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The origin of  immunoglobulins in mammal ian  exocrine secretions has been a 
subject of  considerable recent interest. The  secretory IgA that is found in high 
concentrations in intestinal secretions, saliva, tears, milk, etc. has been assumed to be 
derived directly from local synthesis rather than from other secretory tissues via the 
serum. Support for this hypothesis is provided by adoptive transfer experiments that 
have shown a preferential migration of thoracic duct lymphoblasts or mesenteric 
lymph node lymphoblasts to mucosal lymphoid tissue, particularly the gut (1, 2). In 
addition, Roux et al. (3) and L a m m  et al. (4) have observed that the mesenteric 
lymph node lymphoblasts can selectively lodge in the m a m m a r y  gland of the lactating 
mouse. Further, these same studies indicate that the migrating cells from the mesen- 
teric lymph node bear surface IgA and are already committed to IgA synthesis. These 
findings provide a rational explanation for the observations that antigenic stimulation 
in the gut may result in specific IgA antibodies in the milk. Nevertheless, a quantitative 
evaluation of the amount  of  immunoglobulin in a secretion provided by local cells 
has not been made (5). Further, as noted by Hall et al. (6), the salivary and lacrimal 
glands contain only trivial numbers of lymphoid cells and thus their secretory 
immunoglobulins must be provided by specific and /o r  nonspecific transudation of 
serum proteins. In fact, there are a number  of recent observations suggesting that 
some of the IgA in intestinal secretions is derived from serum (7, 8). Jackson et al. (9) 
have shown that dimeric IgA in serum is rapidly secreted into the intestinal lumen via 
the bile duct. They also observed high levels of secretory IgA in rats with bile duct 
obstruction (10) and their data suggested that -90% of the IgA in intestinal washings 
reached this secretion from the serum (8). Finally, it should be noted that the finding 
of low serum levels of IgA is not a relevant observation in assessing the quantitative 
significance of transport from serum to secretions (11). To assess the ability of the 
breast to export serum IgA we have injected labeled IgA dimer into the lactating 
mouse and have measured its transport into colostrum. To evaluate the selectivity of 
this process, we have compared this transport with the passage of several different 
classes and subclasses of immunoglobulins by this same route. 

Ma te r i a l s  a n d  Method8  
Animals. Postpartum BALB/c females were used in all experiments. Except where specifi- 

cally noted, they were injected intravenously or subcutaneously within 24 h of delivery of a 
litter. In most of the experiments reported here the mothers were injected with labeled proteins 
subcutaneously in the back. The drinking water contained 0.01% KI. 
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Protein Preparation. Ascites fluid collected from mice with TEPC-15 myeloma was mixed 
with an equal volume of 100% saturated ammonium sulfate. The precipitate was washed in the 
cold (4°C) and then dissolved and dialyzed against borate-buffered saline (0.05 M borate, 0.15 
M NaC1, pH 8.0). This protein was chromatographed on a phosphorylcholine-Sepharose 
(Pharmacia Fine Chemicals, Div. of Pharmacia, Inc., Piscataway, N. J.) column and the bound 
TEPC-15 was eluted with 10 -s M phosphorylcholine. The dialyzed TEPC-15 was fractionated 
on a calibrated Bio-Gel A5M (Bio-Rad Laboratories, Richmond, Calif.) column to separate 
dimeric TEPC-15 from the monomer. MOPC-300 (IgG1) was prepared from ascites by 
ammonium sulfate precipitation, DE-52 (Whatman, Inc., Clifton, N. J.) column chromatog- 
raphy, and affinity chromatography on a staphylococcal protein A Sepharose column. The 
MOPC-11 protein (IgG2b) was purified from ascites by Dr. Barbara Birshtein, Albert Einstein 
College of Medicine, Bronx, N. Y. The inulin-binding myeloma protein J606 (IgG3), was 
obtained from ascites by ammonium sulfate precipitation, immunoadsorption on an inulin- 
cellulose column, and elution with 1 M LiCk The mouse IgM protein was purified from a 
hybridoma (TEPC-15 idiotype) by affinity chromatography on a phosphorylcholine-cellulose 
column. Human IgG was prepared by DEAE-celluiose chromatography of commercial human 
gamma globulin, Cohn fraction II (Calbiochem-Behring Corp., American Hoechst Corp., San 
Diego, Calif.). A human IgM (kappa chain) was prepared from patient serum by euglobulin 
precipitation and Bio-Gel A5M chromatography. A commercial preparation of bovine serum 
albumin (Sigma Chemical Co., St. Louis, Mo.) was used without further purification. The 
myeloma proteins were judged to be pure by immunoeleetrophoresis and sodium dodecyl 
sulfate (SDS)-polyaerylamide gel electrophoresis. As has been found by others (12), isoelectric 
focusing indicated some charge heterogeneity for all of these proteins. 

