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Hypoxia is an important characteristic of most solid malignancies, and is closely related to
tumor prognosis and therapeutic resistance. Hypoxia is one of the most important factors
associated with resistance to conventional radiotherapy and chemotherapy. Therapies
targeting tumor hypoxia have attracted considerable attention. Hypoxia-activated
prodrugs (HAPs) are bioreductive drugs that are selectively activated under hypoxic
conditions and that can accurately target the hypoxic regions of solid tumors. Both single-
agent and combined use with other drugs have shown promising antitumor effects. In this
review, we discuss the mechanism of action and the current preclinical and clinical
progress of several of the most widely used HAPs, summarize their existing problems and
shortcomings, and discuss future research prospects.
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INTRODUCTION

Hypoxia is a hallmark of a wide variety of solid tumors. In tumors, hypoxia arises due to a mismatch
between oxygen delivery and consumption. Hypoxia is closely related to tumor progression,
metastasis, therapeutic resistance, and poor prognosis (1). Hypoxia in tumor microenvironment
leads to the transcriptional induction of a series of genes. The most important factor mediating this
response is the hypoxia-inducible factor-1 (HIF-1), which extensively participates in glucose
metabolism, angiogenesis, apoptosis, tumor metastasis and therapeutic resistance (2). Under
hypoxic condition, HIF-1a regulates the switch from oxidative phosphorylation to anaerobic
glycolysis, by activating the expression of glucose transporter 1 and 3 (GLUT-1 and GLUT-3) and
related glycolytic enzymes (3). By regulating its downstream angiogenesis related genes, such as
vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), matrix
metalloproteinases (MMPs), HIF-1a is widely involved in every step of angiogenesis, including
endothelial progenitor cells recruitment and their differentiation to endothelial cells and smooth
muscle cells, degradation of extracellular matrix, and the stability of peripheral cells (4). HIF-1a
could induce apoptosis by regulating p53, Bcl-2, BNIP-3 and other genes (5). Through induction of
MMPs, E-cadherin, CXCR4, CA9, HIF could promote tumor invasion and metastasis by regulating
epithelial-to-mesenchymal transition (EMT) (6).

Tumor cells response to hypoxia depends in part on the duration of exposure. Hypoxic tumor
cells may undergo necrosis, but some of the tumor cells may adjust to hypoxic stress and survive,
which is also mediated by HIF-1a, resulting in a more aggressive phenotype and therapeutic
resistance (5). Hypoxia and HIF could induce cell cycle arrest and hypoxic tumor cells generally
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have a relatively low proliferation rate (7, 8), while radiotherapy
or chemotherapy mainly act on proliferating cells (9–11).
Therefore, the hypoxic regions of tumors are usually
insensitive to current radiotherapy and chemotherapy, and
treatments targeting the hypoxic regions may provide
additional clinical benefits. To this end, increasing efforts have
been focused on the development of agents that selectively target
and kill hypoxic tumor cells.

Hypoxia-activated prodrugs (HAPs), also referred to as
bioreductive drugs, are compounds that can be selectively
reduced by specific reductases under hypoxic conditions to form
cytotoxic agents that precisely target hypoxic tumor cells and have
little toxicity to normal tissue. At present, several classes of HAPs
have been developed, including quinones, nitroaromatics,
aliphatic N-oxides and hetero-aromatic N-oxides. The most
representative ones are tirapazamine, AQ4N (banoxantrone),
PR-104, EO9 (apaziquone), TH-302 (evofosfamide), and
SN30000 (Figure 1). This review puts a special emphasis on the
past achievements as well as limitations of HAPs and attempts to
analyze the potential reasons for unsuccessful clinical trials, with
the aim of guiding future investigations into optimizing the use of
this therapeutic approach.
TIRAPAZAMINE

Tirapazamine (SR-4233,WIN59075) [3-amino-1,2,4-benzotriazine-
1,4dioxide], thefirsthypoxia-activatedprodrug,was reported in1986
(12). Through one-electron reduction, the prodrug can generate an
oxidative radical, which will diffuse into hypoxic regions and cause
oxidative damage (13) (Figure 2). Cytochrome P-450 (CYP) is the
main catalytic reductase involved in the reduction of tirapazamine
(14). Although evidence showed that tirapazamine is a substrate for
Frontiers in Oncology | www.frontiersin.org 2
NAD(P)H: (quinone acceptor) oxidoreductase (DT-diaphorase)
(15), the amount of DT-diaphorase expression in cells did not
affect their sensitivity to tirapazamine (16).

