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Gene expression of non-homologous end-joining
pathways in the prognosis of ovarian cancer

Ethan S. Lavi,1 Z. Ping Lin,1,2,* and Elena S. Ratner1,*

SUMMARY

Ovarian cancer is the deadliest gynecologic malignancy in women, with a 46% five-year overall survival
rate. The objective of the study was to investigate the effects of non-homologous end-joining (NHEJ)
genes on clinical outcomes of ovarian cancer patients. To determine if these genes act as prognostic bio-
markers of mortality and disease progression, the expression profiles of 48 NHEJ-associated genes were
analyzed using an array of statistical andmachine learning techniques: logistic regressionmodels, decision
trees, naive-Bayes, two sample t-tests, support vector machines, hierarchical clustering, principal compo-
nent analysis, and neural networks. In this process, the correlation of genes with patient survival and dis-
ease progression and recurrence was noted. Also, multiple features from the gene set were found to have
significant predictive capabilities.APTX,BRCA1,PAXX, LIG1, and TP53were identified asmost important
out of all the candidate genes for predicting clinical outcomes of ovarian cancer patients.

INTRODUCTION

Cells are constantly monitoring for any DNA damage caused by environmental insults or incurred during DNA replication. When identified,

multiple DNA repair pathways can be employed to repair the abnormality. The most lethal type of DNA damage, DNA double-strand break

(DSB), is repaired by the error-free homologous recombination (HR) pathway or the error-prone non-homologous end-joining (NHEJ)

pathway.1 DNA damage that starts as a single-strand break (SSB) is repaired mainly using poly ADP-ribose polymerase (PARP) through

the process of base excision repair.2 If the SSB is left unrepaired, it can progress to a DSB, which is usually repaired through the HR pathway.

When this pathway is unavailable, cells resort to the NHEJ pathway.3 In cancer cells with HR deficiency, the use of a PARP inhibitor leaves the

cancer cells with the NHEJ pathway as the only option for repairing DSBs.4,5 It is postulated that when cells use the NHEJ repair mechanism, it

leads to deleterious mutations or chromosomal abnormalities that promote cell death.6 Thus, many cancers, such as ovarian and breast can-

cers with defective HR repair, are susceptible to the cytotoxicity of PARP inhibitors through synthetic lethality. However, NHEJ repair could

also act as a double-edged sword. Using this error-prone repair mechanism, surviving cancer cells can acquire advantageous mutations that

lead to resistance to therapy.7

The NHEJ pathway can be further divided to two sub-pathways: classical or canonical NHEJ (cNHEJ) and alternative NHEJ (altNHEJ).

cNHEJ involves the direct rejoining and ligation of two broken ends of a DSB. This process often leads to a small insertion or deletion

(1–5 bp) at the break point. By contrast, altNHEJ requires additional end resection of both ends to generate a small microhomology sequence

for pairing and joining. This process can result in a large insertion or deletion at the repaired junction. In mammalian cells, cNHEJ evolves to

serve as a predominant mechanism to repair DSBs throughout the cell cycle and maintain genomic stability.6 altNHEJ functions as a backup

repair mechanismwhen critical components for cNHEJ and HR pathways are unavailable. Therefore, the error-prone andmutagenic nature of

NHEJ may be mainly attributable to altNHEJ.3 If NHEJ is not available, single strand annealing (SSA) is last in the hierarchy, being the most

mutagenic.8 SSA is treated as an alternative to altNHEJ, specifically geared toward repairing resected DSBs in the S/G2 phase of the cell.9

The connections between genes involved in NHEJ and ovarian cancer outcomes remain largely unknown. However, the involvement of

NHEJ pathways in cell death and mutagenic processes implies that these genes may serve as a biomarker of cancer mortality. Furthermore,

the levels of NHEJ gene expression quantify the activity of theDNA repair process and potentially provide an indicator of the cancer cell’s fate

in response to treatment.10 Thus, a mathematical model that correlates these genes with cancer mortality may hold promise to predict treat-

ment and survival outcomes in patients. However, complex problems such as this may require a sophisticated model.

There are many genes involved in the NHEJ mechanism. Of them, 48 of the most prominent genes related to DNA repair, with relation-

ships with NHEJ, were chosen for investigation. In early experimentation, classic statistical techniques were unable to check for intricate re-

lationships with prognosis. As such, a stronger method was desired to thoroughly analyze these genes to predict prognosis. As opposed to

classical methods, deep learning is a novel approach that has rapidly improved the success of models by leveraging large amounts of data to

learn difficult patterns. For this approach, a neural network model was created. A subset of the data is used to train and tune the network’s
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Table 1. Logistic regression of 48 genes to survival outcome conducted on the ovarian cancer dataset

Gene Estimate Std. Error t value Pr(>|t|)

