (Fig. 10D). In the testing cohort, the AUC for pre-
dicting DSS were 0.581, 0.651, and 0.637, respectively (Fig. 10F).

Consistent with the results obtained from the training and testing
cohorts, patients in the high-risk group in the whole dataset (p < 0.01,
Fig. 11A) had shorter DSS times than the low-risk groups. In the whole
cohort, the AUC for predicting DSS were 0.744, 0.713, and 0.712, re-
spectively (Fig. 11B). Fig. 11C-D showed the DSS-related distribution of
risk scores and the relation between risk scores and DSS outcomes. The
expression of 12 genes in high risk or low risk group was shown in the
heatmap (Fig. 11E).

By combining the results of univariate (HR = 3.131, 95% CI = 2.165-
4.529, P < 0.001) (Fig. 11F) and multivariate Cox regression
(HR = 3.189, 95% CI = 2.176-4.676, P < 0.001) (Fig. 11G) analysis,
we proved that the risk signature of DSS can be an independent prog-
nostic factor.

In the DSS-related prediction model, high expression of GAPDH,
BAK1, FKBP1A, GABARAPL2, and MAPK9 genes were associated with
worse DSS rate (Supplementary Fig. S4). In addition, high expression
of TP73 and CCR2 was associated with better DSS rate (Supplementary
Fig. S4). Furthermore, no associations between the expression level of
VAMP7, ATGA4A, ATGA16L2, ATF4 and DSS rate were found (Supple-
mentary Fig. S4).

In order to further clarify what type of regulation of autophagy (up-
regulation or downregulation) could have a positive impact on HNSCC
patient’s survival, we comprehensively analyzed the expression level of
DSS-related and OS-related ARGs. Based on the screening criteria of |
log2FC |>1 and false discovery rate (FDR) <0.05, we found that the
expression level of HSP90AB1 and IFNG genes were highly expressed
in tumor tissues compared to adjacent normal tissues, while the expres-

sion level of NKX2-3 in tumor tissues was lower than that in adjacent
normal tissues. The expression of other genes had no significant differ-
ence (Fig. 2C). In the results of survival analysis, the high expression
level of HSP9OAB1 in HNSCC were significantly associated with poorer
survival rate. The high expression level of IFNG and NKX2-3 in HNSCC
were significantly associated with better survival rate (Supplementary
Fig.S1 and S4). These results indicated that the upregulation of some
ARGs could have a positive impact on HNSCC patient’s survival, and
the downregulation of other ARGs might have the similar positive im-
pact on HNSCC patient’s survival.

Nomogram

By combining risk signature and other clinicopathological parame-
ters, we performed nomogram to provide a risk prediction of 1-year,
2-years, 3-years OS and 1-year, 2-years, 3-years DSS for an individual
patient (Supplementary Fig.S5). The calibration curves showed that the
nomogram we established showed good performance for predicting the
1-year OS, 2-year OS, 3-year OS (Supplementary Fig. S5) and the 1-year
DSS, 2-year DSS, 3-year DSS (Supplementary Fig. S5) of HNSCC.

Discussion

HNSCC carries a poor prognosis and has a high invasive tendency,
with a low 5-year survival rate in advanced stages. Although the spe-
cific causes of HNSCC are unclear, various factors and clinical features,
including smoking, alcohol as well as human papillomavirus status, are
known to be associated with the disease [27-29]. Despite significant ad-
vances in the understanding of cancer, the prognosis of patients with
HNSCC has not improved much vary from person-to-person because of
their genetic conditions. Therefore, finding novel molecular biomark-
ers can improve the effectiveness of diagnosis and treatment strategies
in the early stages of HNSCC. Thus, it is urgent to investigate effective
diagnostic and therapeutic biomarkers for HNSCC patients. An increas-
ing number of studies have shown that defects in autophagy is signif-
icantly related to the occurrence and progression of HNSCC, but most
researchers focused on the role of single gene related to autophagy and
its potential effects. And few explored the role of ARGs in tumor im-
mune microenvironment. Feng et al. [30] constructed a model of ARGs
and showed the interface between risk signature and OS. However, a
comprehensive exploration of ARGs in the TIME, the value of HPV
status in risk signature, the analysis of DSS, is lacking. Based on the
transcriptome expression profiles of patients, we screened autophagy-
related genes and identified 32 differentially expressed ARGs in HNSCC
patient tumor samples. Considering the potential molecular mechanisms
and biological pathways of these genes may contribute to the occurrence
and development of HNSCC, we further carried out biological enrich-
ment analyses, including GO and KEGG pathway analyses, to outline
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Fig. 7. Risk Scores Correlated with Clinicopathological Char-
acteristics and Immunoscore. (A) Clinicopathologic charac-
teristics of low- and high-risk groups were generated in the
heatmap (B-F) Distribution of risk scores stratified by stage
(B), pathological stage T (C), pathological stage N (A), HPV
subtype (E) and immunescore (F). #p < 0.05, s#p < 0.01, and
#3xp < 0.001.