Tirapazamine kills hypoxic cells by inducing chromosome
aberrations and DNA double-strand breaks (17). Chromosome
breaks caused by tirapazamine were more damaging and difficult
to repair (18). Under hypoxic conditions, tirapazamine causes
damage to both purine and pyrimidine residues in double-stranded
DNA. DNA base damage was dominated by formation of
formamidopyrimidine and 5-hydroxy-6-hydropyrimidine (19, 20).
The DNA damaging activity of tirapazamine mainly results from
radicals generated within the nucleus but not in the cytoplasm (21).
Tirapazamine can induce acute changes in energy metabolism and
intracellular pH in tumors (22). Skarsgard et al. (23) found that
tirapazamine-induced DNA damage was pH-dependent (more
effective at acidic pH) and could be repaired by certain gene
products including uvrC and exonuclease III (24). The affinity of
tirapazamine for hypoxic tissues was confirmed bymany researchers
but Durand and Olive demonstrated that this selectivity of
tirapazamine was much lower in vivo (3 fold higher than aerobic)
than that observed in vitro (50-500 fold) (25). Under aerobic
conditions, tirapazamine can still induce cell cycle interruption and
apoptosis, which may lead to its aerobic toxicity (26).

In preclinical studies, tirapazamine effectively inhibited tumor
colony-forming in vitro, especially in hypoxic cells (27).
Tirapazamine induced cell cycle arrest and apoptosis, and down-
regulated HIF-1a, CA-IX and VEGF expression (28, 29). Brown
(30) suggested that the activity of tirapazamine was p53-
independent, but Yang’s study on neuroblastoma revealed that
tirapazamine had clinical activity only in p53-functional
neuroblastoma (31). Zeman and Brown published a series of
reports focusing on the radiosensitization effects of tirapazamine.
They reported that tirapazamine enhanced radiation-induced
FIGURE 1 | Chemical structures of representative HAPs.
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antineoplastic effects while sparing normal tissues (12, 32–38). As
flavone acetic acid (FAA) reduces the blood supply of tumors,
tirapazamine in combination with FAA could significantly enhance
the antineoplastic efficacy of both drugs (39). Many studies have
investigated the synergistic effect of tirapazamine and chemotherapy
(such as cyclophosphamide, cisplatin, paclitaxel, etc.) or
radioimmunotherapy (40–45). Tirapazamine, together with
hyperthermia, electric pulses, etc. also exhibited encouraging
antineoplastic efficacy (46–49). However, studies conducted by
Adam et al. (50, 51) demonstrated that tirapazamine plus cisplatin
and/or irradiation significantly increased toxicity and mortality.

In clinical trials, the reported adverse events associated with
tirapazamine included muscle cramping, ototoxicity,
granulocytopenia, nausea and vomiting, etc. (52, 53). Most phase
1 and 2 clinical trials have shown encouraging antineoplastic efficacy
and tolerable toxicity (54–60). However, others, as well as two phase
3 clinical studies showed little benefit or significant toxicity (61–65).
AQ4N

AQ4N [1,4-bis{[2-(dimethylamino-N-oxide)ethyl]amino}-5,8-
dihydroxyanthracene-9,10-dione], an aliphatic N-oxide, was
Frontiers in Oncology | www.frontiersin.org 3
first reported in 1993 (66). Its prodrug has no intrinsic DNA
binding affinity and thus is non-toxic. Under hypoxic conditions,
AQ4N can be activated into AQ4 (with an intermediate product
AQ4M) through a two-electron reduction mediated by CYP,
which is DNA-affinic and possesses 1000-fold cytotoxic potency
compared with its prodrug (Figure 3). During the subsequent
decade, Patterson and his team deeply investigated the
pharmacology of AQ4N. They demonstrated that AQ4N
combined with radiotherapy or chemotherapy (cisplatin,
cyclophosphamide, thiotepa, mitoxantrone) showed enhanced
antineoplastic effects (67–70). In 2003, they proposed a gene-
directed enzyme prodrug therapy (GDEPT) strategy using CYPs
in order to facilitate the bioreduction of AQ4N (71). Other
researchers also investigated the activation of AQ4N by
different types of CYPs and nitric oxide synthase (NOS) (72–75).