TP53BP1 �0.077836 0.041337 �1.883 0.0606

RAD52 �0.063386 0.032482 �1.951 0.0519

MRE11 �0.061275 0.039049 �1.569 0.1176

POLQ �0.058071 0.049820 �1.166 0.2446

XRCC5 �0.056447 0.037277 �1.514 0.1309

XRCC1 �0.047599 0.036273 �1.312 0.1904

XRCC7 �0.037603 0.041710 �0.902 0.3680

MSH6 �0.034452 0.062775 �0.549 0.5835

EXD2 �0.027621 0.034477 �0.801 0.4236

RBBP8 �0.020403 0.029359 �0.695 0.4876

APLF �0.019839 0.033619 �0.590 0.5555

RIF1 �0.016524 0.039430 �0.419 0.6754

LIG4 �0.013188 0.031801 �0.415 0.6786

EXO1 �0.010461 0.051082 �0.205 0.8379

PAXX �0.008699 0.033950 �0.256 0.7979

H2AX �0.007304 0.035200 �0.208 0.8357

XRCC6 �0.006841 0.033174 �0.206 0.8367

PNKP �0.005799 0.038298 �0.151 0.8797

LIG3 �0.003759 0.028825 �0.130 0.8963

BRCA1 �0.002899 0.038271 �0.076 0.9397

RAD1 �0.002605 0.034548 �0.075 0.9399

ERCC1 0.001512 0.036701 0.041 0.9672

RAD50 0.003361 0.033791 0.099 0.9208

NBN 0.005523 0.031675 0.174 0.8617

ATR 0.006529 0.041340 0.158 0.8746

MSH3 0.008567 0.041481 0.207 0.8365

RPA1 0.010596 0.032621 0.325 0.7455

XRCC4 0.013539 0.036136 0.375 0.7082

RAD51 0.018338 0.039797 0.461 0.6452

TP53 0.018412 0.028813 0.639 0.5233

MLH1 0.023919 0.035277 0.678 0.4982

ERCC4 0.024449 0.031275 0.782 0.4349

WRN 0.024710 0.034415 0.718 0.4733

DCLRE1C 0.026012 0.035011 0.743 0.4580

NHEJ1 0.026084 0.036593 0.713 0.4765

PARP1 0.031145 0.042478 0.733 0.4640

PARP3 0.033195 0.031000 1.071 0.2850

POLM 0.033783 0.032540 1.038 0.2999

MLH3 0.036035 0.034967 1.031 0.3035

LIG1 0.036274 0.043006 0.843 0.3996

TDP1 0.040557 0.036737 1.104 0.2704

MSH2 0.043464 0.063100 0.689 0.4914

POLL 0.045968 0.031495 1.460 0.1454

PMS1 0.052444 0.030650 1.711 0.0880

CTBP1 0.052678 0.030728 1.714 0.0874
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parameters. Then, the model is evaluated on the remaining ‘‘testing’’ set of data.11 With that in mind, a major contributor to creating a suc-

cessful deep learning model includes a large dataset size or data augmentation. The latter helps the model from overfitting and achieve

higher accuracy by artificially increasing the amount of training data available.12 Due to the similarity of breast cancer to ovarian cancer, as

shown by clinical responses to PARP inhibitors,13 breast cancer data were included in the training dataset for the deep learning approach.

RESULTS

Linear regression shows APTX, RAD52, TP53BP1, and PMS1 correlate with survival

Linear regression was conducted to take a classic statistical approach to modeling patient’ survival. The model attempted to predict the

length of survival as a function of the 48 gene expressions. The results produced an estimate, standard error, a t-value, and a p value.

RAD52 and TP53BP1 were noted to be significant (p < 0.05) and negatively correlated with survival. APTX and PMS1 were also significant

at a higher alpha level (p < 0.1) and positively correlated (Table S1). However, the mean squared error (MSE) for this model, 692.975, was

higher than the control MSE of predicting average survival, 591.318, implying it was not making strong predictions.

Logistic regression identifies APTX, RAD52, TP53BP1, PMS1, and CTBP1 as predictors of survival

Logistic regression was conducted to supplement the results of the linear regression. The analysis produced an estimate, standard error, a

t-value, and p value. RAD52, TP53BP1, CTBP1, PMS1, and APTX were statistically significant (p < 0.1). Of those genes, RAD52 and TP53BP1

were negatively correlated with survival and APTX, PMS1, and CTBP1 were positively correlated (Table 1). All the other genes gave no indi-

cation of their true relationship with patients’ survival. In addition, the balanced accuracy of the model was 0.5000, which implies this model

was not effective.

Logistic regression identifies BRCA1, BRCA2, PAXX, and DCLRE1C as predictors of progression

Logistic regression was conducted to assess gene correlation and predictive capabilities on progression. The analysis produced an estimate,

standard error, a t-value, and p value. BRCA1 (p < 0.01), BRCA2 (p < 0.1), PAXX (p < 0.05), andDCLRE1C (p < 0.05) were statistically significant.

Of those genes, BRCA1, BRCA2 and PAXXwere negatively correlated with progression and justDCLRE1Cwas positively correlated (Table 2).

Similar to survival, using just the statistically significant genes, the balanced accuracy of the model was still low at 0.5185.

Logistic regression demonstrates strong predictive capabilities of recurrence using MLH3, BRCA2, LIG1, H2AX, TP53,

NBN, MLH1, and RAD52

Logistic regression was conducted to assess gene correlation and predictive capabilities on recurrence. The analysis produced an estimate,

standard error, a t-value, and p value.MLH3 (p < 0.01), BRCA2 (p < 0.005), and LIG1 (p < 0.1) were statistically significant and negatively corre-

lated with recurrence. In addition, H2AX (p < 0.1), TP53 (p < 0.05), NBN (p < 0.05), MLH1 (p < 0.05), and RAD52 (p < 0.01) were statistically

significant and positively correlated (Table 3). Using just the statistically significant genes resulted in a balanced accuracy of 0.6397.

T-test identifies genes correlating with prognosis

To further analyze genes using classic statistical methods, two-sample t-tests were conducted. P-values and a correlation indication were

generated for each gene and outcome. Among the survival outcome, DCLRE1C (p < 0.05), TDP1 (p < 0.05), PARP3 (p < 0.05), APTX

(p < 0.05), and PMS1 (p < 0.05), were positively correlated. In the progression outcome, MRE11 (p < 0.05) was positively correlated while

PAXX (p < 0.005) was negatively correlated. Finally,NBN (p < 0.05), ATM (p < 0.05), TP53 (p < 0.05), andMLH1 (p < 0.05) were positively corre-

lated and BRCA2 (p < 0.05), PNKP (p < 0.05), and PAXX (p < 0.05) were negatively correlated with recurrence (Table 4).