Radioiodination of Proteins. The proteins were iodinated with carrier-free Na[125]I (Amersham 
Corp., Arlington Heights, Ill.) using the iodine monochloride (13) or the chloramine-T method 
(14), and separated from unbound iodine by dialysis and/or  chromatography on Sephadex G- 
25 (Pharmacia Fine Chemicals, Div. of Pharmacia, Inc.). Specific activities were ~0.1 #Cu/#g. 
The iodinated material eluted with the native protein when examined by gel filtration on 
Sephadex G-200 columns, and furthermore, the label was found to be >90% precipitable by 8% 
trichloroacetic acid, 20% polyethylene glycol, and the appropriate specific antisera. In addition, 
the labeled proteins comigrated with native material when examined by SDS-polyacrylamide 
gel electrophoresis and by isoelectric focusing. 

Antisera. A rabbit antiserum to the TEPC-15 protein was raised by challenging two rabbits 
with the purified TEPC-15 monomer suspended in complete Freund's adjuvant followed by 
several boosts using incomplete adjuvant. To make a-chain-specific antisera, these sera were 
absorbed with a mouse IgG-Sepharose conjugate. A rabbit anti-mouse IgG serum was obtained 
from rabbits immunized with DEAE-cellulose-purified pooled mouse IgG. 

Experimental Procedures. For the 23-h studies of uptake, 5/~g of labeled protein was injected 
and then at several time points, the live neonates were counted (whole body counts) in a 
Packard 5240 gamma scintillation spectrometer (Packard Instrument Co., Downers Grove, Ill.). 
The neonates were immediately returned to their mother to nurse. The animals were killed at 
1 d at which time blood samples were taken and the gut tissue (stomach to large intestine) was 
removed. The total blood volume in the neonate was estimated to be 6% of the body weight. 

In some cases, 15-25 #g were injected into the mother at 6-10 d post-partum to collect 
sufficient labeled material for analysis. The milk was extracted manually into a capillary tube 
after injection of 0.2 ml oxytocin (10 USP U/ml) and 0.3 ml of 0.5% phenobarbital. The whey 
was prepared by addition of 0.25 M sodium acetate, pH 5.5, and twQ centrifugations at 15,000 
rpm for 20 min (Sorvall SS-34 rotor; DuPont Instruments-Sorvall, DuPont Co., Newtown, 
Conn.). 

Labeled proteins before injection and those recovered in whey were evaluated on a Sephadex 
G-200 column (0.9 × 20 cm) equilibrated in Tris-buffered saline, pH 7.4. The column was 
standardized with dextran blue and dilute Na2Cr2Ov with a sample application vol of 0.3 ml 
in all cases. 

R e s u l t s  

After  the inject ion of  5 #g of  l abe led  pro te in  into p o s t p a r t u m  B A L B / c  mice,  
t ranspor t  from serum to colos t rum was measured  by  following isotope up take  into the 
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TABLE I 

Transport of Labeled Proteins into Whey and Uptake by Neonates 

Protein 

Analysis of labeled material in whey 
Uptake of protein by 
neonates in 23 h (per- Percent macro- Percent precipi- 

cent of total molecular on 
injected)* Sephadex G-200 rated by trichlo- 

roacetic acid 
column 

IgA dimer (TEPC-15) 31 ± 2 85 89 
IgM (mouse hybridoma) 24 ± 2 87 86 
IgGl (MOPC-300) 10 ± 3 96 97 
IgG3 (J-606) 11 ± 2 80 88 
lgG2b (MOPC-I1) 13 ± 1 98 95 
Human IgG 10 =1:1 ND:~ 96 
Human IgM 27 ± 1 ND 74 
Bovine serum albumin 26 ± 1 84 83 

* Mean =l= SEM. Each value from two to five litters of four to eight neonates per litter. 
:~ ND, not done. 

nursing offspring. As can be seen in Table I, all the labeled proteins that were injected 
into the lactating females were transported to some extent into the colostrum. Of  the 
mouse immunoglobulins studied, the IgA dimer and IgM were transported at a faster 
rate than the three subclasses of IgG. By 24 h, the amount of TEPC-15 dimer had 
reached levels about three times that found for IgG. Similar results were obtained at 
higher doses (50 #g). Several heterologous serum proteins were also examined. Here, 
also, the polymeric, J-chain-containing immunoglobulin (human IgM) was trans- 
ported faster than IgG. Kinetic profiles (data not shown), where uptake by the 
neonates was measured at various time points, demonstrate that the uptake of IgA 
dimer and IgM is faster throughout the 24-h period after injection. 

The data in Table I indicate that the labeled immunoglobulin obtained by the 
nursing neonates is still largely intact. Thus, 80-98% of the isotope in the whey is still 
macromolecular as indicated by elution on Sephadex G-200 columns and 74-98% of 
the isotope in the whey was precipitated in 8% trichloroacetic acid. In addition, for 
some of the proteins studied, the antigenic integrity of the material transported into 
whey ~as  examined with specific antisera. When labeled IgA dimer, MOPC-300 
protein, and human IgG were injected and the whey was analyzed, it was found that 
82, 93, and 92% of the isotope was precipitated with the appropriate antisera. 