Many researchers have confirmed that AQ4N exerts
antitumor effects in preclinical models of pancreatic cancer
(76), bladder cancer and lung cancer (77), prostate cancer (78),
gliosarcoma (79), etc., in both single-agent and combined
chemotherapy, and in radiotherapy. Gieling et al. (80)
demonstrated that AQ4N was more effective toward metastases
in a fibrosarcoma-bearing mouse model (subcutaneous KHT
tumors). Trédan et al. compared the penetration capacity of
AQ4N and mitoxantrone through multi-layer cell cultures and
FIGURE 2 | Reductive reaction of tirapazamine.
FIGURE 3 | Reductive reaction of AQ4N.
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tumor xenografts, and found that AQ4N could penetrate deeply
into the hypoxic regions of the tumor and that combination
therapy of AQ4N with mitoxantrone showed decreased tumor
growth (81). There is also evidence showed that AQ4N had anti-
angiogenic effects (82, 83).

The first phase 1 study of AQ4N was reported in 2007, in
which 22 esophageal carcinoma patients received an AQ4N
infusion followed by fractionated radiotherapy (84). Three of
22 patients had > 50% reductions in tumor volume and 9 had
stable disease without dose-limiting toxicity. Albertella et al.
enrolled 32 patients with different malignancies in a phase 1
study, and demonstrated that AQ4N was activated selectively in
hypoxic regions of tumors and that it can penetrate the blood-
brain barrier (85). No objective antitumor effect was observed in
another phase 1 clinical study conducted by Papadopoulos
et al. (86).

In recent years, a series of new therapeutic strategies have
been under development, including combination therapy with
AQ4N and photodynamic therapy (PDT), vascular-targeted
photodynamic therapy (VTP) (87–92). Feng et al. (93) developed
a treatment strategy that combined PDT with AQ4N. Using an
AQ4N-64Cu-hCe6-liposome in vivo PET probe, they were able to
monitor tumorhypoxia status after illuminationwith light-emitting
diode light and demonstrated that utilization of PDT-induced
hypoxia to trigger hypoxia-targeted therapy achieved significant
antineoplastic effects. Zhang et al. (94) showed that AQ4N
combined with starvation therapy (by using stealth liposomes to
deliver glucose oxidase together with prodrugs) exhibited similar
enhancement of antitumor effects. These methodologies provide
new insights for future cancer diagnosis and therapy.
Frontiers in Oncology | www.frontiersin.org 4
PR-104

PR-104 is a 3,5-dinitrobenzamide-2-mustard. The water-soluble
phosphate PR-104 can transform to a more lipophilic prodrug
PR-104A (3,5-dinitrobenzamide-2-nitrogen mustard)
systemically, and then, under hypoxic conditions, it can be
further activated by reduction to PR-104H (5-hydroxylamine)
and PR-104M (5-amine), allowing it to act as a DNA interstrand
cross-linking agent in hypoxic cells and exert cytotoxic effects
(95) (Figure 4). The reduction reaction is catalyzed anaerobically
mainly by NADPH-cytochrome P450 reductase (96). There are
studies demonstrating that PR-104 may also be reduced by aldo-
keto reductase (AKR) 1C3 anaerobically, which might cause
systemic toxicity (97, 98). The sensitivity of PR-104 depends on
the oxygenation status, reductase activity, and DNA repair ability
(99). Two studies have revealed the bystander effect of PR-104
(100, 101).

In in vitro studies, the antitumor efficacy of PR-104 has been
investigated in cervical squamous cell carcinoma (SiHa cells),
ovarian carcinoma (A2780 cells), non-small cell lung carcinoma
(H1299 and A549 cells), colorectal carcinoma (RKO and HCT116
cells), hepatocellular carcinoma, etc., PR-104 as a single agent or in
combination with radiotherapy or chemotherapy has shown
different degrees of antineoplastic effects (95, 102–104).

In clinical trials, however, no or only partial responses were
observed, but with obvious toxicities, mainly thrombocytopenia
and neutropenia (105–108). However, PR-104 showed
advantages in the treatment of leukemia. Evidence showed that
in acute lymphoblastic leukemia, T-cell acute lymphoblastic
leukemia, and acute myeloid leukemia, PR-104 decreased
FIGURE 4 | Reductive reaction of PR-104.
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tumor burden and prolonged survival in pre-clinical studies
(109), and also was associated with disease response in a phase
I/II clinical trial (110). The expression of AKR1C3 can be used as
a biomarker to predict response to PR-104 and patients
screening (111).
EO9 (APAZIQUONE)

EO9 (Apaziquone) [3-hydroxy-5-aziridinyl-1-methyl-2(1H-
indole-4,7-dione)prop-beta-en-alpha-ol], which is structurally
related to mitomycin C, was first reported 1989 and has been
deeply investigated since then. Pharmacological studies have
shown that DT-diaphorase plays a vital role in the reduction of
EO9 prodrug (112), implying that detection of DT-diaphorase
activity might predict the sensitivity of certain tumors to EO9
(113–115) (Figure 5).

