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  FUZI (Aconiti Lateralis Radix Praeparata) is a traditional Chinese medicine herb used extensively for nourish-
ing yang (regarded as the positive, male universal force), which is critical in treatment of allergic rhinitis. In 
this paper, FUZI was explored based on network pharmacology. The active components of FUZI were screened 
out, its protein targets were assessed, and the protein interaction network map was built with the differential 
protein of allergic rhinitis, as an attempt to determine the critical targets of FUZI for treating allergic rhinitis. 
Subsequently, DAVID was employed to explore the biological function and pathway enrichment to determine 
the biological pathway of FUZI for treating allergic rhinitis.

  As suggested by the results, FUZI is likely to affect the inhibition of inflammation and the regulation of immu-
nity, probably reducing the incidence of allergic rhinitis, or alleviating nasal discomfort attributed to allergic in-
flammation. The targets and pathways of FUZI for treating allergic rhinitis assessed by network pharmacology 
provided a direction for our subsequent studies and may be a novel therapeutic target.
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Background

Allergic rhinitis (AR) refers to an inflammatory disease of nasal 
mucosa mediated by IgE. The cumulative costs of drug treat-
ment can be significant over time since AR is capable of recur-
rence and can seriously impair human health and adversely 
affect patient quality of life [1]. Western medicine is relatively 
ineffective in treating AR. Patients with mite allergy can try 
sublingual immunotherapy to eradicate the disease, but AR 
treatment primarily aims at alleviating symptoms.

Traditional Chinese Medicine (TCM) has safeguarded our health 
for thousands of years, it is a treasure for discovering potential 
treatments. TCM can act as a supplement or substitute dur-
ing the treatment of AR. According to the knowledge of TCM, 
the occurrence of AR results from the deficiency of yang qi. 
The major approach to treat AR is to warm and tonify yang qi. 
FUZI refers to a traditional Chinese medicine herb, which is 
commonly used for warm and tonify yang qi, ans is also ex-
tensively applied for treating AR in clinical practice. Although 
there have been rare reports of FUZI as a single herb for treat-
ing AR, its effect for treating AR in formula has been verified 
clinically and experimentally. It is capable of inhibiting the in-
flammation activated by IgE, regulating the imbalance between 
Th1 and Th2, and reducing the clinical symptoms of AR rats by 
working in combination with other herbs in the formula [2,3]. 
Recent studies have shown that FUZI has definite anti-inflam-
matory and immunomodulatory effects [4,5].

Similar to all TCM herbs, FUZI contains many kinds of com-
pounds, and its targets are sophisticated. For this reason, it 
is very difficult to analyze from a general perspective. To gain 
insights into the mechanism of FUZI for treating AR, a more 
systematic and modern study is required. Network pharma-
cology can effectively deepen the understanding of TCM, 
and it brings highlights TCM herbs using modern standards. 
Accordingly, network pharmacology was employed in this study 
to analyze the active compounds and targets of FUZI, and the 
mechanism of its treatment of AR was revealed at the molec-
ular level (Figure 1).

Material and Methods

Active compounds of FUZI

We used BATMAN-TCM (Bioinformatics Analysis Tool for 
Molecular mechANism of TCM, http://bionet.ncpsb.org/bat-
man-tcm/), a molecular mechanism analysis tool based on 
TCM ingredients’ target prediction and network pharmacology 
analyses [6]. To determine the active compounds and targets 
of FUZI, the herb name FUZI was submitted to BATMAN-TCM 
analysis and the ‘Score_cutoff’ was set to 20. Subsequently, 

the active compounds were screened out according to the 
ADME (Adsorption, Distribution, Metabolism, Excretion) pa-
rameters. First, the compounds were acquired in PubChem 
(https://pubchem.ncbi.nlm.nih.gov) [7], which is the world’s 
largest library of chemical information. Second, ADME parame-
ters of the compounds were acquired in FAFdrugs4 (http://faf-
drugs4.mti.univ-paris-diderot.fr) according to the SMILES query. 
FAFdrugs4 is a free ADME-Tox filtering tool which is conduc-
tive to screening our compounds. Subsequently, compounds 
were sifted following the standard ‘Drug-Like Soft’. Based on 
‘Drug-Like Soft’, standard compounds were screened by com-
bining their physical and chemical properties [8–12]. The mo-
lecular weight, hydrophobicity, rotatable bonds, and H-bonds 
donors were all considered in the assessment criteria. The com-
pounds accepted by the standard ‘Drug-Like Soft’ were the ac-
tive compounds of FUZI.