Hierarchical clustering forms a gene cluster with the survival outcome

A dendrogram was generated to visualize the results of the hierarchical clustering analysis. The results showed that APTX, RAD1, RBBP8,

MLH1, XRCC6, NBN, ERCC4, LIG3, and CTBP1 were part of the same cluster (yellow) with the survival variable (Figure 1). In addition, the hi-

erarchical clustering analysis produced a heatmap that plots correlations between gene variables and patients. In this graph, there were some

Table 1. Continued

Gene Estimate Std. Error t value Pr(>|t|)

ATM 0.056676 0.044617 1.270 0.2049

APTX 0.058779 0.031894 1.843 0.0662

BRCA2 0.060350 0.039121 1.543 0.1239

Logistic regression for the gene dataset was conducted and each gene was ordered by the estimates. Positive estimates of gene expression are associated with

improved survival whereas the negative estimates contribute to poor survival probability. Standard error, a t-value, and a p value for each gene in the logistic

regression model was generated. P-values under 0.1 were bolded.
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Table 2. Logistic regression of 48 genes to progression outcome conducted on the ovarian cancer dataset

Gene Estimate Std. Error t value Pr(>|t|)

BRCA1 �0.1242976 0.0415754 �2.990 0.00305

BRCA2 �0.0736006 0.0416912 �1.765 0.07862

PAXX �0.0706452 0.0331574 �2.131 0.03402

MSH6 �0.0648559 0.0648274 �1.000 0.31798

ATM �0.0619214 0.0476275 �1.300 0.19466

XRCC1 �0.0504561 0.0372236 �1.355 0.17638

PNKP �0.0449848 0.0397142 �1.133 0.25833

APLF �0.0350988 0.0338855 �1.036 0.30121

LIG4 �0.0297795 0.0345028 �0.863 0.38884

EXO1 �0.0269956 0.0535367 �0.504 0.61450

PMS1 �0.0265631 0.0303097 �0.876 0.38159

TDP1 �0.0263480 0.0394532 �0.668 0.50481

EXD2 �0.0254016 0.0368288 �0.690 0.49096

XRCC6 �0.0240855 0.0349407 �0.689 0.49121

XRCC5 �0.0228620 0.0371049 �0.616 0.53831

APTX �0.0191056 0.0345156 �0.554 0.58035

NBN �0.0186892 0.0318944 �0.586 0.55838

POLM �0.0180680 0.0331872 �0.544 0.58659

RAD52 �0.0141432 0.0420137 �0.337 0.73665

POLQ �0.0094281 0.0517068 �0.182 0.85545

RAD1 �0.0076254 0.0349897 �0.218 0.82764

MSH3 �0.0064148 0.0422258 �0.152 0.87936

PARP3 �0.0053147 0.0334938 �0.159 0.87404

RPA1 �0.0003987 0.0363523 �0.011 0.99126

TP53 0.0001413 0.0302283 0.005 0.99627

RIF1 0.0006736 0.0413518 0.016 0.98702

XRCC4 0.0022986 0.0381269 0.060 0.95197

RBBP8 0.0040682 0.0298129 0.136 0.89156

NHEJ1 0.0044331 0.0367863 0.121 0.90417

LIG3 0.0103901 0.0705623 0.147 0.88305

LIG1 0.0125968 0.0473550 0.266 0.79043

RAD50 0.0134041 0.0345507 0.388 0.69835

POLL 0.0181209 0.0320230 0.566 0.57195

CTBP1 0.0218878 0.0310270 0.705 0.48113

XRCC7 0.0312191 0.0429683 0.727 0.46812

H2AX 0.0313751 0.0385220 0.814 0.41608

ERCC4 0.0315063 0.0306286 1.029 0.30455

TP53BP1 0.0321815 0.0418084 0.770 0.44212

MSH2 0.0341919 0.0658308 0.519 0.60391

WRN 0.0406368 0.0376392 1.080 0.28126

ATR 0.0408894 0.0450884 0.907 0.36527

ERCC1 0.0438548 0.0381047 1.151 0.25078

MLH3 0.0473954 0.0485356 0.977 0.32968

MRE11 0.0542806 0.0394192 1.377 0.16964

MLH1 0.0570253 0.0371401 1.535 0.12584

(Continued on next page)

ll
OPEN ACCESS

4 iScience 26, 107934, October 20, 2023

iScience
Article



groups of patients with matching brightness, indicating close distance. These similar patients were likely easier to discern via modeling since

the row coloring show that the most of them are also grouped by survival outcome (Figure 2).

Dimensionality cannot be reduced with principal component analysis

Principal component analysis (PCA) was performed to assess redundancies in the data and to note relationships between the gene expression

data as a whole and survival. According to the scree plot, a significant portion of the data was lost in the principal components. The first five

components covered roughly 40% of the data while the entire ten components covered around 60% (Figure 3). As a result, no separation was

observed when graphing alive and deceased patients using the first 2 PCA scores (Figure S1). Furthermore, EXO1, POLQ, XRCC7, TP53BP1,

and PARP1 had the highest contributions to the principal components (Figure S2).

Forward feature selection optimizes neural network

To create an effective neural network, forward feature selection was conducted to reduce the amount of irrelevant inputs to the model. In

addition, feature selection graphs were generated for each outcome, displaying the trend of accuracy as each feature was added. The survival

curve reached peak balanced accuracy with four genes, RBBP8, APTX, ERCC1, and LIG3, and then decreased after that (Figure 4). The pro-

gression curve was best on average after five, using PAXX, LIG1, BRCA1,MSH2, and POLQ, before it trended downward (Figure 5). The recur-

rence graph peaked after seven, with ERCC4, XRCC1, TP53, RIF1, LIG3, LIG1, and APLF. However, it didn’t consistently trend downward like

the survival and progression graphs (Figure 6). In each graph, after seven genes, the max accuracy was stagnant, even though other relevant

genes were present. This indicates that more data was likely needed to fit the model.

Neural network makes strong predictions but breast cancer data fails to augment dataset

A bar graph was generated to compare the balanced accuracy of the neural network with and without the breast cancer data as training

augmentation. Three gene sets were tested: all the genes, the best from the forward feature selection, and the best from the logistic regres-

sion feature selection. Using the top three from the forward feature selection, RBBP8, APTX, and ERRC1, produced the best balanced accu-

racy for predicting survival at 0.5776. In addition, in all three trials, the breast cancer data lowered the accuracy, indicating that it can’t serve as

a method for data augmentation (See Figure S3). For predicting progression, the top four from the forward feature selection, PAXX, LIG1,

BRCA1, and MSH2 reached a max balanced accuracy of 0.6310. Lastly, a balanced accuracy of 0.5953 was achieved predicting recurrence

using the first six genes from the feature selection, ERCC4, XRCC1, TP53, RIF1, LIG3, and LIG1.