In vitro , EO9 was proved effective toward colon
adenocarcinoma cells, melanoma cells, central nervous system
tumors, renal cancer cells, oral squamous cell carcinoma, and
lung cancer cells (including NSCLC and certain cell lines of small
cell lung cancer). In vivo, gastric and colorectal adenocarcinoma,
ovarian carcinoma, and breast carcinoma were sensitive while
leukemia was found to be resistant to EO9 (116–118). Certain
inducers such as 1,2-dithiole-3-thiones (D3T) could enhance
DT-diaphorase activity, thereby increasing the sensitivity of EO9
(119, 120). However, some researchers pointed out that in vitro
studies on DT-diaphorase activity are different from in vivo
studies, and may result in different sensitivity measurements
(121). Further pharmacological studies have shown that in the
presence of oxygen, DT-diaphorase reduces EO9 through 2-
electron reduction, and the product is hydroquinone; while
under hypoxic conditions, EO9 undergoes 1-electron
reduction, and the product is semiquinone, which is more
toxic than hydroquinone (122, 123). Therefore, EO9 may be
more effective for hypoxic solid tumors (124, 125). Studies have
also shown that the anti-tumor effect of EO9 is pH-dependent,
and may exert a tumor suppressor effect in tumor areas with low
pH (pH5.5-7.0) (126).

For clinical trials, nephrotoxicity and proteinuria were
observed in both phase 1 and phase 2 clinical studies, but only
Frontiers in Oncology | www.frontiersin.org 5
partial response or stable disease was achieved (127–131). The
reason for these unsatisfactory results may be attributed to the
instability of both semiquinone and hydroquinone, with a short
half-life and poor permeability, which will be quickly removed
in vivo (131–134). However, this special pharmacokinetic profile
is ideal for local treatment (135, 136). Intravesical instillation of
EO9 was well tolerated and effective for superficial bladder
cancer, manifested by a higher complete remission rate and a
lower recurrence rate (137–139). A recent study pointed out that
EO9 may be inactivated by hematuria, which suggests that the
timing of medication should be selected with this in mind in the
design of future phase 3 clinical trials (140).
TH-302 (EVOFOSFAMIDE)

TH-302 (Evofosfamide), a second-generation HAP, consists of a
2-nitroimidazole moiety linked to bromo-iso-phosphoramide
mustard (Br-IPM). Br-IPM is a DNA cross-linking agent.
Under hypoxic conditions through a 2-nitroimidazole
reduction reaction, TH-302 prodrug releases Br-IPM and
perform cytotoxic effect (141) (Figure 6). Cytochrome P450
oxidoreductase (POR) also plays an important role in the
reduction reaction and is the main determinant of cell
sensitivity to TH-302 (142). Thus, the efficacy of TH-302 is
highly dependent on the tumor type (143).

Many researchers have reported the antitumor efficacy of TH-302 as
a single agent in malignancies including multiple myeloma,
osteosarcoma, chondrosarcoma, neuroblastoma, rhabdomyosarcoma,
breast cancer, non-small cell lung cancer, head and neck tumors, acute
myeloid leukemia, etc. (144–152).Theeffect ofTH-302onspherical cells
was significantly enhanced (153) and its activity was related to tumor
hypoxic fractions (154), indicating that TH-302 had high hypoxic
selectivity. The reported antineoplastic mechanisms include DNA
fragmentation, cell cycle arrest, down-regulation of hypoxia-inducible
factor-1a expression, etc.

In addition to monotherapy, TH-302 also showed synergistic
effects with many traditional chemotherapy drugs, including
doxorubicin, topotecan, paclitaxel, cisplatin, docetaxel,
pemetrexed, irinotecan, gemcitabine, and temozolomide
(155–157). TH-302 was able to inhibit the reoxygenation and
FIGURE 5 | Reductive reaction of EO9.
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proliferation of hypoxic tumor cells that survived chemotherapy
(158). Studies also revealed that the applicationofhypoxia inducers,
suchasChk1 inhibitor,mTORinhibitor, hydralazine, andpyruvate,
enhanced the efficacy of TH-302 (159–161). TH-302 also has a
radiosensitizationeffect. It exerts a synergistic effectwhencombined
with radiotherapy (162–164). TH-302 has been shown to be
beneficial in combination with conventional transarterial
chemoembolization (cTACE) (165); anti-angiogenic therapy,
such as VEGF-A inhibitor, sunitinib, and pazopanib (166–168);
molecular targeted therapy, such as sorafenib and erlotinib (169,
170); and immunotherapy, such as CTLA-4 and PD-1 blockade
(171, 172),where it also exerted a significant tumor inhibition effect.
Recent evidence suggests that TH-302 can not only kill hypoxic
pancreatic cancer cells, but also has the ability to improve the
oxygenation status of residual tumor cells, so it may be useful to
enhance the effect of radiotherapy and chemotherapy (173).