Candidate targets of FUZI’s active compounds

The compounds accepted by FAFdrugs4 and the targets ob-
tained from the results of BATMAN-TCM database were col-
lated. Subsequently, the compounds and targets were used to 
construct an interaction network to describe their relationship. 
To facilitate subsequent analysis, the target names were con-
verted to uniform standard Uniprot IDs via the Uniprot web-
site (https://www.uniprot.org), a universal protein database.

AR-associated genes

AR-associated genes were collected as the disease targets from 
the OMIM (Online Mendelian Inheritance in Man, https://omim.
org, updated May 2019) and DrugBank (https://www.drug-
bank.ca). The OMIM database is an authoritative database of 
human genes. DrugBank covers chemical data and drug targets 
or protein data [13–15]. AR-associated genes were searched in 
the above databases with ‘Allergic Rhinitis’ as the key word. 
The target genes were labeled by Uniprot IDs.

Construction of a protein–protein interaction (PPI) network

The interaction network between the compounds targets and 
disease targets was built using STRING version 11.0 (https://
string-db.org/). Then, the built network was imported into 
Cytoscape version 3.7.1 for visualization and topology analy-
sis. In line with the topological index Degree, the nodes’ con-
nectivity centrality was sifted. The node with the value great-
er than twice the median degree of all nodes was defined as 
the hub node.

Molecular docking is capable of revealing the molecular mecha-
nism of drug treatment of diseases, enhancing the pharmacolog-
ical effects to the molecular level, and materially underpinning 
the study of drug mechanism. To verify our predicted targets, 
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molecular docking was performed using the compounds and 
their targets with high degree in the hub nodes. The three-di-
mensional structures of the target proteins were obtained in the 
Protein Data Bank (http://www.rcsb.org/pdb/home/home.do) [16]. 
Next, the obtained proteins were decomposed into protein re-
ceptors and small molecular ligands for storage. The 3D struc-
tures of the active compounds originated from PubChem 
(https://pubchem.ncbi.nlm.nih.gov) were stored as molecular 
docking ligand after corresponding processing. The obtained 
protein receptors and ligands were docked by autodock4.

The drugs used to treat AR and their targets were collected in 
DrugBank. Subsequently, the PPI network was built with the 

hub nodes and the known targets to treat AR using STRING 
version 11.0. A novel network was obtained. Next, the network 
was imported into Cytoscape version 3.7.1 for visualization.

Enrichment analysis of the hub nodes of FUZI acting on AR

The Database for Annotation, Visualization and Integrated 
Discovery (DAVID, https://david.ncifcrf.gov/home.jsp) is a func-
tional annotation tool that can provide insights into the bio-
logical significance of genes [17,18]. The DAVID 6.8 database 
was used for Gene Ontology enrichment (GO enrichment) and 
Pathway enrichment analysis of hub nodes harvested. The di-
rected Biological Process, Cellular Component, and Molecular 

50

45

40

35

30

25

20

15

10

5

0

Gene Ontology Enrichment

In�
am

ma
tor

y r
esp

on
se

Im
mu

ne
 re

sp
on

se

G-
pro

tei
n c

uo
ple

d r
ece

pto
r s

ign
ali

ng
 pa

thw
ay

Ch
em

ota
xis

Ph
osp

ho
lip

ase
 C-

act
iva

tin
g G

-pr
ote

in 
cou

ple
d r

ece
pto

r s
iga

nli
ng

...

Pla
tel

et 
act

iva
tio

n

G-
pro

tei
n c

ou
ple

d r
ece

pto
r s

ign
ali

ng
 pa

thw
ay,

 co
up

led
 to

 cy
clic

...