NHEJ related genes predicts prognosis using assorted machine learning methods

The optimal model for predicting survival was the support vector machine (SVM) using TP53BP1, CTBP1, APTX, RAD52, and PMS1 as the fea-

tures with a balanced accuracy of 0.5887. For progression, the neural network performed the best with 0.6310 balanced accuracy using PAXX,

LIG1, BRCA1, andMSH2. Finally, for predicting recurrence, the logistic regression was strongest at 0.6397 balanced accuracy using BRCA2,

LIG1, NBN, RAD52, TP53, H2AX, MLH1, and MLH3 (See all model performance in Table S2).

Simulation determines baseline accuracy for significance

Based on the simulation experiment, the 95%percentile of balanced accuracy that can be achieved froma purely randomly generated dataset

maxes out at 0.5546, using the decision tree model. The logistic regression, naive-Bayes, and SVM reached 0.5223, 0.5480, and 0.5425

balanced accuracy respectively. Typically, for each model, the average balanced accuracy was 0.5 (+/� 0.05). Lastly, on average, 4.64 genes

were found to have significant p-values out of the 48 genes (See Table S3).

Learning curve demonstrates logistic regression as high-bias method

Learning curves were generated for the logistic regression model predicting survival. The curve showed that the model reached its potential

with the features given. Yet it was an ‘‘under-fit’’ to the data as the performance was not very strong (Figure 7).

Table 2. Continued

Gene Estimate Std. Error t value Pr(>|t|)

RAD51 0.0639152 0.0396143 1.613 0.10781

PARP1 0.0670000 0.0436469 1.535 0.12593

DCLRE1C 0.0916141 0.0392333 2.335 0.02026

Logistic regression for the gene dataset was conducted and each gene was ordered by the estimates. Positive estimates of gene expression are associated with

likelihood for progression whereas the negative estimates contribute to low progression probability. Standard error, a t-value, and a p value for each gene in the

logistic regression model was generated. P-values under 0.1 were bolded.
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Table 3. Logistic regression of 48 genes to recurrence outcome conducted on the ovarian cancer dataset

Gene Estimate Std. Error t value Pr(>|t|)

MLH3 �0.1436620 0.0508329 �2.826 0.00506

BRCA2 �0.1229546 0.0434042 �2.833 0.00496

LIG3 �0.0960805 0.0733806 �1.309 0.19152

LIG1 �0.0912946 0.0479346 �1.905 0.05789

MSH3 �0.0576118 0.0442279 �1.303 0.19381

XRCC5 �0.0561888 0.0382077 �1.471 0.14255

RAD51 �0.0554070 0.0411657 �1.346 0.17944

PAXX �0.0516596 0.0345574 �1.495 0.13610

ERCC4 �0.0406260 0.0504662 �0.805 0.42151

POLM �0.0379293 0.0343613 �1.104 0.27064

WRN �0.0337736 0.0395686 �0.854 0.39411

PMS1 �0.0323849 0.0315185 �1.027 0.30510

POLL �0.0280872 0.0334922 �0.839 0.40242

XRCC7 �0.0236921 0.0450393 �0.526 0.59929

APTX �0.0219715 0.0355848 �0.617 0.53746

PNKP �0.0185921 0.0412459 �0.451 0.65252

MSH2 �0.0154689 0.0681421 �0.227 0.82059

RPA1 �0.0019469 0.0380689 �0.051 0.95925

PARP3 �0.0015842 0.0347633 �0.046 0.96369

DCLRE1C �0.0009017 0.0410132 �0.022 0.98248

ATR �0.0007959 0.0466153 �0.017 0.98639

RAD1 0.0031648 0.0360723 0.088 0.93015

BRCA1 0.0060448 0.0409094 0.148 0.88264

XRCC6 0.0061608 0.0364277 0.169 0.86583

CTBP1 0.0066763 0.0324354 0.206 0.83707

EXD2 0.0072041 0.0383797 0.188 0.85125

POLQ 0.0114784 0.0533366 0.215 0.82977

APLF 0.0127893 0.0366496 0.349 0.72739

RBBP8 0.0133334 0.0310312 0.430 0.66777

MSH6 0.0185962 0.0675222 0.275 0.78321

LIG4 0.0279871 0.0363777 0.769 0.44235

MRE11 0.0281447 0.0412834 0.682 0.49598

XRCC4 0.0342550 0.0403606 0.849 0.39678

RAD50 0.0374275 0.0363462 1.030 0.30404

NHEJ1 0.0408071 0.0380589 1.072 0.28457

PARP1 0.0414107 0.0448986 0.922 0.35718

RIF1 0.0422092 0.0426535 0.990 0.32325

TP53BP1 0.0426385 0.0435148 0.980 0.32802

ERCC1 0.0475018 0.0399575 1.189 0.23555

XRCC1 0.0490576 0.0404126 1.214 0.22583

TDP1 0.0608796 0.0413757 1.471 0.14234

EXO1 0.0630913 0.0546782 1.154 0.24956

ATM 0.0633327 0.0488009 1.298 0.19546

H2AX 0.0751909 0.0396955 1.894 0.05926

TP53 0.0774415 0.0315229 2.457 0.01465

(Continued on next page)
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Learning curves indicates deep learning methods potentially will improve with more data

Learning curves were generated for the neural network model in predicting survival when training on a different number of genes. The first

curve used the top three genes from the forward feature selection. The curve showed optimal training, needing each patient to reach equal

balanced accuracy among the training and testing data (Figure 8). The second curve included the top five genes from the feature selection.

This iteration demonstrated that increasing the number of features causes an overfit, trending toward more data equalizing the training and

testing scores (Figure 9).

DISCUSSION

Themachine learningmodels: logistic regression, decision tree, support vector machines, naive-Bayes, and neural network indicated the pre-

dictive capabilities of the genes on survival, progression, and recurrence outcomes. Balanced accuracy was used as the scoring metric

because it achieves equal weighting of correct positive and negative predictions. The feature selection effectively improved this metric while

also identifying which genes can act as biomarkers of prognosis. Since the models are assessed on unfamiliar examples, the balanced accu-

racy reliably showed the model’s effectiveness and generalization to new data.

Since the sample size is limited, a lower limit of accuracy was calculated to discern a statistically significant result. The simulation demon-

strated that 95% of randomly generated datasets would not produce balanced accuracy above the threshold of 0.555. Since the threshold is

beaten by our models, such as the SVM predicting survival achieving 0.5887, the accuracy is acceptable. It is statistically improbable for the

actual gene expressions used to have shown correlation with prognosis purely by chance in such a sample.