The body distribution of isotope in the nursing neonates 23 h after injection into 
their mother was examined. For the immunoglobulins studied, the gut, which included 
the ingested milk, contained 42-57% of the isotope. Most of these counts were found 
to be on intact proteins. The isotope in the blood contained significant quantities of 
low molecular weight material, but in these samples quantitation was difficult because 
of the small samples available. 

Discussion 

The data in Table I showing faster transport of IgA dimer and both of the IgM 
proteins indicate that an efficient mechanism exists in the mammary gland to remove 
these polymeric immunoglobulins from the circulation. It is of particular interest to 
note that the immunoglobulins selectively transported are those with the potential to 
bind secretory component (15, 16). The possibility that secretory component facilitates 
this selective transport process by functioning as a receptor on epithelial cells in 
secretory tissue is supported by several recent reports (17, 18). One would predict 



770 HALSEY ET AL. BRIEF DEFINITIVE REPORT 

LYMPHOID CELLS IN INTESTINE 
AND MESENTERIC LYMPH NODES / - , .  

MIGRATION 
OF CELLS MIGRATION OF 

10A DIMER 
MAMMAR GLAND [ 

SUBMUCOSA kt 
~p SERUM 

LOCALLY RODUCED IgA DIMER 

IgA OIMER D ~ J k  = 

" ~ " ~  MAMMARY GLAN 
EPITHELIUM 

1 
$1gA IN MILK 

FIG. 1. Two mechanisms for secretory IgA to reach mammary gland secretion. Here kl is the rate 
constant for transfer of IgA dimers from lymph to serum and k2 is rate constant for removal from 
the circulation by membrane-bound secretory component in mammary gland epithelial cells. 

from these observations that an IgA monomer (lacking J chain) would not be 
selectively transported because the secretory component interaction would not be 
possible. It is interesting to note in this regard that the studies of Jackson et al. (19) 
on the clearance of an unfractionated MOPC-315 IgA preparation demonstrated a 
biphasic clearance curve. The initial rapid phase might reflect the transport of  dimeric 
IgA, whereas the much slower clearance may characterize the transport of monomeric 
IgA from serum. The observation of a rapid transport of serum albumin into mouse 
colostrum is consistent with what is known about the rat (20) in which it appears that 
all of the albumin in whey is derived from blood plasma. 

The cellular origin of the immunoglobulins in mammal ian  secretions, particularly 
milk and colostrum, has not been clearly defined (5). For a number  of secretions, local 
synthesis and direct secretion would appear  to be of only minor quantitative signifi- 
cance (6). An alternative model (Fig. 1) is that each secretion contains immunoglob- 
ulins produced by both local and distant tissues of the mucosal immune system, as 
well as by the spleen. These antibodies may then be transported to the various 
secretory fluids via the circulation by mediation of secretory component in the 
membrane of the epithelial cells which operate to select the oligomeric, J-chain- 
containing immunoglobulins. The experiments reported here demonstrate that the 
mouse m am m ary  gland can efficiently export IgA dimers and IgM from serum. 
Nevertheless, these findings do not provide us with the data to quantify the relative 
importance of the two mechanisms shown in Fig. 1 : cell migration followed by local 
synthesis vs. synthesis and secretion at distant mucosal sites, especially the gut lamina 
propria, followed by passage in the circulation to other exocrine tissues. 

Two observations are usually cited as evidence against a serum transfer mechanism. 
Measurements of the serum levels of IgA, particularly oligomeric IgA, indicate that 
relatively low levels are present. However, observations on total serum levels provide 
no information with respect to the relative importance of transport via serum to 
secretory fluids (6). As can be seen in Fig. 1, all that is required to keep the steady- 
state serum concentration low is for the rate of removal of oligomeric IgA to be larger 
than the rate of production and transfer into serum. If  kl is the rate constant for 
transfer of IgA dimer into serum (compartment B) from the lymphoid tissue (com- 
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partment  A) and k2 is the rate constant for transfer to the milk (compartment C) then 
the steady-state level of serum IgA dimer is [B] ffi (kl/k~)[A]. 1 Thus, in such a 
circumstance, low serum levels will be observed even though large amounts of IgA 
reach the serum each day via the lymph from the mucosal lymphoid tissue. 

There have been several reports dealing directly with the transport of IgA from 
serum to secretions and these have indicated that little IgA in the secretions comes via 
the serum. However, in the sow (21) and the cow (22) there is compelling evidence 
that IgA in the milk is derived from serum. Those that report no significant transport 
from the serum used either 7S IgA, secretory IgA, or undefined mixtures of IgA (23- 
25). Because one would predict that IgA monomer and IgA with bound secretory 
component would not be selectively transported, these studies with uncharacterized 
IgA populations cannot be readily interpreted. 

S u m m a r y  

Oligomeric, J-chain-containing immunoglobulins were observed to be transferred 
selectively from serum into colostrum. These studies suggest that, in the case of the 
m a m m a r y  gland secretion, a significant role for extraglandular synthesis of IgA merits 
consideration. Thus, for example, colostrum may contain antibodies synthesized 
locally as well as antibodies synthesized in the much larger lymphoid tissues such as 
the gut lamina propria. 

The technical assistance of Robyn Meyer and Sandra Halsey is appreciated. 
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