Ce
llu

lar
 re

sp
on

se 
to 

lip
op

oly
sac

ch
ari

de

Po
sit

ive
 re

gu
lat

ion
 of

 fe
ve

r g
en

era
tio

n

Se
ns

ory
 pe

rce
pti

on
 of

 pa
in

Int
eg

ral
 co

mp
on

en
t o

f p
las

ma
 m

em
bra

ne

Pla
sm

a m
em

bra
ne

Ex
ter

na
l si

de
 of

 pl
asm

a m
em

bra
ne

Me
mb

ran
e r

aft

Ax
on

 te
rm

inu
s

Pe
rik

ary
on

De
nd

rit
e

Ne
uro

n p
roj

ect
ion

Ex
tra

cel
lul

ar 
sp

ace

Ex
tra

cel
ula

r re
gio

n

Cyt
ok

ine
 ac

tiv
ity

Dr
ug

 bi
nd

ing

Ep
ine

ph
rin

e b
ind

ing

Se
rot

on
in 

bin
din

g

Ch
em

ok
ine

 re
cep

tor
 ac

itiv
ty

Ch
em

ok
ine

 ac
tiv

ity

Do
pa

mi
ne

 ne
uro

tra
ns

mi
tte

r re
cep

tor
 ac

tiv
ity

, co
up

led
 vi

a G
i/G

o

alp
ha

2-a
dre

ne
rgi

c r
ece

pto
r a

cti
vit

y

Ne
uro

pe
pti

de
 bi

nd
ing

Ph
osp

ha
tid

ylo
no

sit
ol 

3-k
ina

se 
reg

ula
tor

 ac
tiv

ity

Biological process
Celluler component
Molecular function

Top 20 of pathway enrichment

Pat
hw

ay

Fc epsilon RI signaling pathway

Toll-like receptor signaling pathway

T cell receptor signaling pathway

TNF signaling pathway

Jak-STAT signaling pathway

cAMP signaling pathway

Sphingolipid signaling pathway

B cell receptor signaling pathway

Naturall killer cell mediated cytotoxicity

Regulation of lipolysis in adipocytes

Osteoclast di erentation

mTOR signaling pathway

HIF-1 signaling pathway

In�ammatory mediator regulation of TRP channels

Estrogen signaling pathway

cGMP-PKG signaling pathway

Fc gamma R-mediated phagocytosis

NF-kappa B signaling pathway

FoxO signaling pathway

NOD-like receptor signaling pathway

Gene number

P value

5

6

7

8

9

10

11

1e-03

5e-04

0.050 0.075 0.100
Rich factor

0.125 0.150

BATMAN-TCM

FAFdrugs4
‘Drug-like soft’

Compounds Compounds
targets

Disease
targets

‘Target–target’
PPI

Molecular
docking

Hub nodes

Allergic
rhinitis

Figure 1.  The technical strategy of this research. Exploration of molecular mechanism of FUZI for allergic rhinitis treatment based on 
network pharmacology.
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Function were employed to analyze the biological process. 
The KEGG pathway was selected to analyze the active path-
way of FUZI for treating AR (P<0.01).

Results

Active compounds of FUZI

The BATMAN-TCM database was searched. We found 58 com-
pounds of FUZI, of which 46 compounds had potential targets 
when the ‘Score_cutoff’ was set to 20. The SMILES query of 
the 46 compounds was performed in PubChem. Subsequently, 
according to SMILES query of the compounds, ADME parame-
ters were queried in the FAFdrugs4 database, and only 44 com-
pounds were matched in the FAFdrugs4 database. Lastly, 11 
compounds were accepted when compounds were screened 
according to the ‘Drug-Like Soft’ standard (Table 1).