In addition, the simulation confirmed that some genes are expected to be statistically significant in the t-test, purely by chance. This in-

dicates that lone t-test results should be taken with skepticism. Rather, overlapping results with the feature selections are needed to corrob-

orate the relevance of the gene.

This report demonstrated that NHEJ has an impact on the prognosis outcomes of ovarian cancer patients. Through multiple methods of

statistical inference, several NHEJ genes that take a leading role in the clinical outcomes of ovarian cancer are identified. Based on the result

of the logistic regression, and further supported by the linear regression, APTX, RAD52, TP53BP1, PMS1, and CTBP1 correlate with patients’

survival outcomes. The two-sample t-test analysis showed thatDCLRE1C, PARP3, TDP1, APTX, and PMS1 likely exhibit significant differences

between alive and deceased patients. In the forward feature selection, the genes RBBP8, APTX, ERCC1, and LIG3 were identified as optimal

for predictions. Moreover, our hierarchical clustering analysis revealed that RBBP8, LIG3, and APTX are clustering with survival outcomes,

among other genes. Because the scree plot demonstrated that significant information was lost in its dimensionality reduction, the results

of the PCA are questionable.

The results for top genes correlatedwith the survival outcomewas presented as a table for clarity (Table 5). One interesting association that

was noted was that genes with positive survival outcomes typically promoted cNHEJ and SSA while those with negative survival outcomes

promoted altNHEJ. CTBP1 and RAD52 were the sole exceptions to this trend. In addition, TP53BP1 has been supported to have a role in

both pathways, so its effect is ambiguous. PMS1, MLH1, and RAD52 are also known mismatch repair (MMR) genes,14 so their involvement

in MMR rather than SSA might also be related to this trend. This casual observation is only sufficient for hypothesis generation, requiring

further validation.

In predicting progression, the result of the logistic regression showed BRCA1, BRCA2, PAXX, andDCLRE1C are correlated. The two-sam-

ple t-test analysis corroboratedPAXX’s relationship with progression and it further addedMRE11. In the forward feature selection,BRCA1 and

PAXX appeared again. In addition to BRCA1 and PAXX, LIG1,MSH2, and POLQ were used to achieve optimal progression predictions with

the neural network. The recurrence logistic regression incorporated BRCA2, LIG1, H2AX, TP53, NBN, MLH1, and RAD52. The t-test found

significance in BRCA2, TP53,NBN andMLH1 as well and further revealed PNKP, PAXX, and ATM as relevant. Yet the feature selection found

ERCC4, XRCC1, TP53, RIF1, LIG3, and LIG1 were best for the neural network, the only overlap being TP53 and LIG1.

An interesting thing notedwas the neural network and logistic regression didn’t have complete overlap in their feature sets with each other

and the t-test. This likely indicates that the models could reach higher predictive capabilities by including all the relevant features discovered.

It also narrows the upmost critical factors, with APTX in survival, PAXX and BRCA1 in progression, and TP53 and LIG1 in recurrence being

shared by both feature selections conducted.

In the learning curves, the logistic regression model showed a high bias issue indicating that it needs to have more complexity. Transition-

ing to the neural network, there is a high variance issue, showing that the data became insufficient to train the survival models with at least five

Table 3. Continued

Gene Estimate Std. Error t value Pr(>|t|)

NBN 0.0788570 0.0333537 2.364 0.01877

MLH1 0.0867637 0.0397749 2.181 0.03001

RAD52 0.1173069 0.0437177 2.683 0.00774

Logistic regression for the gene dataset was conducted and each gene was ordered by the estimates. Positive estimates of gene expression are associated with

likelihood for recurrence whereas the negative estimates contribute to low recurrence probability. Standard error, a t-value, and a p value for each gene in the

logistic regression model was generated. P-values under 0.1 were bolded.
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Table 4. Two sample t-tests for survival, progression, and recurrence

Gene Survival (p)

Survival positive

correlation Progression (p)