the potential functions of ARGs. The GO and KEGG analyses revealed
that the majority of these differentially expressed ARGs are involved in
autophagy, process utilizing autophagic mechanism, apoptosis and HPV
infection. Autophagy is deeply associated with proliferation of HNSCC
and poor prognosis, so it is worthwhile to research useful prognostic
signature to assist clinician. We used the TCGA training cohort to con-
structed OS-related model and DSS-related model, respectively. Firstly,

we identified some OS-related ARGs in univariate Cox regression anal-
ysis. Then, we constructed a prognostic model using LASSO regression.
Our OS-related risk signature included 14 genes (GABARAPL2, GOPC,
MAPK9, TP73, HSP90AB1, ST13, IKBKB, IFNG, GAPDH, NKX2-3, CCR2,
VAMP7, CAPN10, CDKN2A). Our DSS-related risk signature included 12
genes (BAK1, GABARAPL2, MAPK9, TP73, FKBP1A, ATG4A, GAPDH,
STK11, CCR2, VAMP7, ATF4, and ATG16L2).
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The TP53 family member gene TP73 is a crucial tumor suppres-
sor inducing cell cycle arrest and apoptosis [31]. Ge et al. [32] found
that a chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)-
dihydrofuran-2(3H)-one, that activated mTOR by targeting FKBP1A.In
colorectal cancer, ST13 suppressed cell growth and migration in vitro
and tumorigenic ability in vivo [33]. Wang et al. observed that the
tumor-associated macrophages infiltration and CCR2 expression was as-

10

sociated with the tumor metastasis in human lung cancer [34]. VAMP7
is a core functional gene in the vesicular fusion machinery of primary.
And VAMP7 knock-down sharply reduced the killing effects of T cells,
without suppressing T-cell mediated immunity [35]. MAPK9 is upregu-
lated in non-small-cell lung carcinoma, which is closely linked to T stage
in NSCLC patients. Furthermore, circRNF20 stimulates NSCLC prolifer-
ation by activating MAPK9 [36].



J. Fang, Z. Yang, J. Xie et al.

Partial Likelihood Deviance

<
N
N
g - -
g | (1Y _....
..'-. seoe
. '.
© 1 .o'.
£ 19000dbaasseset?
2
T —
- T T T T T
-7 -6 -5 -4 -3
Log(%)
Risk == High risk == Low risk
1.00
2075 A, .
E
©
Qo
o
2 0.50
©
2
2
=
0 025
p=4.953e-08
0.00
0123456 7 8 9101112131415
Time(years)
Risk == High risk == Low risk
1.00
20.751
E
©
o)
o
a 0.501 " "
©
2
&
3
0 0.251
p=1.204e-02
0.001

012345678 91011121314151617181920
Time(years)

Coefficients

-04

-0.6

Sensitivity

Sensitivity

Translational Oncology 14 (2021) 101094

T T T T T
-7 -6 -5 -4 -3
Log Lambda
Time-dependent ROC curve
o |
«©
% <
© .
o
<
.

0.2

0.0

0.2 0.4 0.6 0.8 1.0

0.0

—— AUC at 1 years: 0.845
-~ AUC at 2 years: 0.757
ALK —— AUC at 3 years: 0.759
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

Time-dependent ROC curve

~ AUC at 1 years: 0.581
—— AUC at 2 years: 0.651
—— AUC at 3 years: 0.637

T T T T T T
04 06 0.8 1.0

1-Specificity

Fig. 10. Construction and validation of the prognostic signature for DSS. (A-B) Lasso regression analyses of ARGs using the DSS model. The Lasso regression was
performed using prognosis-significant ARGs in the training cohort of HNSCC. Kaplan-Meier survival curve for DSS in the training cohort (C), and testing cohort (E).
ROC curves in the training cohort (D), and the testing cohort (F).