Targets of FUZI’s Active Compounds

Target proteins of the 11 accepted compounds were screened 
out form the search results in the BATMAN-TCM database. 
After removing duplicate targets,194 targets were obtained 
in total. The compounds targets network was construct-
ed using Cytoscape 3.7.1. After clustering analysis was con-
ducted on the obtained compounds targets network, 5 clus-
ters were obtained. The first cluster covers 4 compounds and 
their targets, which were Mescaline, Coryneine, Salsolinol, and 
Higenamine. By searching for the properties of these com-
pounds in PubChem, it was found that they all have the ef-
fect of constricting blood vessels. It is well known that decon-
gestants are standard drugs for treating AR; they can reduce 
the congestion and swelling of nasal mucosa and ameliorate 

the symptoms of nasal congestion by constricting blood ves-
sels. Moreover, Higenamine is a natural non-steroidal anti-
inflammatory drug that can inhibit inflammation by interfering 
with the synthesis of prostaglandins. The second cluster cov-
ers 2 compounds and their targets, which were 14-Deoxy-11, 
12-Didehydroandrographolide, and Deoxyandrographolide. 
Both 2 compounds are andrographolides and exhibit anti-in-
flammatory functions, which are probably associated with 
the inhibition of NF-kB [19,20]. The allergic reaction process 
of AR is relatively short-lived, and it is the subsequent inflam-
mation in the later stage that primarily affects the quality of 
life of patients. Thus, anti-inflammation is the top priority for 
treating AR. The third cluster covers 3 compounds and their 
targets, which were M-Aminophenol, Ortho-Aminophenol, and 
Para-Aminophenol. These are toxic compounds, and their clin-
ical effects have been rarely studied. Thus, the mechanism of 
their action remains unclear. The fourth cluster covers only 1 
compound, Hypaphorine, and 2 targets. Hypaphorine is capa-
ble of exerting its anti-inflammatory properties by regulating 
Toll-like receptor 4 and peroxisome proliferator-activated recep-
tor g via the PI3K/Akt/mTOR signaling pathway [21]. The fifth 
cluster covers only 1 compound, Deltamine, and 4 targets. By 
searching PubChem, we found that Deltamine has the effect of 
sympathetic nerve excitation by accelerating the release of nor-
epinephrine and dopamine. Studies have confirmed that sym-
pathetic depression and parasympathetic excitation are com-
mon in immune-mediated inflammatory diseases. Regulation 
of sympathetic nerves can effectively treat these diseases [22]. 
The compounds targets network is shown in Figure 2.

AR-associated genes

To harvest the AR-associated disease targets, the OMIM and 
DrugBank databases were searched. We obtained 151 targets 

Compounds MW logP Rotatable Bonds HBD

14-deoxy-11,12-didehydroandrographolide 332.43 3.23 3 2

Deltamine 176.17 0.90 1 2

Salsolinol 179.22 1.02 0 3

Coryneine 196.27 0.01 3 2

M-aminophenol 109.13 0.21 0 3

Hypaphorine 247.31 2.22 4 2

Ortho-aminophenol 109.13 0.62 0 3

Para-aminophenol 109.13 0.04 0 3

Deoxyandrographolide 334.45 2.90 4 2

Mescaline 211.26 0.78 5 2

Higenamine 271.31 2.25 2 4

Table 1. The selected compounds of FUZI and their major physical-chemical properties.
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genes in the OMIM database, and 16 targets genes were ac-
quired in the DrugBank database. All the targets genes were 
labeled by Uniprot IDs. After duplicate targets were removed, 
161 targets genes were harvested.

Selection of hub nodes of FUZI acting on AR and 
construction of a PPI network

A ‘Target–target’ interaction network was constructed with the 
compounds’ targets and disease targets though the STRING 
database. To construct a network with high confidence, 
the STRING with threshold value greater than or equal to 0.7 
was sifted. The network consisted of 338 nodes and 1902 edges. 
Cytoscape was used to visualize and analyze the topological 
features of the network. After the nodes with values greater 
than twice the median degree of all nodes were screened out, 
65 hub nodes were harvested, 31 nodes of which originated 
from compounds targets, 38 nodes were from disease targets, 
and 4 nodes were both compounds targets and disease targets. 
The 4 nodes were IL10, IL1b, PTGS2, and IL6. We found that 
the 31 compounds targets were predicted from 7 compounds. 
They were Coryneine, Higenamine, M-Aminophenol, Mescaline, 
Ortho-Aminophenol, Para-Aminophenol, and Salsolinol.