Progression positive

correlation Recurrence

Recurrence positive

correlation

XRCC6 0.1365 TRUE 0.4762 TRUE 0.1414 TRUE

XRCC5 0.3400 FALSE 0.4559 FALSE 0.3177 TRUE

XRCC7 0.3347 FALSE 0.1218 TRUE 0.2297 TRUE

LIG4 0.3816 TRUE 0.1728 FALSE 0.2789 FALSE

LIG3 0.3274 FALSE 0.2043 TRUE 0.2824 TRUE

LIG1 0.3058 TRUE 0.3732 FALSE 0.1334 FALSE

XRCC4 0.2605 TRUE 0.3199 FALSE 0.4431 TRUE

NHEJ1 0.2924 TRUE 0.0833 TRUE 0.1103 TRUE

XRCC1 0.0599 FALSE 0.1989 FALSE 0.3436 TRUE

DCLRE1C 0.0209 TRUE 0.0654 TRUE 0.2610 FALSE

TP53BP1 0.2826 FALSE 0.0775 TRUE 0.1005 TRUE

BRCA1 0.3101 TRUE 0.1357 FALSE 0.1996 TRUE

BRCA2 0.1017 TRUE 0.0521 FALSE 0.0134 FALSE

EXO1 0.1077 TRUE 0.4149 FALSE 0.2766 TRUE

EXD2 0.4229 TRUE 0.3532 TRUE 0.4824 TRUE

POLM 0.2072 TRUE 0.4002 TRUE 0.2672 FALSE

POLL 0.2428 TRUE 0.1369 TRUE 0.2618 TRUE

POLQ 0.2806 TRUE 0.4212 FALSE 0.1701 FALSE

RAD50 0.1986 TRUE 0.0601 TRUE 0.1568 TRUE

MRE11 0.4411 FALSE 0.0382 TRUE 0.0615 TRUE

NBN 0.2461 TRUE 0.1567 TRUE 0.0306 TRUE

TDP1 0.0160 TRUE 0.4932 FALSE 0.4327 TRUE

RBBP8 0.2539 TRUE 0.2660 TRUE 0.1830 TRUE

CTBP1 0.2030 TRUE 0.4875 FALSE 0.4219 TRUE

APLF 0.2423 TRUE 0.4109 FALSE 0.4268 TRUE

PARP1 0.1572 TRUE 0.1688 TRUE 0.1550 TRUE

PARP3 0.0180 TRUE 0.1810 TRUE 0.3649 TRUE

PNKP 0.4876 TRUE 0.0553 FALSE 0.0365 FALSE

APTX 0.0109 TRUE 0.1646 FALSE 0.4179 FALSE

WRN 0.3309 TRUE 0.1074 TRUE 0.2218 FALSE

PAXX 0.3906 TRUE 0.0010 FALSE 0.0261 FALSE

RIF1 0.4603 TRUE 0.4129 FALSE 0.4573 TRUE

RAD52 0.0707 FALSE 0.4665 TRUE 0.0502 TRUE

RAD51 0.2935 TRUE 0.2066 TRUE 0.4841 TRUE

ATM 0.3451 TRUE 0.1067 TRUE 0.0424 TRUE

ATR 0.1619 TRUE 0.1270 TRUE 0.3542 TRUE

TP53 0.2473 TRUE 0.4517 FALSE 0.0169 TRUE

H2AX 0.3463 FALSE 0.4039 FALSE 0.1224 TRUE

ERCC1 0.1258 FALSE 0.4466 FALSE 0.3870 FALSE

ERCC4 0.2544 TRUE 0.1472 TRUE 0.2574 TRUE

RPA1 0.1940 TRUE 0.3106 TRUE 0.0904 TRUE

MSH2 0.1508 TRUE 0.2731 TRUE 0.1099 TRUE

MSH3 0.1816 TRUE 0.1493 TRUE 0.2319 TRUE

RAD1 0.2231 TRUE 0.2883 FALSE 0.1843 FALSE

(Continued on next page)
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or six genes. We extrapolated from this that more data can potentially increase the accuracy of the model, since it will allow more features to

be included. It was theorized that since breast cancer is similar to ovarian cancer, shown by similar response to PARP inhibitors,13 the model

might be able to apply it to its learning process. The incorporation of breast cancer data into the training of our neural network didn’t improve

the accuracy. As a result, it is critical that efforts are made to increase data from ovarian cancer patients.

It is important to note that all ourmodels disregarded treatment information, demographics, and other indicators of prognosis. This was to

ensure all predictive capabilities came from the gene data. But in the future, by including an array of different biomarkers and collectingmore

clinical data, a predictive model could be created to achieve a higher accuracy.26 Or, by emulating our methodology, other sets of genes can

be analyzed cost-effectively. At the time, only high-grade serous ovarian cancer data were available. In the future, different types should be

investigated to determine the generalization of the findings. Finally, NHEJ genes showed evidence through modeling to be able to predict

survival, progression, and recurrence. Thus, further inquiry is necessary to assess the genes’ role in regard to each outcome.

Limitations of the study

The study was likely limited by the dataset size. Training a deep learning model requires a large number of examples and the learning curves

implied that more are needed. More data would improve confidence in the generalization of results to new patients. In addition, there is

concern in the reliability of the recurrence and progression factors. These data were inferred from clinical notes, which may be missing

Table 4. Continued

Gene Survival (p)

Survival positive

correlation Progression (p)

Progression positive

correlation Recurrence

Recurrence positive

correlation

MSH6 0.2942 TRUE 0.4480 FALSE 0.0527 TRUE

PMS1 0.0454 TRUE 0.4965 TRUE 0.4373 FALSE

MLH1 0.0513 TRUE 0.1560 TRUE 0.0341 TRUE

MLH3 0.0677 TRUE 0.1051 TRUE 0.1437 FALSE

p values were generated for the gene expression variables when compared to survival, progression, and recurrence. The test determines if the mean is different

whether the patient has the outcome or not. Any p values below 0.05 were bolded. In addition, the ‘‘Positive Correlation’’ columns relate if higher gene expression

associates with the survival, progression, or recurrence outcome.

Figure 1. Dendrogram from hierarchical clustering of 48 genes

The dendrogram displays the relatedness between variables. Major clusters are colored on the figure. It is in scale, with lower branches indicating a closer

similarity.
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information. As a result, recurrence or progression could bemislabeled in the analysis. Lastly, computational strength limited the reliability of

the neural network results. Training a deep learning model is stochastic, so the model will not perform the same every time it is trained. To

counteract this, the experiment is repeated multiple times, averaging the accuracies to balance the element of randomness. In the forward

feature selection, for each gene set, only 30models total were trained and evaluated. In rare cases, themodel groupmight get lucky in testing,

leading to inflated accuracy. Thus, outliers might appear in the result of the forward feature selection. Ideally, each gene set could be tested

more thoroughly.
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Figure 2. Heatmap from hierarchical clustering of 48 genes

Shows the similarity between gene expression and patients. The brighter the color indicates a higher value, showing where correlation is. The first column are

labels for survival, with blue representing deceased and red surviving patients.
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Figure 3. Scree plot for PCA

The scree plot displayed the amount of retained information.
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Figure 4. Forward feature selection for survival

The figure graphs the results of the forward feature selection as each gene is added. The blue line is the average of each trial and the red line is the best trial.

Figure 5. Forward feature selection for progression

The figure graphs the results of the forward feature selection as each gene is added. The blue line is the average of each trial and the red line is the best trial.

ll
OPEN ACCESS

12 iScience 26, 107934, October 20, 2023

iScience
Article



REFERENCES
1. Vı́tor, A.C., Huertas, P., Legube, G., and de

Almeida, S.F. (2020). Studying DNA Double-
Strand Break Repair: An Ever-Growing
Toolbox. Front. Mol. Biosci. 7, 24. https://doi.
org/10.3389/fmolb.2020.00024.

2. Davis, A.J., and Chen, D.J. (2013). DNA
double strand break repair via non-
homologous end-joining. Transl. Cancer Res.
2, 130–143. https://doi.org/10.3978/j.issn.
2218-676X.2013.04.02.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources, including raw data, should be directed to and will be fulfilled by the lead contact, Z Ping Lin

(z.ping.lin@yale.edu).

Materials availability

The source of the data and code in performed analyses are all open-source. The data files used in this study can be obtained through the

TCGA web program.