J. Fang, Z. Yang, J. Xie et al.

Translational Oncology 14 (2021) 101094

A Risk == High risk == Low risk B
o
©
o
0.
= > ©
o g o
8 i
o 2
¢ é 3
2
z o -
@ 0. o. - AUC at 1 years: 0.744
p=1.439e-09 L — AUC at 2 years: 0.713
o —— AUC at 3 years: 0.712
ol ° 4 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
012345678 91011121314151617181920
Time(years) 1-Specificity
o 4 o s
® High risk s 4
low Risk
o "
® ]
s
3
@
~x © o
B e
o
~ - E
T T T T T
0 100 200 300 400
Patients (increasing risk socre)
D
]
_ 1 _| ® Disease-specific:yes
e - Disease-specific:no
e .
' o 4
g =
= L]
R P ; , . .
:;;E 3 "‘- P ! o » g o 085005 8
& - T » o o 3 :A o0 X
o | SUPYTIR TR APFINY AP S AR
T T T T T
0 100 200 300 400
Patients (increasing risk socre)
E type 20 type
GAPDH o
low
FKBP1A 15
ATF4
10
CCR2
MAPK9 5
VAMP7
BAK1 o
GABARAPL2
STK11
TP73
ATGAA
ATG16L2
F G
pualue Hazard ratio ' pvalue Hazard ratio 1
Age 0223 1.014(0.992-1.036) ﬁ Age 0139 1.019(0.994-1.044) '.
Stage 0001  1.798(1.266-2.554) : —a— Stage 0457  1.283(0.666-2.471) |—:-—|
Grade 0339  1.197(0.828-1.729) Her— Grade 0726  1.076(0.715-1.617) = —
1 1
N <0001  1.664(1.283-2.158) | —— N 0003  1.674(1.190-2.354) 1 ——
T 0002  1.500(1.166-1.930) ' — T 0143 1.351(0.903-2.020) —-—
Radiation 0577 0.871(0.536-1.415) — JI—| Radiation 0002  0.412(0.236-0.721) P :
Gender 0678  0.895(0.530-1.512) = — Gender 0928  0.975(0.562-1.691) ——
1 1
Subtype 0103  0.432(0.157-1.183) - — Subtype 0365  0.617(0.218-1.752) —_—
riskscore <0.001 3.131(2.165-4.529) : | . s— riskscore <0.001 3.189(2.176-4.676) : —_——
——t—T T —— T
0 1 2 3 4 0 1 2 3 4
Hazard ratio Hazard ratio

Fig. 11. Characteristics of DSS-related signatures. (A) Kaplan-Meier curves for the high-/low-risk groups. (B) The ROC of DSS for the ARGs-based prognostic signature
(C-D) Distribution of risk score and patient survival time, and status of HNSCC. (E) Heatmap of DSS-related ARGs expressions in the HNSCC. Forest plots showing

the univariate (F) and multivariate cox regression results (G) of DSS in HNSCC.

12



J. Fang, Z. Yang, J. Xie et al.

Univariate Cox regression analysis was performed to find genes sig-
nificantly associated with OS and DSS of HNSCC. And then, the LASSO
regression was used to build up risk signatures. According to the risk
formula, we calculated risk score of each patient and divided patients
into high/low-risk groups according to the median risk score. The re-
sult of KM survival analysis revealed that the OS for patients in the
high-risk group was significantly poorer than that of low-risk group,
and ROC analysis reflected the predictive signature performed well. The
next finding implied that the ARGs-related signature for OS could be a
satisfactory independent predictor of poor prognosis in HNSCC. The in-
ternal testing set was used to assess the predictive performance of the
signature, revealing that the autophagy-related signature for OS we con-
structed had good prospect for application. The clinic correlation analy-
sis confirmed that the risk score was closely related to Stage, patholog-
ical T stage, pathological N stage and HPV subtype. Notably, the prog-
nostic evaluation model for DSS we also established and underwent val-
idation. The ARGs-related signature for DSS can predict 1-year, 2-year,
and 3-year survival rate accurately for HNSCC patients. Furthermore,
we built nomogram model by incorporating clinical risk factors and risk
score. The nomogram developed in our study accurately predicts the
OS and DSS for HNSCC and calibration graphs added strong confirma-
tion. Meanwhile, we illustrated the association between the OS-related
risk score and immune cell infiltration level via CIBERSORT method
and TIMMER database, which showed that the tumor microenvironment
may affect the growth and metastasis in tumor development. Analysis of
our study also demonstrated that the CNAs of risk-related genes had an
impact on the immune cell infiltration. However, undeniably, our study
still have some limitations. First, the two signatures we established were
only obtained and processed from TCGA data. Although we have per-
formed internal verification, the reliability and robustness of the model
still needs to be further assessed using external datasets. Secondly, the
specific and detailed of the genes underlying the prognostic signature in
HNSCC are still unclear. Additionally, further investigations regarding
the regulatory mechanism of risk-related genes in TIME is warranted.

In conclusion, our study established the ARGs-related signature for
0OS and DSS that were all independent prognostic indicators for HNSCC
patients. And then, we firstly present a deep understanding of ARGs in
the TIME, but further large scale studies and experiments are needed
to verify our hypothesis. Meanwhile, our study may provide promising
targets that can enhance the efficacy of cancer immunotherapy.
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