To verify the screened compounds and targets, they were ana-
lyzed. The result was that most of the targets with the high-
est degree values corresponding to the 7 active components 
were neurotransmitter receptors. Molecular docking was per-
formed using the active compounds as well as the target pro-
teins with the highest degree corresponding to compounds. 

Since the crystal proteins could not be found, the 3 pro-
teins ADRA2B, ADRA2C, and HTR1A were no longer analyzed. 
According to the results of molecular docking analysis, all of 
them were satisfactory except for protein BDKRB2. The opti-
mal binding was protein CHRM2 and compound Higenamine. 
The results are shown in Figure 3.

AR-associated drugs and their targets were harvested in 
DrugBank. We found that the first-line drugs for treating AR 
were glucocorticoids, H1 receptor antagonists, and Leukotriene 
receptor antagonist. Their targets were NR3C1, HRH1, ALOX5, 
and CYSLTR1. In other words, these 4 targets are known tar-
gets for treating AR. Subsequently, another network was built 
using the 65 hub nodes and the 4 known therapeutic targets. 
The threshold value remained set to 0.7. The network consist-
ed of 68 nodes and 787 edges. GABRG2 was separated from 
the network for the reliability of the connection. The network 
was visualized by Cytoscape. The results are shown in Figure 4.

In this PPI network, FUZI could act as an indirect therapy (blue 
nodes) or exert a direct therapeutic effect (green nodes) through 
its potential target. The blue nodes in the network were the 
targets of the compounds, whereas they interacted with the 
targets of the disease (red nodes). For this reason, by regu-
lating these proteins, FUZI can regulate the disease proteins 
indirectly. The 4 green nodes in the network were targets of 
both compounds and diseases, so FUZI can play a therapeu-
tic role by directly regulating the expression of these proteins. 
Our review of the literature revealed that these 4 targets are 
critical to AR. IL1b and IL6 are 2 vital inflammatory factors. 

Figure 2.  Compounds targets network. The pink nodes are the active compounds of FUZI, and the green nodes are the targets of the 
active compounds.

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Chen X. et al.:  
Exploration of the molecular mechanism of FUZ…
© Med Sci Monit, 2020; 26: e920872

REVIEW ARTICLES

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) e920872-5



A B

Figure 3.  The molecular docking result of CHRM2 and Higenamine. (A) The 3D structure of protein receptor is illustrated as a ribbon 
model, and the 3D structure of the compound is presented as a stick model. (B) 2D diagram shows the interaction between 
protein CHRM2 and compound Higenamine.

Figure 4.  ‘Target–target’ interaction network. The red nodes, the blue nodes, the green nodes, and the yellow nodes acted as the 
disease targets, the targets of FUZI, the targets both of disease and FUZI, and the known therapeutic targets, respectively. 
The size of the nodes in the figure are associated with the degree of the target in the network.
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The expression levels of IL1b and IL6 were upregulated in the 
nasal mucosa of AR mice and in the peripheral blood of AR 
patients [23,24]. PTGS2 refers to various bioactive lipid me-
diators that participate in both normal homeostasis and in-
flammatory conditions [25]. IL10 acts as a negative immuno-
regulatory factor, as expressed in nasal endothelial cells. IL-10 
exerts an anti-inflammatory effect by inhibiting the activation 
of various leukocytes and the secretion of inflammatory cyto-
kines [26–28]. These 4 targets are closely involved in the oc-
currence and development of AR.

Enrichment analysis of the hub bodes of FUZI acting on AR

To analyze the function and biological processes involved for 
treating AR with FUZI, the DAVID database was used for Gene 
Ontology enrichment (GO enrichment) and Pathway enrich-
ment analysis of hub nodes (P<0.01). We found 148 items 
of biological process, 24 items of molecular function, and 14 
items of cell component when the GO enrichment was per-
formed. The first 10 items of each functional item are shown 

in Figure 5. We used the DAVID database for KEGG pathway 
enrichment and found 67 pathways (P<0.01). Bubble maps 
were made of the first 20 pathways, after removing extensive 
and false-positive pathways. The results are shown in Figure 6.