Data and code availability

� The cleaned dataset has been deposited in the Zenodo repository as ‘‘data.csv’’. This paper analyzes existing, publicly available data

from the TCGA web program. The accession numbers are listed in the key resources table.

� All original code has been deposited in the Zenodo repository and is publicly available as of the date of publication. Additionally, all 3rd

party packages used in the code are open source. DOIs are listed in the key resources table.
� Any additional information required to reanalyze the data can be addressed by the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ovarian cancer patients

The prognosis and gene expressions of the ovarian cancer patients were extracted from The Cancer Genome Atlas (RRID:SCR_003193).27

Given the nature of the cancer, the origin of the data was only female patients. The sample of ovarian cancer patients were majority white

women (% = 0.86631) around an age mean of 59.58 (sd = 11.3), being classified as high-grade serous ovarian adenocarcinomas.27 61.22%

of the ovarian cancer patients had a deceased outcome, 26.73% with progression, and 35.29% with recurrence. Lastly, the majority,

72.46% of patients had a FIGO stage as Stage IIIC. The remaining patients made up 15.24% as Stage IV, 4.01% as Stage IIC, 3.74% as Stage

IIIB, and 4.55% as the remaining stages.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Cleaned data and R and Python code This paper RRID:SCR_003193; https://doi.org/10.5281/

zenodo.8123030

Software and algorithms

PCA software GraphPad, Prism 9.02 www.graphpad.com

Deep learning library Tensorflow https://www.tensorflow.org/

Dendrogram generation SciPy https://scipy.org/

Clustermap generation Seaborn https://seaborn.pydata.org/

Python graphing library matplotlib https://matplotlib.org/

Python programming language Python https://www.python.org/

Model evaluations caret https://cran.r-project.org/package=caret

Decision tree classifier rpart https://cran.r-project.org/package=rpart

Naive-bayes and SVM classifiers e1071 https://cran.r-project.org/package=e1071

R programming language R Project https://www.r-project.org/

Other

Source of data TCGA Web Program https://www.cancer.gov/

Protein names to gene names ProteinAtlas https://www.proteinatlas.org

Gene names to Ensembl ID GeneCards www.genecards.org
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METHOD DETAILS

Data collection

A set of 48 proteins involved in the NHEJ repair mechanism were identified. Firstly, the NHEJ process will recognize, using the Ku hetero-

dimer, and stabilize the DSB with main NHEJ factors like DNA-PKcs or Ligase IV. From there, Artemis, PNKP, APLF, WRN, and aprataxin,

among other proteins, are recruited to bridge the ends and processes them. The next step is litigation of the broken ends via Ligase IV,

XLF, and XRCC4.2 Alternatively, proteins that are involved in the promotion of other pathways, such as HR or SSA, were considered relevant

for their antagonistic effect on NHEJ.28

Proteins from DNA repair are important to include since the relative activity between pathways could give a quantification of failed NHEJ.

As a result, the standard for picking proteins was reported involvement in NHEJ or participation in other pathways with association with NHEJ

activity.

Data was scraped from the Human Protein Atlas database to map the of proteins to genes.29 The final list of genes included XRCC6,

XRCC5, XRCC7, LIG4, LIG3, LIG1, XRCC4, NHEJ1, XRCC1, DCLRE1C, TP53BP1, BRCA1, BRCA2, EXO1, EXD2, POLM, POLL, POLQ,

RAD50, MRE11, NBN, TDP1, RBBP8, CTBP1, APLF, PARP1, PARP3, PNKP, APTX, WRN, PAXX, RIF1, RAD52, RAD51, ATM, ATR, TP53,

H2AX, ERCC1, ERCC4, RPA1, MSH2, MSH3, RAD1,MSH6, PMS1, MLH1, andMLH3.2,15–21,23,25,29–46 Following this, the Ensembl IDs, the refer-

ence number for each gene, were determined using the Human Gene database, GeneCards.47,48 FPKM (fragments per kilobase of transcript

per million readsmapped)49 expression levels from 374 ovarian cancer patients and 279 breast cancer patients (653 total) were extracted from

the Cancer GenomeAtlas (TCGA,December 2020).27 The other data fields were patient ID, survival status, survival in days, progression status,

recurrence status, age, race, ICD10 Code, FIGO stage, neoplasm histologic grade, tumor size, lymphatic invasion status, total dose, number

of treatment cycles, treatment start date and end date, therapy type, drug name, and regimen indication. Progression and recurrence status

was inferred from treatment regimen indication and were noted to potentially be inaccurate. Some entries were left as null because they were

either missing, unavailable, or irrelevant to the study. 52 patients were missing a progression outcome and another 52 were missing a recur-

rence outcome. More detailed dataset statistics are listed in the Zenodo repository.50

The entire set of data was organized into a table and each gene’s expression was normalized. The categorical data points of tumor stage,

grade, recurrence, and progression were converted to numerical labels and normalized as well. Dataset preparation was conducted using the

R programming language.51

QUANTIFICATION AND STATISTICAL ANALYSIS

General information

Summary statistics were computed on the dataset using a spreadsheet. The patients used in this analysis were assumed to be independent

and randomly selected from the population. Additionally, the central limit theorem justifies the sample being treated as normal.52 N repre-

sents the number of patients used in a given analysis.

10-Fold cross validation

The ovarian cancer patients were reordered randomly and separated into ten distinct sets. These sets were the same in each cross validation

conducted. Iterating over each set, one was used as the testing set while the other nine were used as training data.53 The evaluation metric,

balanced accuracy, was then averaged across the ten iterations. Balanced accuracy was chosen because it equally weighted positive and

negative predictive strength.54

Linear and logistic regression

Linear and logistic regression was chosen to approach modeling starting with low complexity. It also provides clear feature importance. The

correlation between each gene expression and survival time was calculated using linear regression (n=374) in R. With regression as the goal,

alive patients were given a 20-year survival time and the linear regression model was fitted by minimizing squared residuals for length of sur-

vival (Table S1). Logistic regression was included to attempt classification of survival (n=374) (Table 1), progression (n=322) (Table 2), and

recurrence (n=322) (Table 3). The positive cases (patient survival, cancer progression, cancer recurrence) were denoted as ‘‘1’’ and all others

were ‘‘0’’. The model predicts class probability, in the range 0-1. The threshold for predicting positive or negative was chosen to be 0.5. To

evaluate purely the gene capabilities, they were the only predictors used in this analysis. The analysis also produced a coefficient and error for

each feature. From this, t-values and p-valueswere generated. P-values less than 0.1 were chosen as within the threshold for significance in the

feature selection, in order to have an adequate subset of data to create models. For the survival models, the corresponding coefficients and

p-value of each gene were used to indicate confidence in their positive or negative correlation with survival. The linear regression was eval-

uated using mean absolute distance, comparing to a baseline of predicting average survival every time. The classifiers were evaluated using

balanced accuracy over a 10-fold cross validation.