Since 2007, TH-302 has been in clinical trials. Themain toxicities
reported were skin and/or mucosal toxicity, thrombocytopenia,
neutropenia, and myelosuppression (174–177). Several phase 1/2
clinical trials have reported encouraging results. For several types of
tumors, including soft tissue sarcoma, pancreatic cancer,
glioblastoma, and papillomavirus-negative head and neck
squamous cell carcinoma, etc, TH-302 alone or in combination
with other therapies showed varying degrees of antineoplastic
activity (171, 175–178). It showed limited efficacy in the treatment
Frontiers in Oncology | www.frontiersin.org 6
of leukemia and failed in two phase 3 clinical trials (179–181).
Researchers analyzed the possible reasons, including the lack of
patient screening based on tumor hypoxia status (182, 183),
antagonism between drugs (184), and drug formulation changes
(185). Further research is still in progress.
SN30000

SN30000 [3-(3-Morpholinopropyl)-7,8-dihydro-6H-indeno[5,6-
e][1,2,4]triazine 1,4-dioxide], previously known as CEN-209, is a
second-generation benzotriazine-N-oxide hypoxia-activated
prodrug and a modified analogue of tirapazamine (Figure 7).
Currently, it is still in the stage of preclinical research. Several
studies have confirmed that SN30000 possesses similar
pharmacological mechanisms (186) to tirapamine, but is superior
in terms of antineoplastic effects and hypoxia selectivity (187).

Mao et al. (188) proved that, compared with monolayer
tumor cells, SN30000 has higher activity on tumor spheroids,
and when combined with radiation, it can cause significant
tumor spheroid growth delay. Moreover, when used together
with or before gemcitabine, SN30000 can effectively inhibit the
proliferation of reoxygenated tumor cells (189). EF5 binding may
be a promising biomarker for hypoxia stratification and SN30000
treatment response assessment (190, 191).
FIGURE 6 | Reductive reaction of TH-302.
FIGURE 7 | Reductive reaction of SN30000.
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CONCLUSIONS AND SUGGESTIONS FOR
FUTURE INVESTIGATIONS

Since the 1980s, HAPs have been developed and validated step by
step, from preclinical to clinical. Despite their antineoplastic
effects, their drawbacks and limitations have also been revealed
by many studies. Here, we summarize the past experience and
the latest research progress, and propose the following directions
for future research (Table 1):

First, screening methods need to be developed based on tumor
hypoxia to select the best candidates for this type of therapy. A
growing number of studies have shown that PET/CT imaging can be
an effective method to monitor HAPs uptake and therapeutic
response (148, 190, 192). Second, biomarkers to predict drug
sensitivity are needed. Since HAP is a bioreductive drug, it requires
specific enzymes to complete the reduction reaction. Therefore, the
detection of specific enzymes can play a role in predicting drug
sensitivity (112, 142). In addition, experiments conducted by our
group and others showed that hypoxic tumor cells could only survive
for 2-3days in vivo (193, 194), suggesting that in vivohypoxic cells are
destined to enter necrosis in vivo and that hypoxia-targeting therapy
of macroscopic tumors should be revisited.
Frontiers in Oncology | www.frontiersin.org 7
Hypoxia is not only a characteristic of macroscopic tumors.
In 2007, Li et al. reported that peritoneal disseminated micro-
metastases (< 1 mm in diameter) were severely hypoxic and in
low proliferation state (7, 8, 195–197). This hypoxic state of early
micrometastases likely confers insensitivity to traditional
radiotherapy and chemotherapy, making them suitable
therapeutic targets for HAPs. HAPs may have the potential to
prevent them from developing into macroscopic tumors, thereby
reducing the metastatic rate of tumors. Our group is working to
further confirm the efficacy of HAPs on such tumors and its
effect on early tumor metastasis.
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Summary points
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