Discussion

The result of GO enrichment suggests that FUZI is likely to 
be involved in inflammatory response, immune response, 
G-protein-coupled receptor signaling pathway, and other pro-
cesses for the treatment of AR. After analyzing the results of 
KEGG pathway enrichment, we found that the major pathways 
that FUZI was involved in were largely associated with inflam-
mation and immunity.

The Fc epsilon RI signaling pathway was the first pathway we 
found. Fc epsilon RI is the key to induce and maintain aller-
gic reaction. In mast cells, Fc epsilon RI can activate a range 
of signal transduction pathways and regulate the activation 
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Figure 5.  Gene ontology enrichment. The red columns, the green columns, and the blue columns are Biological process, Cellular 
component, and Molecular function, respectively. The height of the column is associated with the target number. The P value 
of the column is smaller than the right one in each module.
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of inflammatory cells such as mast cells and basophils after 
cross-linking with the Fc terminal of IgE. Subsequently, mast 
cells can release histamine [29]. It has been reported that the 
pharmacological mechanism of allergen immunotherapy for AR 
and asthma may cover the downregulation of high-affinity IgE 
Fc receptors on basophils and mast cells [30]. Allergen immuno-
therapy is capable of blocking the production of IgG antibody. 
IgG antibody can suppress allergic response by inhibiting the 
link of Fc epsilon RI and the Fc terminal of IgE [31]. Whether 
FUZI has an effect similar to allergen immunotherapy, and 
whether it can effectively block the combination of Fc epsilon 
RI and IgE, warrants further study.

The second pathway harvested was the Toll-like receptor sig-
naling pathway (TLRs). The major role of TLRs is to participate 
in the identification of allergens. TLRs mediates the recogni-
tion and response of pathogens and their ligands such as en-
dotoxins, lipoproteins, viruses, and bacteria [32]. It has been 
reported that the innate immunity of nasal mucosa can be 
activated by extract of house dust mites via TLR4 to trigger 
AR [33]. FUZI may be able to mitigate allergic symptoms or 
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Figure 6.  KEGG pathway enrichment. The color of the bubble is associated with the P value, and the size is related to the number of 
targets.

reduce the incidence of allergies by downregulating the sen-
sitivity of TLRs to allergens.

The third pathway we found was the T cell receptor (TCRs) sig-
naling pathway. TCRs is essential for T cells to exert immune 
functions. It links T cells and antigen-presenting cells (APC). 
By the activation of TCRs, a range of immune- and inflamma-
tion-related signal pathways can be activated. A study found 
that the strength of TCR signals is closely associated with the 
degree of atopic disease in patients [34]. Weak TCR specific-
ity can enable primitive T cells to obtain the Th2 phenotype 
in response to specific antigens [35]. It is well known that AR 
is IgE-mediated Th2 inflammation. After APC transmits aller-
gens to Th cells, Th cells begin to differentiate into Th1 or Th2. 
When Th2 dominates, a range of allergic symptoms will oc-
cur. In theory, the treatment of AR can reverse the production 
of the Th2 phenotype by balancing the damaged TCR signals. 
FUZI might be able to enhance TCR signals that are initially 
defective or weakened.
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The fourth pathway we found was the TNF signaling pathway. 
Tumor necrosis factor (TNF) is a vital cytokine that can induce 
apoptosis, inflammation, and immunity. It has been found that 
TNF can promote the development of Th2 cells and type 2 innate 
lymphoid cells (ILC2) in allergic airway response [36]. For the 
recruitment of neutrophils and eosinophils in the airway dur-
ing immune challenge, TNF is required as well. Involvement in 
the development of Th2 cells and allergic airway inflammation 
may be the result of a range of genes expression in airway 
epithelial cells induced by TNF. The TNF receptors TNFR1 and 
TNFR2 have the opposite effect, so by TNF blocking, the symp-
toms of some patients can be ameliorated, whereas some in-
dividual are also at risk of aggravating allergic inflammation. 
Nevertheless, this does not affect the TNF signaling pathway 
and might become a new target of intervention therapy. If the 
relative effects of these 2 receptors on individual diseases are 
further clarified, the protective effect of blocking TNF signaling 
pathway on some individuals might play an important role in 
clinical applications. There may be some active components 
in FUZI that block the TNF signaling pathway, and further ex-
periments are needed to determine them.