Decision tree, naive-bayes, support vector machine

To attempt a wider variety of models, a decision tree, a naive-bayes classifier, and a support vector machine were created in R using the rpart,

caret, and e1071 packages.55–57 The intent was to predict survival (n=374), progression (n=322), and recurrence (n=322) using gene expression

as the sole predictors. The features selected from the logistic regression analysis were used in training these models. However, an additional
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trial was conducted to use every gene, testing for relationships missed by the logistic regression feature selection. Balanced accuracy over a

10-fold cross validation were used to evaluate the models and compare them (Table S2). For the naive-bayes, the Laplace parameter was set

to 0. For the support vector machines, the linear, polynomial, sigmoid, and radial kernels were all tested to choose the optimal one.

Two sample T-Test

A two sample t-test was performed using R software to compare the average gene expressions of patients over all three binary variables:

survival (n=374), progression (n=322), and recurrence (n=322). Looking at each outcome individually, the data was separated into positive

and negative sets. The mean and standard deviation of the sets were calculated. The hypothesis for the t-test, whether a positive or nega-

tive outcome had higher gene expression, was chosen based on which set had the higher mean. Then, two-sample t-statistics were

computed. Finally, a Student’s t-distribution was used to calculate the p-value (Table 4). P-values under 0.05 were considered statistically

significant.

Baseline accuracy calculation using simulation

With a small sample size, there was concern that the accuracy could be achievedby randomvariation in the dataset. To further corroborate the

accuracy as significant, a simulation was performed in which the logistic regression, decision tree, naive-bayes, and SVM models were re-

trained on a randomly generated dataset of the same number of patients and genes. The values drawn followed a normal distribution.

Over 100 trials, the balanced accuracy from each model was recorded. The two sample T-Test was also conducted to count the number

of significant genes. Lastly, the average and 95% percentile values were calculated.

Hierarchical clustering

Hierarchical clustering was performed to note the relatedness between gene expression variables and survival (n=374). The gene expression

variables were isolated to evaluate their predictive capabilities. This analysis was performed on the dataset using SciPy, Matplotlib, and Sea-

born software in Python.58–61 Agglomerative-type clustering was used applying the ‘‘ward" linkage method. The results were presented as a

heatmap (Figure 2) and dendrogram (Figure 1) to depict the clusters of related genes and ovarian cancer patient outcomes.

Principal component analysis

A principal component analysis (PCA) was performed using the Prism software program (GraphPad) to determine redundancies that can be

eliminated in the dataset and the significance of each gene in the dataset (n=374).62 The gene variables were isolated in this analysis to eval-

uate them as predictors. The first two principal components were plotted in comparison to survival (Figure S1). In addition, a scree plot (Fig-

ure 3) and feature representation plot (Figure S2) was generated.

Neural network

To analyze complex patterns in the data and attempt higher accuracy than current machine learning procedures, a neural network was

created. The deep learning approach was implemented using TensorFlow in Python.63,64 A neural network was designed using two hidden

layers, 19 neurons in the first layer and 10 in the second, to predict prognosis. ReLU was used as activation functions for the hidden layers

and the sigmoid function was used on output. The training data held the first 80% of the ovarian cancer patients. This training set was used

for ‘‘Model A’’. For ‘‘Model B’’, an augmented training group was created by combining breast cancer data with the first training set.

‘‘Model B’’ was only included to predict survival since the recurrence and progression prognoses were unknown for the breast cancer pa-

tients. All 274 breast cancer patients were added to help the model predict ovarian cancer prognosis. The validation set held the next 10%

of the ovarian cancer patients. The testing set held the remaining 10% of ovarian cancer patients. In predicting progression and recurrence,

52 patients had to be dropped because their clinical outcomes were unknown. This change was reflected in the sizes of each set propor-

tionally (survival had a 300|37|37 split, progression and recurrence had a 258|32|32 split). The models were tested with different hyper-pa-

rameters to determine their optimal design, including class weighting to value positive and negative outcomes equally. In addition, feature

selection was performed using the forward feature selection technique (Figures 7, 8, and 9). The process begins with no genes. The next-

best performing gene was added to the training features iteratively until 35 genes were chosen.65 Balanced accuracy over three repetitions

of 10-fold cross-validation was used for choosing the next gene. The results of this method were graphed using Matplotlib to visualize the

increase in best accuracy and average accuracy. Different gene sets were tested to maximize performance. Finally, the models were eval-

uated on the three binary outcomes: survival (n=374), progression (n=322), and recurrence (n=322), over ten repetitions of 10-fold cross

validation. The 10-fold cross-validation was identical to that used in the other machine learning models. Averaged balanced accuracy

was used for comparing models. Lastly, Model B was judged against to Model A in three trials: training with all the genes, the best

from the forward feature selection, and the genes from the logistic regression feature selection. A bar graph was created using Matplotlib

to visualize the differences (Figure S3).

Learning curves

Learning curves were generated for the survival outcome (n=374) with the logistic regression and neural network models. The logistic regres-

sion learning curve used the features from the logistic regression feature selection (Figure 7). Two learning curves were made for the neural
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network, training on the top three (Figure 8) and five (Figure 9) from the forward feature selection. This was done with Matplotlib by plotting

training and testing scores when themodel learned on differing amounts of examples, incrementing with 1/25 of the training set at a time. The

training set consisted of 70% of the ovarian cancer patients and the testing had the remaining 30%. Balanced accuracy was used as the eval-

uation metric. The logistic regression model was created in R and the neural network was built in Python. The neural network scores for each

training set size were averaged over six repetitions.
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