The fifth pathway obtained was the JAK/STAT signaling path-
way. The JAK/STAT signaling pathway is a simple and extensive 
pathway. JAK acts as a non-receptor protein tyrosine kinase, 
which is activated by the binding of tyrosine kinase-associ-
ated receptor to ligands. The intracellular segment of the ty-
rosine kinase-associated receptor has the binding site of JAK. 
After binding to the ligand, the receptor phosphorylates STAT, 
the “signal transducer and transcriptional activator”, through 
the activation of JAK bound to it, and the signal is transmit-
ted from extracellular to intracellular sites. The JAK/STAT sig-
naling pathway is critical to the functional differentiation of 
immune cells and immune regulation [37]. There are various 
members of the JAK family and STAT family, and cytokines have 
certain selectivity to activated molecules. The JAK/STAT signal-
ing pathway is capable of facilitating the differentiation of dif-
ferent Th subsets. For example, IL-2/STAT5 and IL-4/STAT6 sig-
naling pathways are capable of activating Th2 differentiation, 
and IL-6-activated STAT3 can enhance mast cell degranulation, 
leading to allergic reactions [38–40]. The JAK/STAT signaling 
pathway has become a target for treating various immune dis-
eases. JAK inhibitors have been tested in clinical trials of im-
mune diseases [37]. It is suggested that the inhibition of JAK 
has a therapeutic effect on patients with AR [41]. JAK/STAT 
signal transduction interruption may reveal the mechanism 

of inhibiting the development of allergic diseases. The results 
of our enrichment suggest that FUZI interferes with the trans-
duction of the JAK/STAT signaling pathway, but its specific tar-
get remains unclear.

The sixth pathway found was the cAMP signaling pathway. 
Cyclic adenosine monophosphate (cAMP) acts as the second 
messenger of extracellular signal transmission to intracellular 
sites. cAMP is produced by regulatory T cells, and cAMP partic-
ipates in the regulation of effector T cells. Deficiency of cAMP 
can lead to an imbalance of immune regulation and the occur-
rence of allergic diseases [42]. The major effect of the cAMP 
signaling pathway is to activate cyclic-AMP dependent pro-
tein kinase A (PKA) to phosphorylation of downstream target 
proteins and continues to transmit information. Studies have 
suggested that cAMP balances immune signals via PKA [41]. 
Intracellular cAMP can inhibit the production of inflammatory 
cytokines such as TNF and IL-12, and promote the production 
of IL-10, an anti-inflammatory cytokine [43]. According to the 
results of both in vitro and in vivo experiments, low cAMP levels 
in dendritic cells induce a Th2 bias response, while high cAMP 
level suppress this response [44]. It has been reported that ac-
tivation of the cAMP/PKA signaling pathway in mast cells can 
mitigate its degranulation and inhibit allergic reaction [45]. 
Elevated cAMP levels can exert immunosuppressive and anti-
inflammatory effects in cells, which is a potential treatment for 
autoimmune diseases [46]. Phosphodiesterase 4 (PDE4) refers 
to an enzyme degrading cAMP. PDE4 inhibitor blocks the hy-
drolysis of cAMP in cells, and the accumulated cAMP can weak-
en the release of inflammatory cytokines; thus, PDE4 inhibitor 
has become a novel method to treat AR [41]. It is theoretically 
feasible to inhibit the cAMP signaling pathway in other tar-
gets to reduce allergic reaction and inflammation. Our results 
suggest that FUZI affects one or some aspects of cAMP sig-
naling pathway, but the specific mechanism remains unclear.

Conclusions

In conclusion, FUZI has a sophisticated therapeutic mechanism 
for treating AR, and network pharmacology can provide insights 
into the critical targets of its therapeutic mechanism. By the 
analysis, FUZI was found to play a regulatory role in the criti-
cal inflammatory pathway of AR. Interpretation of the results 
of network pharmacology suggest a future research direction.
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